Добірка наукової літератури з теми "Fonctions métaboliques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fonctions métaboliques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fonctions métaboliques"
Riviere, Daniel. "Sport et fonctions métaboliques." Bulletin de l'Académie Nationale de Médecine 188, no. 6 (June 2004): 913–22. http://dx.doi.org/10.1016/s0001-4079(19)33708-2.
Повний текст джерелаMayeuf-Louchart, Alicia. "L'horloge biologique du muscle." médecine/sciences 36 (December 2020): 10–12. http://dx.doi.org/10.1051/medsci/2020262.
Повний текст джерелаGUILHERMET, R. G. "Fonctions nutritionnelles et métaboliques de l’arginine." INRAE Productions Animales 9, no. 4 (August 17, 1996): 265–72. http://dx.doi.org/10.20870/productions-animales.1996.9.4.4060.
Повний текст джерелаGUILHERMET, R. G. "Fonctions nutritionnelles et métaboliques de l’arginine." INRAE Productions Animales 9, no. 4 (August 20, 1996): 265–72. http://dx.doi.org/10.20870/productions-animales.1996.9.4.4067.
Повний текст джерелаGourdy, P. "Fonctions métaboliques et mécanismes d’action des œstrogènes." Annales d'Endocrinologie 82, no. 5 (October 2021): 222. http://dx.doi.org/10.1016/j.ando.2021.07.010.
Повний текст джерелаDali-Youcef, N. "« SIRTuinement vôtre » : fonctions métaboliques et perspectives thérapeutiques des sirtuines." Médecine des Maladies Métaboliques 7, no. 3 (June 2013): 237–46. http://dx.doi.org/10.1016/s1957-2557(13)70561-3.
Повний текст джерелаCORPET, F., and C. CHEVALET. "Analyse informatique des données moléculaires." INRAE Productions Animales 13, HS (December 22, 2000): 191–95. http://dx.doi.org/10.20870/productions-animales.2000.13.hs.3837.
Повний текст джерелаHOCQUETTE, J. F., I. ORTIGUES-MARTY, M. DAMON, P. HERPIN, and Y. GEAY. "Métabolisme énergétique des muscles squelettiques chez les animaux producteurs de viande." INRAE Productions Animales 13, no. 3 (June 18, 2000): 185–200. http://dx.doi.org/10.20870/productions-animales.2000.13.3.3780.
Повний текст джерелаBIGOT, K., S. TESSERAUD, M. TAOUIS, and M. PICARD. "Alimentation néonatale et développement précoce du poulet de chair." INRAE Productions Animales 14, no. 4 (August 17, 2001): 219–30. http://dx.doi.org/10.20870/productions-animales.2001.14.4.3743.
Повний текст джерелаGABRIEL, I., F. ALLEMAN, V. DUFOURCQ, F. PERRIN, and J. F. GABARROU. "Utilisation des huiles essentielles en alimentation des volailles.2. Hypothèses sur les modes d’action impliqués dans les effets observés." INRAE Productions Animales 26, no. 1 (April 16, 2013): 13–24. http://dx.doi.org/10.20870/productions-animales.2013.26.1.3131.
Повний текст джерелаДисертації з теми "Fonctions métaboliques"
Payen, Cyrielle. "Implication des troubles métaboliques maternels sur la programmation fœtale des fonctions métabolique hépatique et vasculaire de la descendance." Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0047.
Повний текст джерелаIn utero exposure to maternal metabolic pathologies leads to fetal programming, which increases the occurrence of metabolic, vascular and hepatic diseases in offspring. In this thesis, we focused on fetal programming induced by two types of maternal metabolic dysfunctions : obesity and diabetes. We highlighted that maternal obesity induced direct fetal programming of the vascular function in offspring regardless of metabolic disorders. In addition, we showed that disruption of perinatal nutrition leads to the early occurrence of metabolic disorders in offspring of obese mothers, without modifying the fetal programming of vascular function. Bariatric surgery doesn’t seem tobe able to reverse fetal programming of metabolic and vascular functions as described in obese mothers offspring. We also showed that fetal programming of vascular dysfunction of diabetic mother’s offspring can be transmitted from the F1 to the F2 generation. Finally, we highlighted the importance of sexual dimorphism in the fetal programming of vascular function. These results demonstrate that vascular (arterial hypertension) and metabolic (obesity, diabetes) diseases are not exclusively behavioral diseases but can also have a fetal life origin. They can be transmitted over several generations, thus contributing to explain the worldwide spread of obesity and associated metabolic disorders
Lonvaud, Aline. "Recherches sur les bactéries lactiques du vin : fonctions métaboliques, croissance, génétique plasmidique." Bordeaux 2, 1986. http://www.theses.fr/1986BOR20055.
Повний текст джерелаMalenfant, Daniel. "Étude des fonctions développementales et métaboliques du récepteur nucléaire fetoprotein transcription factor (FTF)." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28755/28755.pdf.
Повний текст джерелаFTF is a nuclear receptor principally expressed in adult digestive organs that has been shown to act as a major regulator of lipids and steroids metabolism, cellular proliferation and embryonic development. FTF involvement in steroid synthesis and cell cycle regulation tends toward the stimulation of tumor proliferation in neoplasic tissues in which FTF is expressed. However, more studies of FTF function in normal and disease states and on its regulation are needed to draw a complete picture of FTF activity in cell physiology. Within the context of my studies, I delineated the FTF adult and fetal tissular expression, characterized a novel Ftf promoter element and identified FTF direct hepatic transcriptional targets in fetal, adult and tumor cell lines by using chromatin immunoprecipitation (ChIP-on-chip). These studies defined new FTF functions in metabolism, fetal development and hepatic carcinogenesis. FTF expression in digestive system and in neural structures controlling eating behavior, its transcriptional regulation by metabolic nuclear receptors and its binding to enzyme and transporter gene promoters driving energy metabolism, puts FTF in a key location for governing cellular and organismal energy metabolism. C/EBP, a transcriptional FTF partner on the Afp gene promoter and also involved in energy metabolism, is bound to 20% of the FTF targets including FTF itself thus adding branches to the complex hepatic transcriptional network. In hepatoma cells, FTF binds to proliferation and tumor cell maintenance genes like replication, growth and apoptosis regulators. Therefore, FTF belongs to the hepatic transcription network that governs hepatic development, differentiation and adult energy metabolism and is likely to be involved in promoting hepatic tumorogenesis.
Bories, Gaël. "Caractérisation et fonctions des macrophages alternatifs humains dans un contexte de maladies cardio-métaboliques." Thesis, Lille 2, 2011. http://www.theses.fr/2011LIL2S053.
Повний текст джерелаI) Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjectsVisceral obesity, a chronic, low-grade inflammatory disease, predisposes to the metabolic syndrome, type 2 diabetes and its cardiovascular complications. Adipose tissue is not a passive storehouse for fat, but an endocrine organ synthesizing and releasing a variety of bioactive molecules, some of which are produced byinfiltrated immune-inflammatory cells including macrophages. Two different sub-populations of macrophageshave been identified in adipose tissue: pro-inflammatory “classical” M1 and anti-inflammatory “alternative” M2macrophages and their ratio is suggested to influence the metabolic complications of obesity. These macrophages derive primarily from peripheral blood mononuclear cells (PBMC). We hypothesized that obesityand the metabolic syndrome modulate PBMC functions. Therefore, alteration of the monocyte response, andmore specifically their ability to differentiate toward alternative anti-inflammatory macrophages was assessedin PBMC isolated from lean and obese subjects with or without alterations in glucose homeostasis. Our resultsindicate that PBMC from obese subjects have an altered expression of M2 markers and that their monocytes areless susceptible to differentiate toward an alternative phenotype. Thus PBMC in obesity are programmed, whichmay contribute to the inflammatory dysregulation and increased susceptibility to inflammatory diseases inthese patients.II) Human alternative macrophages display high iron handling capacities: regulation by the Liver XReceptor (LXR) activationMacrophages play a key role in iron metabolism. Macrophages can be polarized to a M1 proinflammatoryor to M2 alternative anti-inflammatory state. Within human atherosclerotic plaques, M2macrophages co-expressing both CD68 and the mannose receptor (CD68+MR+) have been identified. Amonggenes differentially expressed between non-polarized resting macrophages (RM) and IL-4 differentiated M2macrophages, those involved in iron metabolism were identified. Genes of iron uptake and storage (transferrinreceptor, hepcidin, ferritin) were upregulated, whereas those of export (ferroportin and ceruloplasmin) weredecreased in M2 macrophages. Intracellular iron accumulation was higher in M2 macrophages after ironoverload. In addition, the expression of iron-responsive genes (ferroportin, ferritin, HMOX-1, NRF2) wasinduced in iron-loaded M2, suggesting a better ability of M2 macrophages to export iron, compared to ironloadedRM macrophages. As a functional consequence, iron-loaded M2 macrophages have a higher ability tooxidize extra-cellular LDL. In line, CD68+MR+ macrophages co-localize with iron deposits and oxidized lipids inhuman atherosclerotic plaques. Iron-oxidized lipids can generate ligands for the nuclear receptor Liver XReceptor (LXRα and β). We thus determined whether LXR activation could modulate iron metabolism.Treatment of M2 macrophages with LXR ligands induced the ferroportin and down-regulated hepcidin geneexpression in an LXRα-dependent manner promoting iron export. Interestingly, iron-induced gene expression ismodulated by the LXRα pathways. Our data show that human M2 macrophages are highly active in ironhandling, a process that can be modulated by LXR activation
Mion, François. "Exploration des fonctions métaboliques hépatiques : intérêts et limites des tests respiratoires utilisant le carbone 13." Lyon 1, 1996. http://www.theses.fr/1996LYO1T054.
Повний текст джерелаCissé, Madi. "Etude des fonctions métaboliques de l’oncoprotéine MDM2 : vers de nouveaux traitements thérapeutiques pour le Liposarcome." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT082.
Повний текст джерелаWell-differentiated and de-differentiated liposarcomas (LPS) are characterized by a systematic amplification of the MDM2 oncogene that encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression, but sparing wild-type p53, in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically-relevant Patient-Derived Xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents an efficient therapeutic strategy for LPS
Le, Calvez Thomas. "Diversité et fonctions écologiques des champignons en écosystème hydrothermal marin profond." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00465055.
Повний текст джерелаBondu, Stéphanie. "Analyses structurales des carbohydrates de l'algue Soliera chordalis (Rhodophyta) et étude de leurs fonctions métaboliques, possibilités d'application dans le domaine de la cancérologie-immunologie." Brest, 2009. http://www.theses.fr/2009BRES2017.
Повний текст джерелаThe red alga Solieria chordalis (J. Agardh) C. Agardh (Solieriaceae, Gigartinales) was chosen as model of this study. The aims ofthis investigation were i) to characterize the carbohydrates derived from the primary carbon metabolism of the alga, ii) to define their metaboli functions andiii) to propose these compounds for applications in the medical area especially in cancerology-immunology. A pluridisciplinar study was conducted including a chemical work in order to elucidate the chemical structures of the low molecular weight carbohydrates (floridoside, digeneaside (and isofloridoside)), the floridean starch (as granules), the glucans and the carrageenan. A biochemical work was then carried out in order to understand the functions of each compound inside the algal metabolism. For this study, cultures under controlled conditions (changes in salinities of incubation media) were carried out thalli of S. Chordalis and led us to investigate the mobilizations and carbon exchanges between these carbons pools to face up the saline stress. Then, the chemical work allowed us to the isolation of high purity carbohydrate products, which have been used for in vitro immunological studies. The results have demonstrated that the low molecular weight fractions of carrageenans (and a compound, denoted by SC2310, patent application) exhibited strong activities in the stimulation of the effectors constituting the natural immunity
Carbonneau, Élisabeth. "Effet de la régie de traite en début de lactation sur les performances zootechniques et sur certains paramètres métaboliques et immunologiques des vaches laitières multipares." Mémoire, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/5749.
Повний текст джерелаDefour, Aurélia. "Fonctions métaboliques de Sirtuine 1 dans le muscle strié squelettique : contribution à l'étude de la régulation de l'expression de SREBP-1c et rôle potentiel lors d'un jeûne chez des myotubes C2C12." Phd thesis, Université Jean Monnet - Saint-Etienne, 2010. http://tel.archives-ouvertes.fr/tel-00677025.
Повний текст джерелаЧастини книг з теми "Fonctions métaboliques"
Castan-Laurell, I., C. Dray, C. Knauf, and P. Valet. "Fonctions métaboliques de l’apeline." In Physiologie et physiopathologie du tissu adipeux, 205–15. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0332-6_14.
Повний текст джерелаBruder, N., L. Velly, and E. Cantais. "Métabolisme et fonctions cérébrales." In Désordres métaboliques et réanimation, 287–304. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99027-4_14.
Повний текст джерелаBataille, A., and L. Jacob. "Métabolisme et fonctions rénales." In Désordres métaboliques et réanimation, 201–14. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99027-4_9.
Повний текст джерелаLeproult, R., and G. Copinschi. "Fonction endocrino-métabolique et sommeil." In Les troubles du sommeil, 363–75. Elsevier, 2012. http://dx.doi.org/10.1016/b978-2-294-71025-4.00031-2.
Повний текст джерелаSpiegel, K., and G. Copinschi. "Fonction endocrino-métabolique et sommeil." In Les Troubles du Sommeil, 325–39. Elsevier, 2019. http://dx.doi.org/10.1016/b978-2-294-74892-9.00022-9.
Повний текст джерела