Добірка наукової літератури з теми "Forchheimer flows"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Forchheimer flows".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Forchheimer flows"
Aulisa, Eugenio, Lidia Bloshanskaya, Yalchin Efendiev, and Akif Ibragimov. "Upscaling of Forchheimer flows." Advances in Water Resources 70 (August 2014): 77–88. http://dx.doi.org/10.1016/j.advwatres.2014.04.016.
Повний текст джерелаGruais, Isabelle, and Dan Poliševski. "Thermal flows in fractured porous media." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 3 (May 2021): 789–805. http://dx.doi.org/10.1051/m2an/2020087.
Повний текст джерелаCelik, Emine, Luan Hoang, and Thinh Kieu. "Generalized Forchheimer Flows of Isentropic Gases." Journal of Mathematical Fluid Mechanics 20, no. 1 (January 2, 2017): 83–115. http://dx.doi.org/10.1007/s00021-016-0313-2.
Повний текст джерелаCelik, Emine, and Luan Hoang. "Generalized Forchheimer flows in heterogeneous porous media." Nonlinearity 29, no. 3 (February 16, 2016): 1124–55. http://dx.doi.org/10.1088/0951-7715/29/3/1124.
Повний текст джерелаLychagin, V. V. "On Darcy–Forchheimer Flows in Porous Media." Lobachevskii Journal of Mathematics 43, no. 10 (October 2022): 2793–96. http://dx.doi.org/10.1134/s1995080222130273.
Повний текст джерелаWood, Brian D., Xiaoliang He, and Sourabh V. Apte. "Modeling Turbulent Flows in Porous Media." Annual Review of Fluid Mechanics 52, no. 1 (January 5, 2020): 171–203. http://dx.doi.org/10.1146/annurev-fluid-010719-060317.
Повний текст джерелаHoang, Luan T., and Thinh T. Kieu. "Interior Estimates for Generalized Forchheimer Flows of Slightly Compressible Fluids." Advanced Nonlinear Studies 17, no. 4 (October 1, 2017): 739–67. http://dx.doi.org/10.1515/ans-2016-6027.
Повний текст джерелаCelik, Emine, Luan Hoang, and Thinh Kieu. "Slightly compressible Forchheimer flows in rotating porous media." Journal of Mathematical Physics 62, no. 7 (July 1, 2021): 073101. http://dx.doi.org/10.1063/5.0047754.
Повний текст джерелаHoang, L. T., T. T. Kieu, and T. V. Phan. "Properties of Generalized Forchheimer Flows in Porous Media." Journal of Mathematical Sciences 202, no. 2 (September 9, 2014): 259–332. http://dx.doi.org/10.1007/s10958-014-2045-2.
Повний текст джерелаSkrzypacz, Piotr, and Dongming Wei. "Solvability of the Brinkman-Forchheimer-Darcy Equation." Journal of Applied Mathematics 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/7305230.
Повний текст джерелаДисертації з теми "Forchheimer flows"
THIEU, THI KIM THOA. "Models for coupled active--passive population dynamics: mathematical analysis and simulation." Doctoral thesis, Gran Sasso Science Institute, 2020. http://hdl.handle.net/20.500.12571/15016.
Повний текст джерелаZhang, Andi. "Numerical investigation of multiphase Darcy-Forchheimer flow and contaminant transport during SO₂ co-injection with CO₂ in deep saline aquifers." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49065.
Повний текст джерелаKC, Amar. "Numerical Simulations of Magnetohydrodynamic Flow and Heat Transfer." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1411495287.
Повний текст джерелаBrihi, Sarra. "Mathematical analysis and numerical approximation of flow models in porous media." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC263/document.
Повний текст джерелаThis thesis is devoted to Darcy Brinkman Forchheimer (DBF) equations with a non standard boundary conditions. We prove first the existence of different type of solutions (weak, strong) of the stationary DBF problem in a simply connected domain with boundary conditions on the normal component of the velocity field and the tangential component of the vorticity. Next, we consider Brinkman Forchheimer (BF) system with boundary conditions on the pressure in a non simply connected domain. We prove the well-posedness and the existence of a strong solution of this problem. We establish the regularity of the solution in the L^p spaces, for p >= 2.The approximation of the non stationary DBF problem is based on the pseudo-compressibility approach. The second order's error estimate is established in the case where the boundary conditions are of type Dirichlet or Navier. Finally, the finite elements Galerkin Discontinuous method is proposed and the convergence is settled concerning the linearized DBF problem and the non linear DBF system with a non standard boundary conditions
Kureksiz, Ozge. "Non-darcian Flow Through Rockfills." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609720/index.pdf.
Повний текст джерелаClearman, William M. "Measurement and correlation of directional permeability and Forchheimer's inertial coefficient of micro porous structures used in pulse tube cryocoolers." Thesis, Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07092007-111541/.
Повний текст джерелаKirkconnell, Carl S., Committee Member ; Ghiaasiaan, S. Mostafa, Committee Chair ; Desai, Prateen V., Committee Member ; Jeter, Sheldon M., Committee Member.
Bailly, David. "Vers une modélisation des écoulements dans les massifs très fissurés de type karst : étude morphologique, hydraulique et changement d'échelle." Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT027H/document.
Повний текст джерелаKarstic aquifers contain large subsurface water resources. These aquifers are complex and heterogeneous on a large range of scales. Their management requires appropriate numerical tools and approaches. Various tools and numerical methodologies have been developed to characterize andmodel the geometry and hydraulic properties of karstic aquifers, more generally, of highly fissured 2D and 3D porous media. In this study, we emphasize morphological characterization, and we analyze hydrodynamic behavior through the concept of upscaling ("second upscaling"). Concerning the morphology of fissured porous media, several axes are explored : random media, composite random Boolean media with statistical properties, and morphogenetic models. Hydrodynamic upscaling is developed using the macro-permeability concept. This upscaling method is based on either Darcy's linear law, or on a linear/quadratic combination of Darcy's and Ward-Forchheimer's quadratic law (inertial effects). First, the study focuses on Darcy's linear head loss law, and Darcian effective permeabilities are calculated numerically in terms of volume fractions of fissures and "fissure/matrix" permeability contrasts. The results are analysed and compared with analytical results and bounds. A special study of percolation and quasi-percolation effects, for high contrasts, leads to defined three critical fractions. These critical fractions are "connected" to percolation thresholds. Secondly, in order to consider inertial effect in fissures, the study is extended to a local law with a quadratic velocity term (Darcy/Ward-Forchheimer). Then, an equivalent nonlinear macroscopic permeability is defined and analysed using a generalized inertial model (linear/power). Finally, the large scale hydraulic anisotropy of fissured medium is studied, in terms of directional permeabilities, using an "immersion" numerical method
Terblanche, Luther. "The prediction of flow through two-dimensional porous media." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/1722.
Повний текст джерелаWhen considering flow through porous media, different flow regimes may be identified. At very small Reynolds numbers the relation between the pressure gradient and the velocity of the fluid is linear. This flow regime ...
Kim, Sung-Min. "Numerical investigation on laminar pulsating flow through porous media." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22601.
Повний текст джерелаCommittee Co-Chair: Dr. S. Mostafa Ghiaasiaan; Committee Co-Chair: Dr. S.I. Abdel-Khalik; Committee Member: Dr. Sheldon M. Jeter.
Pathak, Mihir Gaurang. "Periodic flow physics in porous media of regenerative cryocoolers." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49056.
Повний текст джерелаЧастини книг з теми "Forchheimer flows"
Najmi, Hussain, Eddy E. L. Tabach, Khaled Chetehouna, Nicolas Gascoin, Safaa Akridiss, and François Falempin. "Flow Configuration Influence on Darcian and Forchheimer Permeabilities Determination." In Lecture Notes in Mechanical Engineering, 87–94. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1771-1_14.
Повний текст джерелаBoth, Jakub W., Jan M. Nordbotten, and Florin A. Radu. "Free Energy Diminishing Discretization of Darcy-Forchheimer Flow in Poroelastic Media." In Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 203–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43651-3_17.
Повний текст джерелаTarakaramu, Nainaru, P. V. Satya Narayana, and B. Venkateswarlu. "MHD Three Dimensional Darcy-Forchheimer Flow of a Nanofluid with Nonlinear Thermal Radiation." In Trends in Mathematics, 87–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01123-9_10.
Повний текст джерелаSahu, S., D. N. Thatoi, and K. Swain. "Darcy-Forchheimer Flow Over a Stretching Sheet with Heat Source Effect: A Numerical Study." In Lecture Notes in Mechanical Engineering, 615–22. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9057-0_67.
Повний текст джерелаPradeepa, T., and Ch RamReddy. "Micropolar Fluid Flow over a Frustum of Cone Subjected to Convective Boundary Condition: Darcy–Forchheimer Model." In Lecture Notes in Electrical Engineering, 129–46. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1824-7_9.
Повний текст джерелаBanerjee, Ashes, Srinivas Pasupuleti, and G. N. Pradeep Kumar. "A Critical Study on the Applicability of Forchheimer and Wilkins Equations for Nonlinear Flow Through Coarse Granular Media." In Water Science and Technology Library, 307–16. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5795-3_26.
Повний текст джерелаDinesh, P. A., A. S. Vasudevamurthy, and M. Uma. "Effects of Forchheimer, MHD and Radiation Absorption for Chemically Reacting Unsteady Dusty Viscoelastic Fluid Couette Flow in an Irregular Channel." In Advances in Fluid Dynamics, 999–1012. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4308-1_77.
Повний текст джерелаNAKAYAMA, A. "A UNIFIED TREATMENT OF DARCY-FORCHHEIMER BOUNDARY-LAYER FLOWS." In Transport Phenomena in Porous Media, 179–204. Elsevier, 1998. http://dx.doi.org/10.1016/b978-008042843-7/50008-8.
Повний текст джерелаHaitjema, H. M. "Dupuit—Forchheimer Flow." In Analytic Element Modeling of Groundwater Flow, 21–178. Elsevier, 1995. http://dx.doi.org/10.1016/b978-012316550-3/50003-9.
Повний текст джерелаMarzougui, Souad, and Mourad Magherbi. "Irreversibility and Heat Transfer in Darcy-Forchheimer Magnetized Flow in a Porous Double Lid-Driven Cavity Filled With Copper-Water Nanofluid." In Advances in the Modelling of Thermodynamic Systems, 134–53. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8801-7.ch008.
Повний текст джерелаТези доповідей конференцій з теми "Forchheimer flows"
Ali, Anton, and Deborah Villarroel-Lamb. "ON THE FORCHHEIMER COEFFICIENTS FOR UNSATURATED FLOWS." In International Conference on Emerging Trends in Engineering & Technology (IConETech-2020). Faculty of Engineering, The University of the West Indies, St. Augustine, 2020. http://dx.doi.org/10.47412/dmdg4407.
Повний текст джерелаIto, Makoto, Simon Tupin, Hitomi Anzai, Anna Suzuki, and Makoto Ohta. "Experimental Analysis for the Anisotropic Flows in Cancellous Bone." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71346.
Повний текст джерелаSOMMERLOT, STEPHEN, TIMOTHY LUCHINI, and ALFRED LOOS. "The Forchheimer Effect and Non-Darcy Flows in Liquid Composite Molding Processes." In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15205.
Повний текст джерелаNagendra, Krishnamurthy, and Danesh K. Tafti. "Flows Through Reconstructed Porous Media Using Immersed Boundary Methods." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72128.
Повний текст джерелаZeighami, Farhad, Alessandro Lenci, and Vittorio Di Federico. "Prediction of effective Forchheimer coefficient for one- and two-dimensional flows in heterogeneous geologic media." In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc2521711920221336.
Повний текст джерелаLin, Hao, Brian D. Storey, and Juan G. Santiago. "A Depth-Averaged Model for Electrokinetic Flows in a Thin Microchannel Geometry." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61017.
Повний текст джерелаInnocente de Souza, João Paulo, and Gustavo Rabello dos Anjos. "NUMERICAL SIMULATION OF FLOWS IN CONJUGATED REGIONS USING THE FINITE ELEMENT METHOD TO SOLVE THE DARCY-FORCHHEIMER MOMENTUM AND ENERGY EQUATIONS." In 19th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2022. http://dx.doi.org/10.26678/abcm.encit2022.cit22-0013.
Повний текст джерелаLemley, Evan C., Dimitrios V. Papavassiliou, and Henry J. Neeman. "Non-Darcy Flow Pore Network Simulation: Development and Validation of a 3D Model." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37278.
Повний текст джерелаElsafti, Hisham, and Hocine Oumeraci. "Modelling Turbulent Flow in Deformable Highly Porous Seabed and Structures." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77318.
Повний текст джерелаMesquita, Maximilian S., and Marcelo J. S. de Lemos. "Soret Effect on Double-Diffusive Laminar Convection in a Square Cavity Filled With Porous Material." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67669.
Повний текст джерела