Дисертації з теми "Fonction de Lyapunov de commande"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Fonction de Lyapunov de commande".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
BENSOUBAYA, MOHAMED Sallet Gauthier. "SUR LA STABILITE ET LA STABILISATION DES SYSTEMES NON LINEAIRES DISCRETS /." [S.l.] : [s.n.], 1997. ftp://ftp.scd.univ-metz.fr/pub/Theses/1997/Bensoubaya.Mohamed.SMZ9740.pdf.
Повний текст джерелаAriza, Urango Ricardo. "Commande robuste multicritère : approche espace d'état et LMI." Toulouse 3, 2005. http://www.theses.fr/2005TOU30086.
Повний текст джерелаFaubourg, Ludovic. "Construction de fonctions de Lyapunov contrôlées et stabilisation non-linéaire." Nice, 2001. http://www.theses.fr/2001NICE5682.
Повний текст джерелаLooking for control Lyapunov functions that are functions that can be assigned to be Lyapunov functions by a feedback law, play a central role in the stabilization of nonlinear systems and their robustness. At the same time it is a fundamental tool from a theoretical point of view, because looking for asymptotically stalizing control law is equivalent to looking for control Lyapunov functions, a synthesis tool, and a tool to study robustness. The purpose of this thesis is to define new algorithms to build control Lyapunov functions starting with Jurdjevic-Quinnn type systems. The natural weak Lyapunov function these systems have is reshapped to obtain control Lyapunov functions. In the homogeneous case, the both stationary and non-stationary problems are solved. In the non-homogeneous case, the same method yields, in many examples, to control Lyapunov functions, even if only a partial result has been proved. With the final aim of building control Lyapunov functions staring from the value functions of an optimal control problems, we study the possibility to approach a non-smooth function uniformly with a series of smooth control Lyapunov functions. We prove that the notion of control Lyapunov function in a generalized gradient sense is not a necessary condition and we give a configuration in which the uniform approximation with control Lyapunov functions is not possible
Cherifi, Abdelmadjid. "Contribution à la commande des modèles Takagi-Sugeno : approche non-quadratique et synthèse D -stable." Thesis, Reims, 2017. http://www.theses.fr/2017REIMS016/document.
Повний текст джерелаThis work deals with the stability analysis and the stabilisation of nonlinear systems represented by T-S models.The goal is to reduce the conservatism of the stability conditions, obtained through the direct Lyapunov methodand written, when it is possible, as LMIs. In this framework, two main contributions has been proposed. First ofall, we have proposed some new conditions based on FLICs, strictly LMIs and without any order restrictions, forthe non-quadratic design of control laws devoted to stabilize T-S models. Indeed, in this non-quadratic context,the existing works are only available for 2nd order T-S models. In order to unlock this restriction, the proposed conditions have been obtained based on the proof of a dual property. Then, starting from the fact that few worksdeals with the closed-loop performances specification, some new LMI conditions (quadratic and non-quadratic)have been proposed via the D-stability concept. As a first step, D-stabilizing PDC and non-PDC controller designhas been considered for nominal T-S models. Then, these results have been extended to uncertain T-S models.Moreover, it has been highlighted, from an example of the attitude D-stabilization of a quadrotor model, that wecan make use of uncertain T-S models to cope with nonlinear models involving nonlinearities depending on bothstate and input variables
Chombart, Anne. "Commande supervisée de systèmes hybrides." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0170.
Повний текст джерелаPoulain, François. "Commande d'un véhicule hypersonique à propulsion aérobie : modélisation et synthèse." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00744985.
Повний текст джерелаBahroun, Sami. "Modélisation et approche thermodynamique pour la commande des réacteurs chimiques catalytiques triphasiques continus et discontinus." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00720906.
Повний текст джерелаChamekh, Hammami Yosr. "Commande de suivi de trajectoire pour les systèmes complexes et /ou incertains." Phd thesis, Ecole Centrale de Lille, 2012. http://tel.archives-ouvertes.fr/tel-00741457.
Повний текст джерелаLuca, Anamaria. "Outils ensemblistes d'analyse et de synthèse des lois de commande robustes pour des systèmes incertains." Phd thesis, Supélec, 2011. http://tel.archives-ouvertes.fr/tel-00630954.
Повний текст джерелаPeaucelle, Dimitri. "Formulation générique de problèmes en analyse et commande robuste par les fonctions de Lyapunov dependant des paramètres." Phd thesis, Université Paul Sabatier - Toulouse III, 2000. http://tel.archives-ouvertes.fr/tel-00131516.
Повний текст джерелаPeaucelle, Dimitri. "Formulation generique de problemes en analyse et commande robuste par des fonctions de lyapunov dependant des parametres." Toulouse 3, 2000. https://tel.archives-ouvertes.fr/tel-00131516.
Повний текст джерелаFERFERA, ABDELHAK Sallet Gauthier. "SUR QUELQUES PROBLEMES RELATIFS AUX SYSTEMES NON LINEAIRES : LINEARISATION STATIQUE ET SINGULARITES. STABILISATION GLOBALE DE CERTAINS SYSTEMES /." [S.l.] : [s.n.], 1997. ftp://ftp.scd.univ-metz.fr/pub/Theses/1997/Ferfera.Abdelhak.SMZ9704.pdf.
Повний текст джерелаHarmouche, Mohamed. "Contribution à la théorie de la commande par modes glissants d'ordre supérieur et à la commande des systèmes mécaniques sous-actionnés." Thesis, Belfort-Montbéliard, 2013. http://www.theses.fr/2013BELF0214/document.
Повний текст джерелаNonlinear systems are so diverse that generalized tools for control are difficult to develop. Nonlinear control theory requires rigorous mathematical analysis to justify its conclusions. This thesis addresses two distinct, yet important branches of nonlinear control theory: control of uncertain nonlinear systems and control of under-actuated systems.In the first part, a class of Lyapunov-based robust arbitrary higher order sliding mode (HOSM) controllers is developed for the control of uncertain nonlinear systems. This class of controllers is based on a class of controllers for finite-time stabilization of pure integrator chain, and requires the limits of the system uncertainty to be known a-priori. Then, in order to eliminate the dependence on the knowledge of these limits, an adaptive arbitrary HOSM controller is developed. Using this new class, a universal homogeneous arbitrary HOSM controller is developed and it is shown that the homogeneity degree can be manipulated to obtain additional advantages in the proposed controllers, such as bounded control, minimum amplitude of discontinuous control and fixed time convergence. The performance of the controllers has been demonstrated through simulations and experiments on a fuel cell system.In the next part, the control of two under-actuated systems is studied. The first control problem is the global path following of car-type robotic vehicle, using target-point. The second problem is the precise tracking of surface marine vessels. Both these problems are distinct in nature; however, they are subjected to similar physical constraints. The solutions proposed for these control problems use saturated controls, taking into account the physical bounds on the control inputs. Simulations have been performed to demonstrate the performance of these controllers
Zhou, Weijun. "Approche thermodynamique pour la commande d’un système non linéaire de dimension infinie : application aux réacteurs tubulaires." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10084/document.
Повний текст джерелаThe main objective of this thesis consists to investigate the problem of modelling and control of a nonlinear parameter distributed thermodynamic system : the tubular reactor. We address the control problem of this non linear system relying on the thermodynamic properties of the process. This approach requires to use the classical extensive variables as the state variables. We use the thermodynamic availability as well as the reduced thermodynamic availability (this function is formed from some terms of the thermodynamic availabilty) as Lyapunov functions in order to asymptotically stabilize the tubular reactor aroud a steady profile. The distributed temperature of the jacket is the control variable. Some simulations illustrate these results as well as the eficiency of the control in presence of perturbations. Next we study the Port Hamiltonian representation of irreversible infinite dimensional systems. We propose a Stokes-Dirac structure of a reaction-diffusion system by means of the extension of the vectors of the flux and effort variables. We illustrate this approach on the example of the reaction-diffusion system. For this latter we use the internal energy as well as the opposite of the entropy to obtain Stokes-Dirac structures. We propose also a pseudo-Hamiltonian representation for the two Hamiltonians. Finally we tackle the boundary control problem. The objective is to study the existence of solutions associated to a linearized model of the tubular reactor controlled to the boundary
Ameur, Omar. "Commande et stabilité des systèmes commutés : Application Fluid Power." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0032/document.
Повний текст джерелаThis work focuses on the control and stability analysis of an electro-pneumatic system, i.e. a linear pneumatic cylinder controlled by two servo valves regulating the mass flow entering each chamber of the actuator. The general problem is motivated by the appearance of stick-slip on the electro-pneumatic system, hardly taken into account by the current studies in automatic control. This problem, encountered throughout the years, concerns all mono- and multidimensional linear and non-linear controls systems studied at the laboratory. In pneumatic cylinders, the phenomenon consists in a displacement of the rod a while after it has come to a rest ; this is due to the fact that the force acting on the rod initially becomes smaller that the threshold which is necessary for a motion, and then this threshold is overcome later on. In this case, stick-slip is caused by the presence of dry friction and by the pressure dynamics in the chambers, which continue to evolve (integrating the net incoming mass flow from the servovalves) even after the rod has stopped. The first part of this thesis proposes a nonlinear switching control law in order to avoid stick-slip on pneumatic cylinder, taking into account with the variations of dry friction that may occur at any time causing this phenomenon. This technique is implemented and its effectiveness is recognized. The greatest part of this thesis deals with the stability analysis of the pneumatic cylinder with its switched control law. The presence of dry friction and the application of a switched control law requires an appropriate method for approaching the stability analysis ; this method is based on considering the closed-loop system as belonging to a class of switched systems called piecewise affine systems (PWA). The main difficulty in this approach lies in obtaining adequate Lyapunov functions for proving stability, which turns into an optimization problem under LMI constraints (Linear Matrix Inequality) using the S-procedure. In order to analyze the stability of a PWA system, a first method is proposed allowing the computation of a piecewise quadratic Lyapunov function through an optimization problem under LMI constraints. The methods takes into account, in contrast to conventional methods, that the states might converge not to a single point but to a set of equilibrium points. The proposed approach allows also the study of robustness with respect to parametric variations in the system. A second method is also proposed for the construction of a type of Lyapunov functions called piecewise polynomial, using the “sum of squares” and “power transformation” techniques. This approach proposes less conservative sufficient conditions than those imposed by the piecewise quadratic Lyapunov functions, yielding a more succesfull stability test when for PWA systems featuring sliding modes and parametric variations. In fact, on PWA systems with discontinuous dynamics (which can generate sliding phenomena), piecewise quadratic Lyapunov functions might prove ineffective to prove the stability. Therefore, the results on piecewise quadratic Lyapunov functions are extended in order to compute piecewise polynomial Lyapunov functions of higher order, by solving an optimization problem under LMI constraints. These functions are more general and allow less conservative conditions compared to those formerly developed in the literature. Both of these methods have been applied to the stability analysis of the set of equilibrium points of the pneumatic cylinder, considering first a friction model in saturation form and then a model in relay form with a discontinuous dynamics. The application of the methods is successful, i.e. the robust stability is proven under dry friction threshold variations, with possibility of sliding modes
Boukal, Yassine. "Observation et commande des systèmes dynamiques d’ordre non entier." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0154/document.
Повний текст джерелаThis work focuses on the synthesis of observers and the controller laws for fractional order systems. The presented document consists of 4 chapters: The first chapter of the theses manuscript contains an introduction dealing with the basic mathematical notions and the stability analysis of fractional systems as well as a presentation of the different definitions. The stability conditions of these systems and some examples of systems modeled by fractional differential equations are presented. In the second chapter, we were interested in the design of several types of observers of reduced order, full order, and functional observers for fractional systems with and without delays. In the case where there are no delays in the dynamics of the system, observers of full and reduced orders have been synthesized in order to ensure the estimation of the pseudo-states. In a second step, a functional observer was synthesized in the case where the delay is present in the dynamics of the system. In Chapter 3, we worked on observer synthesis for uncertain fractional order systems. Our contributions are classified into three main lines: first, when the system under consideration is affected by unknown inputs, a functional observer has been proposed. In the second part, H∞ observers for fractional order systems with and without delays have been synthesized to ensure the stability of the estimation error. It is a question of guaranteeing a bound of the L2 gain between the observation error and the non-measurable perturbations affecting the dynamics of the system: this gain L2 is also called H∞ norm. In last part of this chapter, the synthesis of a robust observer with respect to modeling uncertainties for this class of systems is presented. The sufficient conditions of convergence of the estimation errors of the pseudo-states obtained are established in the form of a set of matrix inequalities LMIs. The last chapter of the manuscript is devoted to the command based on the different observers obtained. We were interested in observer-based control for fractional order systems. This command is based on the observers proposed in the previous chapters. Stability conditions and synthesis procedures are presented
Fichera, Francesco. "Techniques Lyapunov pour une classe de systèmes hybrides et synthèses de contrôleurs à réinitialisation." Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0029/document.
Повний текст джерелаThis dissertation presents some results on hybrid systems. Hybrid systems can be used to model complex physical and heterogeneous systems whose time evolution experiences discrete phenomena, such as commutations in electronic converters or impacts in mechanical systems. In the meantime the hybrid theory can be used to design hybrid controllers which exhibit better performance than the classical continuous-time controllers.In this context, the results in this dissertation can be divided en three parts. First, some stability results with respect to the Hinfinity performance index are presented for a wide class of hybrid controllers. Second, we introduce new hybrid controller architectures for continuous-time systems, where the state of the hybrid controller can be reinitialized depending on the trajectory of the system. Finally, we present a convex synthesis of a multiobjective hybrid controller. The comparisons with the classical results show the improvements that can be achieved with hybrid controllers, maintaining the property of robustness and simplicity of design.Although the hybrid theory is in full development, this work generalizes some existing results by improving the simplicity of their usage by means of semidefinite programming tools. Moreover some hybrid architectures are able to generalize some classic results regarding the optimal synthesis with respect to popular performance indexes
Márquez, Borbόn Raymundo. "Nouveaux schémas de commande et d'observation basés sur les modèles de Takagi-Sugeno." Thesis, Valenciennes, 2015. http://www.theses.fr/2015VALE0040/document.
Повний текст джерелаThis thesis addresses the estimation and controller design for continuous-time nonlinear systems. The methodologies developed are based on the Takagi-Sugeno (TS) representation of the nonlinear model via the sector nonlinearity approach. All strategies intend to get more relaxed conditions.The results presented for controller design are split in two parts. The first part is about standard TS models under control schemes based on: 1) a quadratic Lyapunov function (QLF); 2) a fuzzy Lyapunov function (FLF); 3) a line-integral Lyapunov functions (LILF); 4) a novel non-quadratic Lyapunov functional (NQLF). The second part concerns to TS descriptor models. Two strategies are proposed: 1) within the quadratic framework, conditions based on a general control law and some matrix transformations; 2) an extension to the nonquadratic approach based on a line-integral Lyapunov function (LILF) using non-PDC control law schemes and the Finsler’s Lemma; this strategy offers parameter-dependent linear matrix inequality (LMI) conditions instead of bilinear matrix inequality (BMI) constraints for second-order systems. On the other hand, the problem of the state estimation for nonlinear systems via TS models is also addressed considering: a) the particular case where premise vectors are based on measured variables and b) the general case where premise vectors can be based on unmeasured variables. Several examples have been included to illustrate the applicability of the obtained results
Dos, Santos Paulino Ana Carolina. "Robust analysis of uncertain descriptor systems using non quadratic Lyapunov functions." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD049.
Повний текст джерелаUncertain descriptor systems are a convenient framework for simultaneously representing uncertainties in a model, as well as impulsive behavior and algebraic constraints. This is far beyond what can be depicted by standard dynamic systems, but it also means that the analysis of uncertain descriptor systems is more complex than the standard case. Research has been conducted to reduce the degree of conservatism in the analysis of uncertain descriptor systems. This can be achieved by using classes of Lyapunov functions that are known to be able to provide necessary and sufficient conditions for this evaluation. Homogeneous polynomial Lyapunov functions constitute one of such classes, but they have never been employed in the context of uncertain descriptor systems. In this thesis, we fill in this scientific gap, extending the use of homogeneous polynomial Lyapunov functions from the standard uncertain case for the uncertain descriptor one
Ben, Salah Jaâfar. "Analyse et commande des systèmes non linéaires complexes : application aux systèmes dynamiques à commutation." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00599364.
Повний текст джерелаBoukal, Yassine. "Observation et commande des systèmes dynamiques d’ordre non entier." Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0154.
Повний текст джерелаThis work focuses on the synthesis of observers and the controller laws for fractional order systems. The presented document consists of 4 chapters: The first chapter of the theses manuscript contains an introduction dealing with the basic mathematical notions and the stability analysis of fractional systems as well as a presentation of the different definitions. The stability conditions of these systems and some examples of systems modeled by fractional differential equations are presented. In the second chapter, we were interested in the design of several types of observers of reduced order, full order, and functional observers for fractional systems with and without delays. In the case where there are no delays in the dynamics of the system, observers of full and reduced orders have been synthesized in order to ensure the estimation of the pseudo-states. In a second step, a functional observer was synthesized in the case where the delay is present in the dynamics of the system. In Chapter 3, we worked on observer synthesis for uncertain fractional order systems. Our contributions are classified into three main lines: first, when the system under consideration is affected by unknown inputs, a functional observer has been proposed. In the second part, H∞ observers for fractional order systems with and without delays have been synthesized to ensure the stability of the estimation error. It is a question of guaranteeing a bound of the L2 gain between the observation error and the non-measurable perturbations affecting the dynamics of the system: this gain L2 is also called H∞ norm. In last part of this chapter, the synthesis of a robust observer with respect to modeling uncertainties for this class of systems is presented. The sufficient conditions of convergence of the estimation errors of the pseudo-states obtained are established in the form of a set of matrix inequalities LMIs. The last chapter of the manuscript is devoted to the command based on the different observers obtained. We were interested in observer-based control for fractional order systems. This command is based on the observers proposed in the previous chapters. Stability conditions and synthesis procedures are presented
Poulain, Fran��ois. "Commande d'un v��hicule hypersonique �� propulsion a��robie : mod��lisation et synth��se." Phd thesis, Ecole Nationale Sup��rieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00716517.
Повний текст джерелаKanso, Soha. "Contributions to Safe Reinforcement Learning and Degradation Tolerant Control Design." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0261_KANSO.pdf.
Повний текст джерелаSafety-critical dynamical systems are essential in various industries, such as aerospace domain, autonomous systems, robots in healthcare area etc. where safety issues and structural or functional failure may lead to catastrophic consequences. A significant challenge in these systems is the degradation of components and actuators, which can compromise safety and stability of systems. As such, incorporating state of system's health within the control design framework is essential to ensure tolerance to functional degradation. Moreover, such system models often involve uncertainties and incomplete knowledge, especially as components degrade, altering system dynamics in a nonlinear manner, calling for development of learning approaches that envisage assimilation of available data within the control learning paradigm. However, assuring safety during the learning phase (exploration) as well as operational phase (exploitation) is of paramount importance when it comes to such dynamical systems. Traditional model-based control approaches, require precise system models, making them less effective under these conditions. In this context, Reinforcement Learning (RL) emerges as a powerful approach, capable of learning optimal control laws for partially or fully unknown dynamic systems, in the presence of input-output data (without the exact knowledge of system models). However, development and implementation of RL based approaches present their own challenges: the exploration phase, necessary for learning, can lead the system into unsafe regions and accelerate the speed of degradation; further, provable safety guarantees during the operational (exploitation) phase are equally important to ensure safety throughout the system operation. In this context, Safe Reinforcement Learning (Safe RL) paradigm targets development of RL based approaches that prioritize the safety guarantees, along with traditional stability, and optimality of systems. This thesis addresses these challenges by developing novel control learning strategies that adapt to system uncertainties and functional degradation. The main contributions of this thesis lie in proposition of novel approaches to addressing the challenges of system safety and stability, as well as decelerating the speed of degradation, thereby advancing the fields of safe RL and leading to proposition of Degradation-Tolerant Control (DTC). These contributions include:• ensuring the optimality, safety, and stability of control policy during both exploration and exploitation phases of RL. By integrating Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) within the RL framework, safe exploration and stable operation are ensured for both regulation and tracking problems. CBFs are used to define safe operating regions, while CLFs ensure that the system remains stable. These functions are incorporated into the RL algorithms to guide the learning process, ensuring that safety and stability constraints are respected;• decelerating the speed of degradation by incorporating degradation rates into control design, initially employing an optimal control approach in discrete time for linear systems. This ensures that control actions minimize the speed of degradation on system components, thereby extending their lifespan. For nonlinear systems, RL methods are employed to address the problem in both discrete and continuous time, providing adaptable solutions to complex dynamics;• proposal of a novel cyclic RL algorithm to ensure system stability under actuator degradation. This algorithm cyclically updates the learned control law, ensuring proper adaptation as system components degrade. The cyclic nature of the algorithm allows for reassessment and adjustment of control policies, ensuring continuous optimal performance despite ongoing degradation. These developed approaches were implemented through simulations, demonstrating their effectiveness in academic applications
Obeid, Hussein. "Contribution à la commande et à l'observation adaptatives par modes glissants d'ordres supérieurs : Application aux systèmes de gestion de l'énergie." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCA023/document.
Повний текст джерелаThis thesis deals with the development of novel strategies to adapt higher order sliding mode controllers and observers. The implementation of classics first order and higher order sliding mode controllers requires the knowledge of the upper bound of the disturbance or its derivative, which are often not known. The first contribution of this thesis is the design of an adaptive strategy that can ensure the convergence of the sliding variable to a predefined neighborhood of zero without requiring any information of the disturbance or its derivative and without overestimating the adaptive gain. This adaptive strategy is then declined for the design of the first order, second order and integral sliding mode controllers, and for the Levant's differentiator. The second contribution of the thesis is the development of two adaptive strategies for discontinuous higher order sliding mode control. The proposed two algorithms can provide the achievement of n-order sliding mode despite disturbances with unknown upper bounds or with unknown upper bounds of their derivatives. Finally, in order to show the effectiveness of the proposed algorithms, they are successfully applied through simulations to control the wind energy conversion system and the linear induction motor system for cogeneration
Maghenem, Mohamed Adlene. "Stability and Stabilization of Networked Systems." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS186/document.
Повний текст джерелаIn this thesis, we propose a Lyapunov based approaches to address some distributedsolutions to multi-agent coordination problems, more precisely, we consider a groupof agents modeled as nonholonomic mobile robots, we provide a distributed controllaws in order to solve the leader-follower and the leaderless consensus problems under different assumptions on the communication graph topology and on the leader’strajectories. The originality of this work relies on the closed-loop analysis approach, that is, it consists on transforming the last two problems into a global stabilization problem of an invariant set. The stability analysis is mainly based on the construction of strict Lyapunov functions and strict Lyapunov-Krasovskii functionals for a classes of nonlinear time-varying and/or delayed systems
Farges, Christophe. "Méthodes d'analyse et de synthèse robustes pour les systèmes linéaires périodiques." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00132343.
Повний текст джерелаHoang, Ngoc Ha. "Approche thermodynamique pour la stabilisation des réacteurs chimiques." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10244.
Повний текст джерелаThe goal of this thesis is to propose new nonlinear control strategies for the stabilization of perfectly Continuous Stirred Tank Reactors (CSTR). To achieve this goal, we use on the one hand, the entropic thermodynamic approach. More precisely, we use the thermodynamic availability concept and the properties of irreversible thermodynamics to define a Lyapunov function candidate for the stabilization of the closed loop system. We also propose a reduced availability function to design more efficient feedback laws in term of control variable solicitations. On the other hand, we propose an extension of the (pseudo) Hamiltonian formalism associated to dissipative systems to open chemical reactors. We show that the Hamiltonian is linked to the Gibbs free enthalpy in the isothermal case and to ectropy (opposed to entropy) in the non isothermal case. By this formalism, the dissipation of the system represents the irreversible entropy production due to chemical reaction. The Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC) approach is then applied to synthesize feedback laws by choosing the thermodynamic availability as desired closed loop hamiltonian storage function. Finally, we show that feedback laws synthetized by the entropic thermodynamic approach and the pseudo-hamiltonian formulation are equivalent in some cases. Some stabilization properties and the control input admissibility are also considered. Theoretical developments are illustrated on some different CSTR examples : an academic case study and the acid catalyzed hydration of oxirane-methanol to glycerol
Cavichioli, Gonzaga Carlos Alberto. "Analyse de stabilité et de performance d'une classe de systèmes non-linéaires à commutations en temps discret." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0086/document.
Повний текст джерелаIn this PhD thesis, several problems of stability analysis and control design of discrete-time switched nonlinear systems are addressed. As main contribution, a new class of Lyapunov functions which takes the nonlinearity into account has been proposed. We show that these functions are suitable to solve the classical stability analysis problem of linear systems connected to a cone bounded nonlinearity. Instead of the original Lyapunov Lur'e function, the assumptions about the nonlinearity variation are not required. Furthermore, the local stability analysis and control synthesis problems of Lur'e systems subject to control saturation are tackled by considering the level set of our function as an estimate of the basin of attraction. We expose that this estimate, which is given by non-convex and disconnected sets, is less conservative than ellipsoidal sets. We extend these results in order to deal with the problems of stability analysis and stabilization of discrete-time switched nonlinear systems. On one hand, we consider the case of arbitrary switching such that our sufficient conditions assure the properties of stability for all possible switching rules. In this framework, we highlight that our function is able to provide a suitable estimate of the basin of attraction. On the other hand, we tackle the problem of switching rule design aiming at the stabilization of discrete-time switched systems with nonlinear modes. We propose a switching strategy depending on the minimum of our switched Lyapunov Lur'e function. Hence, our framework leads to state space partitions, related to the mode activation, which are not restricted to conic sets, commonly exhibited by the switched quadratic functions approaches
Cavichioli, Gonzaga Carlos Alberto. "Analyse de stabilité et de performance d'une classe de systèmes non-linéaires à commutations en temps discret." Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0086.
Повний текст джерелаIn this PhD thesis, several problems of stability analysis and control design of discrete-time switched nonlinear systems are addressed. As main contribution, a new class of Lyapunov functions which takes the nonlinearity into account has been proposed. We show that these functions are suitable to solve the classical stability analysis problem of linear systems connected to a cone bounded nonlinearity. Instead of the original Lyapunov Lur'e function, the assumptions about the nonlinearity variation are not required. Furthermore, the local stability analysis and control synthesis problems of Lur'e systems subject to control saturation are tackled by considering the level set of our function as an estimate of the basin of attraction. We expose that this estimate, which is given by non-convex and disconnected sets, is less conservative than ellipsoidal sets. We extend these results in order to deal with the problems of stability analysis and stabilization of discrete-time switched nonlinear systems. On one hand, we consider the case of arbitrary switching such that our sufficient conditions assure the properties of stability for all possible switching rules. In this framework, we highlight that our function is able to provide a suitable estimate of the basin of attraction. On the other hand, we tackle the problem of switching rule design aiming at the stabilization of discrete-time switched systems with nonlinear modes. We propose a switching strategy depending on the minimum of our switched Lyapunov Lur'e function. Hence, our framework leads to state space partitions, related to the mode activation, which are not restricted to conic sets, commonly exhibited by the switched quadratic functions approaches
Tognetti, Calliero. "Commande de systèmes dynamiques: stabilité absolue, saturation et bilinéarité." Phd thesis, INSA de Toulouse, 2009. http://tel.archives-ouvertes.fr/tel-00621132.
Повний текст джерелаYakoubi, Karim. "Stabilisation des systèmes linéaires avec commande bornée et retardée." Paris 11, 2005. http://www.theses.fr/2005PA112293.
Повний текст джерелаIn this thesis, we study two problems on stabilization of linear systems by static feedbacks which are bounded and time-delayed, namely global asymptotic stabilization and finite-gain stabilizability. Both continuous-time and discrete-time systems are considered. Regarding the problem of global asymptotic stabilization we provide, under standard necessary conditions, two different solutions for arbitrary small bound on the control and large (constant) delay. The first solution uses nested saturations, in the line of [MMN1], [MMN2], [SSY] and [YSS]. The second solution, a sort of "predictor-corrector", assumes the knowledge of a static stabilizing feedback law in the zero-delay case. For the finite-gain stabilizability issue, we assume that the system is neutrally stable. We show the existence of a linear feedback such that, for arbitrary small bound on the control and large (constant) delay, finite-gain stability holds. Moreover, the corresponding gains are delay-independent for all [dollar]p \in [1,\infty]. [dollar] Generally speaking, our treatment of the aforementioned issues on time-delay systems follows a common pattern. We always try to reformulate them as problems for perturbed delay-free systems and handle the perturbation by Lyapunov techniques or by a careful trajectory analysis. That strategy works well because the input saturation makes the perturbation uniformly bounded with respect to the delay
Tafraouti, Mohamed. "Contribution à la modélisation et la commande des systèmes électrohydrauliques." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00121720.
Повний текст джерелаJiang, Wenjuan. "Contribution à la commande et à l’observation des systèmes en réseaux." Thesis, Ecole centrale de Lille, 2009. http://www.theses.fr/2009ECLI0009/document.
Повний текст джерелаThis PhD thesis is dedicated to the exponential output stabilization of linear NCS (Networked Control Systems). The studied solution is based on a remote observer which is able to estimate the present state of the plant despite the various network induced delays. These last are present in both the control and the measurement channels.The first chapter describes the problem and gives a survey on the NCS. The next chapter proposes a computer structure which realizes the remote, observer-based, state feedback controller. The following two chapters propose LMI conditions (Linear Matrix Inequalities) for the design of the observer-based remote controller. The second method of Lyapunov is used with the most up-to-date Lyapunov-Krasovskii functionals. The main objective of the design is to guarantee some performances expressed in the form of exponential stability. Then some enhancements of the control strategy are given. It consists in taking into account the Quality of Service (QoS) in the controller to get better guaranteed performances. The last contribution of this work is to consider the overall system as an event-driven system. It allows one to consider packet dropout problems in the network.The effectiveness of all presented results is demonstrated by real experiments implemented on a light robot controlled over the Internet
Langouët, Patrice. "Sur la stabilité locale des systèmes linéaires soumis à des actionneurs limités en amplitude et en dynamique." Toulouse 3, 2003. http://www.theses.fr/2003TOU30190.
Повний текст джерелаMohamed, Ramadan Haitham Saad. "Non-linear control and stabilization of VSC-HVDC transmission systems." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112046/document.
Повний текст джерелаThe integration of nonlinear VSC-HVDC transmission systems in power grids becomes very important for environmental, technical, and economic reasons. These systems have enabled the interconnection of asynchronous networks, the connection of offshore wind farms, and the control of power flow especially for long distances. This thesis aims the non-linear control and stabilization of VSC-HVDC systems, with two main themes. The first theme focuses on the design and synthesis of nonlinear control laws based on Variable Structure Systems (VSS) for VSC-HVDC systems. Thus, the Sliding Mode Control (SMC) and the Asymptotic Output Tracking (AOT) have been proposed to provide an adequate degree of stability via suitable Lyapunov functions. Then, the robustness of these commands has been studied in presence of parameter uncertainties and/or disturbances. The compromise between controller’s robustness and the system’s dynamic behavior depends on the gain settings. These control approaches, which are robust and can be easily implemented, have been applied to enhance the system dynamic performance and stability level in presence of different abnormal conditions for different DC link lengths. The second theme concerns the influence of VSC-HVDC control on improving the AC network dynamic performance during transients. After modeling the Single Machine via VSC-HVDC system in which the detailed synchronous generator model is considered, the conventional PI controller is applied to the converter side to act on damping the synchronous machine power angle oscillations. This simple control guarantees the reinforcement of the system dynamic performance and the power angle oscillations damping of the synchronous machine in presence of faults
Cavichioli, Gonzaga Carlos. "Analyse de stabilité et de performances d'une classe de systèmes non-linéaires à commutations en temps discret." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00762873.
Повний текст джерелаMohamed, Ramadan Haitham Saad. "Commande non linéaire et stabilisation des systèmes de transmission VSC-HVDC." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00707721.
Повний текст джерелаGOMES, DA SILVA Joâo Manoel. "Sur la stabilité locale de systèmes linéaires avec saturation des commandes." Phd thesis, Université Paul Sabatier - Toulouse III, 1997. http://tel.archives-ouvertes.fr/tel-00010086.
Повний текст джерелаHauroigné, Pascal. "Stabilisation robuste des systèmes affines commutés. Application aux convertisseurs de puissance." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00759679.
Повний текст джерелаBouarar, Tahar. "Contribution à la synthèse de lois de commande pour les descripteurs de type Takagi-Sugeno incertains et perturbés." Reims, 2009. http://theses.univ-reims.fr/sciences/2009REIMS035.pdf.
Повний текст джерелаThis works deals with the stabilization of uncertain and/or disturbed nonlinear systems represented by fuzzy Takagi-Sugeno models. First, some results based on a quadratic candidate Lyapunov function have been proposed in terms of LMIs (Linear Matrix Inequalities) and theconservatism of such approaches has been discussed. To reduce the conservatism, new approaches based on a non quadratic Lyapunov function and non PDC (Parallel Distributed Compensation) control law have been proposed. Then, one other source of conservatism has been studied. Indeed, the classical way to express the closed-loop dynamic leads to introduce crossing-terms in the set of LMIs to be solved. Therefore, to overcome this source of conservatism, the descriptor redundancy propriety has been used to rewrite the closed-loop dynamic. This allows decoupling the system matrices from those of state feedback gain matrices. Furthermore, the redundancy propriety has been employed to cope with the wellknown and difficult problems in terms of LMI formulation relating to the robust static and dynamic output feedback controller design for uncertain and / or disturbed Takagi-Sugeno systems
Mattei, Giovanni. "Robust nonlinear control : from continuous time to sampled-data with aerospace applications." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112025/document.
Повний текст джерелаThe dissertation deals with the problems of stabilization and control of nonlinear systems with deterministic model uncertainties. First, in the context of uncertain systems analysis, we introduce and explain the basic concepts of robust stability and stabilizability. Then, we propose a method of stabilization via state-feedback in presence of unmatched uncertainties in the dynamics. The recursive backstepping approach allows to compensate the uncertain terms acting outside the control span and to construct a robust control Lyapunov function, which is exploited in the subsequent design of a compensator for the matched uncertainties. The obtained controller is called recursive Lyapunov redesign. Next, we introduce the stabilization technique through Immersion \& Invariance (I\&I) as a tool to improve the robustness of a given nonlinear controller with respect to unmodeled dynamics. The recursive Lyapunov redesign is then applied to the attitude stabilization of a spacecraft with flexible appendages and to the autopilot design of an asymmetric air-to-air missile. Contextually, we develop a systematic method to rapidly evaluate the aerodynamic perturbation terms exploiting the deterministic model of the uncertainty. The effectiveness of the proposed controller is highlighted through several simulations in the second case-study considered. In the final part of the work, the technique of I\& I is reformulated in the digital setting in the case of a special class of systems in feedback form, for which constructive continuous-time solutions exist, by means of backstepping and nonlinear domination arguments. The sampled-data implementation is based on a multi-rate control solution, whose existence is guaranteed for the class of systems considered. The digital controller guarantees, under sampling, the properties of manifold attractivity and trajectory boundedness. The control law, computed by finite approximation of a series expansion, is finally validated through numerical simulations in two academic examples and in two case-studies, namely the cart-pendulum system and the rigid spacecraft
Alzoni, Yarub. "Conception et réalisation d'un régulateur auto-adaptatif industrialisable." Nancy 1, 1989. http://www.theses.fr/1989NAN10269.
Повний текст джерелаManrique, Espindola Dolly Tatiana. "Commande optimale d’une voiture électrique à faible consommation sous contraintes temps réel." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0198/document.
Повний текст джерелаIn the field of transportation, the research on energy efficiency has been carried out for few decades by the automotive industry, where one of the main objectives is to reduce the energetic consumption. This particular problem can be rephrased as how the vehicle must be driven so that the minimum quantity of energy is used. This is the optimal driving strategy. In this project, a suitable model of the Vir'volt electric vehicle involved in the European Shell Eco-Marathon is obtained. The unknown parameters involved in the vehicle dynamics are estimated using Parameter identification from experimental data. The identified dynamics is used to derive an optimal driving strategy that is intended to be tracked on-line during the driving task. The tracking task is subject to time-varying polytopic constraint on the input and/or the state. A MPC-based tracking strategy that uses an homothetic transformation as a suitable time-varying invariant set is used. The time-varying invariant set guarantees the asymptotic stability of the control law. The problem of the MPC tracking for Linear Parametric Varying (LPV) systems is introduced. A new explicit MPC strategy for LPV systems is developed. This strategy uses a Parameter dependent Lyapunov Function (PDLF) to involve explicitly the time-varying parameter in the control law and so it reduces conservatism. A benchmark is used to test the performances of the optimal driving strategy and the explicit MPC tracking strategy. Finally, a robust adaptive technique with on-line identification of the dynamics is has been proposed and tested in the race showing good performances of the adaptive driving strategy
Hauroigné, Pascal. "Stabilisation robuste des systèmes affines commutés. Application aux convertisseurs de puissance." Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0101.
Повний текст джерелаThis PhD thesis deals with the stabilization of switched affine systems. These systems belong to the class of hybrid dynamical systems. They exhibit a particular behavior: no switching law exists such that the state can be maintained on a chosen operating point. Hence, assuming a dwell time condition on switchings exists, the stabilization of these systems leads to a convergence of the trajectories to a region of the state space. Based on a control Lyapunov function in continuous time, we synthesize several sampled-data switching strategies. The whole trajectories asymptotically converge to a region which we attempt to determine. Solving an optimization problem, an estimation of the size of this region is given. A link with the system uncertainties is also established. This PhD thesis is dedicated to a second stabilization issue: observer-based output-feedback synthesis. By its hybrid nature, the observability of the system is connected to the switching sequence. Therefore, the synthesis of the switching strategy must respect an observability condition and guarantee the convergence to the operating point. The observability is achieved thanks to an algebraic condition. The convergence property is based on the existence of a control Lyapunov function
Valmorbida, Giorgio. "Analyse en stabilité et synthèse de lois de commande pour des systèmes polynomiaux saturants." Phd thesis, INSA de Toulouse, 2010. http://tel.archives-ouvertes.fr/tel-00512335.
Повний текст джерелаChadli, Mohammed. "Stabilité et commande de systèmes décrits par des multimodèles." Phd thesis, Vandoeuvre-les-Nancy, INPL, 2002. http://www.theses.fr/2002INPL089N.
Повний текст джерелаGaye, Oumar. "CONTRÔLE DU PROFIL DE FACTEUR DE SECURITE DANS LES PLASMAS DE TOKAMAK EN DIMENSION INFINIE." Phd thesis, Université d'Angers, 2012. http://tel.archives-ouvertes.fr/tel-00774718.
Повний текст джерелаManrique, Espindola Dolly Tatiana. "Commande optimale d’une voiture électrique à faible consommation sous contraintes temps réel." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0198.
Повний текст джерелаIn the field of transportation, the research on energy efficiency has been carried out for few decades by the automotive industry, where one of the main objectives is to reduce the energetic consumption. This particular problem can be rephrased as how the vehicle must be driven so that the minimum quantity of energy is used. This is the optimal driving strategy. In this project, a suitable model of the Vir'volt electric vehicle involved in the European Shell Eco-Marathon is obtained. The unknown parameters involved in the vehicle dynamics are estimated using Parameter identification from experimental data. The identified dynamics is used to derive an optimal driving strategy that is intended to be tracked on-line during the driving task. The tracking task is subject to time-varying polytopic constraint on the input and/or the state. A MPC-based tracking strategy that uses an homothetic transformation as a suitable time-varying invariant set is used. The time-varying invariant set guarantees the asymptotic stability of the control law. The problem of the MPC tracking for Linear Parametric Varying (LPV) systems is introduced. A new explicit MPC strategy for LPV systems is developed. This strategy uses a Parameter dependent Lyapunov Function (PDLF) to involve explicitly the time-varying parameter in the control law and so it reduces conservatism. A benchmark is used to test the performances of the optimal driving strategy and the explicit MPC tracking strategy. Finally, a robust adaptive technique with on-line identification of the dynamics is has been proposed and tested in the race showing good performances of the adaptive driving strategy
Pantano, Calderón Santiago. "Algorithmes de conception non quadratiques pour les systèmes linéaires soumis à saturation d'entrée." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEI015.
Повний текст джерелаThis manuscript provides novel sufficient conditions for the synthesis of stabilizing dynamic output-feedback controllers with anti-windup compensation for linear systems subject to input saturation. Given a dynamic output-feedback controller, stabilizing the linear closed-loop, the design of a static anti-windup loop is also addressed. Based on Linear and Bilinear Matrix Inequalities (LMIs and BMIs, respectively), together with appropriate transformations and sector conditions, the results exposed exploit the sign-indefinite quadratic forms involving the closed-loop state and the deadzone of the control input to define piecewise smooth Lyapunov functions. The proposed solutions leverage additional degrees of freedom with respect to the classical quadratic stabilization approach to construct global or regional exponential stability certificates of the origin of the closed-loop system.The obtained LMIs are used as constraints in convex optimization schemes and may be easily solved with commercial solvers and optimizers. For the conditions formulated in terms of BMIs, iterative algorithms based on a convex-concave decomposition are given to solve such bilinear conditions. To be executed, such algorithms require feasible initial conditions that we provide by exploiting the structure of the BMIs. With guaranteed global or regional exponential stability, the solutions exposed in this manuscript also ensure a prescribed local exponential convergence rate. Additionally, when only regional exponential stability is attainable, the proposed regional designs allow determining inner-approximations of the basin of attraction of the origin for the closed-loop system, with maximized volume. Numerical applications are presented in this manuscript to illustrate the effectiveness and drawbacks of each one of the proposed methods
Zhang, Bo. "Sur la commande à retour d'effort à travers des réseaux non dédiés : stabilisation et performance sous retards asymétriques et variables." Phd thesis, Ecole Centrale de Lille, 2012. http://tel.archives-ouvertes.fr/tel-00733141.
Повний текст джерела