Статті в журналах з теми "Focusing Nonlinear schroedinger equation"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Focusing Nonlinear schroedinger equation.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Focusing Nonlinear schroedinger equation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kamvissis, Spyridon. "Long time behavior for the focusing nonlinear schroedinger equation with real spectral singularities." Communications in Mathematical Physics 180, no. 2 (October 1996): 325–41. http://dx.doi.org/10.1007/bf02099716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Benci, Vieri, Marco Ghimenti, and Anna Maria Micheletti. "The nonlinear Schroedinger equation: Solitons dynamics." Journal of Differential Equations 249, no. 12 (December 2010): 3312–41. http://dx.doi.org/10.1016/j.jde.2010.09.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

ABLOWITZ, MARK J., and CONSTANCE M. SCHOBER. "HAMILTONIAN INTEGRATORS FOR THE NONLINEAR SCHROEDINGER EQUATION." International Journal of Modern Physics C 05, no. 02 (April 1994): 397–401. http://dx.doi.org/10.1142/s012918319400057x.

Повний текст джерела
Анотація:
Hamiltonian integration schemes for the Nonlinear Schroedinger Equation are examined. The efficiency with respect to accuracy and integration time of an integrable scheme, a standard conservative scheme, and a symplectic method is compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Jong Uhn. "Invariant measures for a stochastic nonlinear Schroedinger equation." Indiana University Mathematics Journal 55, no. 2 (2006): 687–718. http://dx.doi.org/10.1512/iumj.2006.55.2701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Plastino, A. R., and C. Tsallis. "Nonlinear Schroedinger equation in the presence of uniform acceleration." Journal of Mathematical Physics 54, no. 4 (April 2013): 041505. http://dx.doi.org/10.1063/1.4798999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Degasperis, A., S. V. Manakov, and P. M. Santini. "Multiple-scale perturbation beyond the nonlinear Schroedinger equation. I." Physica D: Nonlinear Phenomena 100, no. 1-2 (January 1997): 187–211. http://dx.doi.org/10.1016/s0167-2789(96)00179-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jeanjean, Louis, and Kazunaga Tanaka. "A positive solution for a nonlinear Schroedinger equation on R^N." Indiana University Mathematics Journal 54, no. 2 (2005): 443–64. http://dx.doi.org/10.1512/iumj.2005.54.2502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duell, Wolf-Patrick, and Guido Schneider. "Justification of the nonlinear Schroedinger equation for a resonant Boussinesq model." Indiana University Mathematics Journal 55, no. 6 (2006): 1813–34. http://dx.doi.org/10.1512/iumj.2006.55.2824.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mel'nikov, V. K. "Integration of the nonlinear Schroedinger equation with a self-consistent source." Communications in Mathematical Physics 137, no. 2 (April 1991): 359–81. http://dx.doi.org/10.1007/bf02431884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bountis, Tassos, and Fernando D. Nobre. "Travelling-wave and separated variable solutions of a nonlinear Schroedinger equation." Journal of Mathematical Physics 57, no. 8 (August 2016): 082106. http://dx.doi.org/10.1063/1.4960723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Boffetta, G., and A. R. Osborne. "Computation of the direct scattering transform for the nonlinear Schroedinger equation." Journal of Computational Physics 102, no. 2 (October 1992): 252–64. http://dx.doi.org/10.1016/0021-9991(92)90370-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Schrader, D. "Explicit calculation of N-soliton solutions of the nonlinear Schroedinger equation." IEEE Journal of Quantum Electronics 31, no. 12 (1995): 2221–25. http://dx.doi.org/10.1109/3.477750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zakharov, V. E., E. A. Kuznetsov, and S. L. Musher. "Quasi classical regime of collapse in the three-dimensional nonlinear Schroedinger equation." Physica D: Nonlinear Phenomena 28, no. 1-2 (September 1987): 221. http://dx.doi.org/10.1016/0167-2789(87)90138-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Osborne, A. R. "The Hyperelliptic Inverse Scattering Transform for the Periodic, Defocusing Nonlinear Schroedinger Equation." Journal of Computational Physics 109, no. 1 (November 1993): 93–107. http://dx.doi.org/10.1006/jcph.1993.1202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Van, Cao Long. "Propagation of Ultrashort Pulses in Nonlinear Media." Communications in Physics 26, no. 4 (March 10, 2017): 301. http://dx.doi.org/10.15625/0868-3166/26/4/9184.

Повний текст джерела
Анотація:
In this paper, a general propagation equation of ultrashort pulses in an arbitrary dispersive nonlinear medium derived in [9] has been used for the case of Kerr media. This equation which is called Generalized Nonlinear Schroedinger Equation usually has very complicated form and looking for its solutions is usually a very difficult task. Theoretical methods reviewed in this paper to solve this equation are effective only for some special cases. As an example we describe the method of developed elliptic Jacobi function expansion and its expended form: F-expansion Method. Several numerical methods of finding approximate solutions are briefly discussed. We concentrate mainly on the methods: Split-Step, Runge-Kutta and Imaginary-time algorithms. Some numerical experiments are implemented for soliton propagation and interacting high order solitons. We consider also an interesting phenomenon, namely the collapse of solitons, where the variational formalism has been used.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Tian, Huiping, Zhonghao Li, and Guosheng Zhou. "Stable propagation of ultrashort optical pulses in modified higher-order nonlinear Schroedinger equation." Optics Communications 205, no. 1-3 (April 2002): 221–26. http://dx.doi.org/10.1016/s0030-4018(02)01316-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Dudko, G. M., Yu A. Filimonov, A. A. Galishnikov, R. Marcelli, and S. A. Nikitov. "Nonlinear Schroedinger equation analysis of MSSW pulse propagation in ferrite-dielectric-metal structure." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 999–1000. http://dx.doi.org/10.1016/j.jmmm.2003.12.673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Meškauskas, T., and F. Ivanauskas. "Initial Boundary-Value Problems for Derivative Nonlinear Schroedinger Equation. Justification of Two-Step Algorithm." Nonlinear Analysis: Modelling and Control 7, no. 2 (December 5, 2002): 69–104. http://dx.doi.org/10.15388/na.2002.7.2.15195.

Повний текст джерела
Анотація:
We investigate two different initial boundary-value problems for derivative nonlinear Schrödinger equation. The boundary conditions are Dirichlet or generalized periodic ones. We propose a two-step algorithm for numerical solving of this problem. The method consists of Bäcklund type transformations and difference scheme. We prove the convergence and stability in C and H1 norms of Crank–Nicolson finite difference scheme for the transformed problem. There are no restrictions between space and time grid steps. For the derivative nonlinear Schrödinger equation, the proposed numerical algorithm converges and is stable in C1 norm.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Marshall, Ian, and Michael Semenov-Tian-Shansky. "Poisson Groups and Differential Galois Theory of Schroedinger Equation on the Circle." Communications in Mathematical Physics 284, no. 2 (June 24, 2008): 537–52. http://dx.doi.org/10.1007/s00220-008-0539-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Abdou, M. A. "New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source." Chaos, Solitons & Fractals 38, no. 4 (November 2008): 949–55. http://dx.doi.org/10.1016/j.chaos.2007.01.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

LeMesurier, B. J., G. Papanicolaou, C. Sulem, and P. L. Sulem. "Focusing and multi-focusing solutions of the nonlinear Schrödinger equation." Physica D: Nonlinear Phenomena 31, no. 1 (May 1988): 78–102. http://dx.doi.org/10.1016/0167-2789(88)90015-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Lee, T. D. "A New Approach to Solve the Low-lying States of the Schroedinger Equation." Journal of Statistical Physics 121, no. 5-6 (December 2005): 1015–71. http://dx.doi.org/10.1007/s10955-005-5476-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Strampp, W., and W. Oevel. "A Nonlinear Derivative Schroedinger-Equation: Its Bi-Hamilton Structures, Their Inverses, Nonlocal Symmetries and Mastersymmetries." Progress of Theoretical Physics 74, no. 4 (October 1, 1985): 922–25. http://dx.doi.org/10.1143/ptp.74.922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Nassif, Cláudio, and P. R. Silva. "Anomalous coalescence from a nonlinear Schroedinger equation with a quintic term: interpretation through Thompson's approach." Physica A: Statistical Mechanics and its Applications 334, no. 3-4 (March 2004): 335–42. http://dx.doi.org/10.1016/j.physa.2003.11.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Azzollini, A., and A. Pomponio. "On the Schroedinger equation in $\mathbb{R}^{N}$ under the effect of a general nonlinear term." Indiana University Mathematics Journal 58, no. 3 (2009): 1361–78. http://dx.doi.org/10.1512/iumj.2009.58.3576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Tajiri, Masayoshi, and Yosuke Watanabe. "Breather solutions to the focusing nonlinear Schrödinger equation." Physical Review E 57, no. 3 (March 1, 1998): 3510–19. http://dx.doi.org/10.1103/physreve.57.3510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Aktosun, Tuncay, Francesco Demontis, and Cornelis van der Mee. "Exact solutions to the focusing nonlinear Schrödinger equation." Inverse Problems 23, no. 5 (September 11, 2007): 2171–95. http://dx.doi.org/10.1088/0266-5611/23/5/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Liu, Zhongxuan, Qi Feng, Chengyou Lin, Zhaoyang Chen, and Yingchun Ding. "Bipolar solitons of the focusing nonlinear Schrödinger equation." Physica B: Condensed Matter 501 (November 2016): 117–22. http://dx.doi.org/10.1016/j.physb.2016.08.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Sulem, Catherine, and Pierre-Louis Sulem. "Focusing nonlinear schrödinger equation and wave-packet collapse." Nonlinear Analysis: Theory, Methods & Applications 30, no. 2 (December 1997): 833–44. http://dx.doi.org/10.1016/s0362-546x(96)00168-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Liu, Xiao, Gideon Simpson, and Catherine Sulem. "Focusing singularity in a derivative nonlinear Schrödinger equation." Physica D: Nonlinear Phenomena 262 (November 2013): 48–58. http://dx.doi.org/10.1016/j.physd.2013.07.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kamvissis, Spyridon. "Focusing nonlinear Schrödinger equation with infinitely many solitons." Journal of Mathematical Physics 36, no. 8 (August 1995): 4175–80. http://dx.doi.org/10.1063/1.530953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Fibich, G. "Self-Focusing in the Damped Nonlinear Schrödinger Equation." SIAM Journal on Applied Mathematics 61, no. 5 (January 2001): 1680–705. http://dx.doi.org/10.1137/s0036139999362609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Chen, Yu, Jing Lu, and Fanfei Meng. "Focusing nonlinear Hartree equation with inverse‐square potential." Mathematische Nachrichten 293, no. 12 (September 21, 2020): 2271–98. http://dx.doi.org/10.1002/mana.201900331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

IBRAHIM, SLIM. "GEOMETRIC-OPTICS FOR NONLINEAR CONCENTRATING WAVES IN FOCUSING AND NON-FOCUSING TWO GEOMETRIES." Communications in Contemporary Mathematics 06, no. 01 (February 2004): 1–23. http://dx.doi.org/10.1142/s0219199704001239.

Повний текст джерела
Анотація:
With the methods used in [1] and [4], we prove that in the absence of focus, nonlinear geometrical optics of the critical wave equation with variable coefficients, is reduced to linear geometrical optics combined with wave operators for the critical wave equation with coefficients fixed on concentrating points. On the odd-dimensional spheres, we prove that passing through a focus is generated by a modified scattering operator.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Saanouni, Tarek. "Remarks on the critical nonlinear high-order heat equation." Arab Journal of Mathematical Sciences 26, no. 1/2 (March 15, 2019): 127–52. http://dx.doi.org/10.1016/j.ajmsc.2019.03.002.

Повний текст джерела
Анотація:
The initial value problem for a semi-linear high-order heat equation is investigated. In the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of solutions are discussed via the potential well method.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ibrahim, Slim, Nader Masmoudi, and Kenji Nakanishi. "Scattering threshold for the focusing nonlinear Klein–Gordon equation." Analysis & PDE 4, no. 3 (December 28, 2011): 405–60. http://dx.doi.org/10.2140/apde.2011.4.405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wright, Otis C. "Near homoclinic orbits of the focusing nonlinear Schrödinger equation." Nonlinearity 12, no. 5 (August 13, 1999): 1277–87. http://dx.doi.org/10.1088/0951-7715/12/5/304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Chen, Jinbing, and Dmitry E. Pelinovsky. "Rogue periodic waves of the focusing nonlinear Schrödinger equation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2210 (February 2018): 20170814. http://dx.doi.org/10.1098/rspa.2017.0814.

Повний текст джерела
Анотація:
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov–Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine’s breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Fang, DaoYuan, Jian Xie, and Thierry Cazenave. "Scattering for the focusing energy-subcritical nonlinear Schrödinger equation." Science China Mathematics 54, no. 10 (October 2011): 2037–62. http://dx.doi.org/10.1007/s11425-011-4283-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Arora, Anudeep Kumar, Svetlana Roudenko, and Kai Yang. "On the focusing generalized Hartree equation." Mathematics in Applied Sciences and Engineering 9999, no. 9999 (December 16, 2020): 1–20. http://dx.doi.org/10.5206/mase/10855.

Повний текст джерела
Анотація:
In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L2 -critical setting.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Lugiato, L. A., F. Prati, M. L. Gorodetsky, and T. J. Kippenberg. "From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2135 (November 12, 2018): 20180113. http://dx.doi.org/10.1098/rsta.2018.0113.

Повний текст джерела
Анотація:
The model, that is usually called the Lugiato–Lefever equation (LLE), was introduced in 1987 with the aim of providing a paradigm for dissipative structure and pattern formation in nonlinear optics. This model, describing a driven, detuned and damped nonlinear Schroedinger equation, gives rise to dissipative spatial and temporal solitons. Recently, the rather idealized conditions, assumed in the LLE, have materialized in the form of continuous wave driven optical microresonators, with the discovery of temporal dissipative Kerr solitons (DKS). These experiments have revealed that the LLE is a perfect and exact description of Kerr frequency combs—first observed in 2007, i.e. 20 years after the original formulation of the LLE—and in particular describe soliton states. Observed to spontaneously form in Kerr frequency combs in crystalline microresonators in 2013, such DKS are preferred state of operation, offering coherent and broadband optical frequency combs, whose bandwidth can be extended exploiting soliton-induced broadening phenomena. Combined with the ability to miniaturize and integrate on-chip, microresonator-based soliton Kerr frequency combs have already found applications in self-referenced frequency combs, dual-comb spectroscopy, frequency synthesis, low noise microwave generation, laser frequency ranging, and astrophysical spectrometer calibration, and have the potential to make comb technology ubiquitous. As such, pattern formation in driven, dissipative nonlinear optical systems is becoming the central Physics of soliton micro-comb technology. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhong, Wei-Ping, Zhengping Yang, Milivoj Belić, and WenYe Zhong. "Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation." Physics Letters A 395 (April 2021): 127228. http://dx.doi.org/10.1016/j.physleta.2021.127228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Miller, Peter D., and Spyridon Kamvissis. "On the semiclassical limit of the focusing nonlinear Schrödinger equation." Physics Letters A 247, no. 1-2 (October 1998): 75–86. http://dx.doi.org/10.1016/s0375-9601(98)00565-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Brydges, David C., and Gordon Slade. "Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation." Communications in Mathematical Physics 182, no. 2 (December 1996): 485–504. http://dx.doi.org/10.1007/bf02517899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Borghese, Michael, Robert Jenkins, and Kenneth D. T. R. McLaughlin. "Long time asymptotic behavior of the focusing nonlinear Schrödinger equation." Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35, no. 4 (July 2018): 887–920. http://dx.doi.org/10.1016/j.anihpc.2017.08.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Lyng, Gregory D., and Peter D. Miller. "TheN-soliton of the focusing nonlinear Schrödinger equation forN large." Communications on Pure and Applied Mathematics 60, no. 7 (2007): 951–1026. http://dx.doi.org/10.1002/cpa.20162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Luo, Yongming. "Sharp scattering for the cubic-quintic nonlinear Schrödinger equation in the focusing-focusing regime." Journal of Functional Analysis 283, no. 1 (July 2022): 109489. http://dx.doi.org/10.1016/j.jfa.2022.109489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Serkin, Vladimir N., E. M. Schmidt, T. L. Belyaeva, E. Marti-Panameno, and H. Salazar. "Femtosecond Maxwellian solitons. II. Verification of a model of the nonlinear Schroedinger equation in the theory of optical solitons." Quantum Electronics 27, no. 11 (November 30, 1997): 940–43. http://dx.doi.org/10.1070/qe1997v027n11abeh001123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Masaki, Satoshi. "A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation." Communications on Pure & Applied Analysis 14, no. 4 (2015): 1481–531. http://dx.doi.org/10.3934/cpaa.2015.14.1481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ibrahim, Slim, Nader Masmoudi, and Kenji Nakanishi. "Correction to “Scattering threshold for the focusing nonlinear Klein–Gordon equation”." Analysis & PDE 9, no. 2 (March 24, 2016): 503–14. http://dx.doi.org/10.2140/apde.2016.9.503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії