Добірка наукової літератури з теми "Fluxonium"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fluxonium".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fluxonium"
Rastelli, Gianluca, Mihajlo Vanević, and Wolfgang Belzig. "Coherent dynamics in long fluxonium qubits." New Journal of Physics 17, no. 5 (May 18, 2015): 053026. http://dx.doi.org/10.1088/1367-2630/17/5/053026.
Повний текст джерелаMoskalenko, I. N., I. S. Besedin, I. A. Tsitsilin, G. S. Mazhorin, N. N. Abramov, A. Grigor’ev, I. A. Rodionov, et al. "Planar Architecture for Studying a Fluxonium Qubit." JETP Letters 110, no. 8 (October 2019): 574–79. http://dx.doi.org/10.1134/s0021364019200074.
Повний текст джерелаManucharyan, V. E., J. Koch, L. I. Glazman, and M. H. Devoret. "Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets." Science 326, no. 5949 (October 1, 2009): 113–16. http://dx.doi.org/10.1126/science.1175552.
Повний текст джерелаMoskalenko, I. N., I. S. Besedin, I. A. Simakov, and A. V. Ustinov. "Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits." Applied Physics Letters 119, no. 19 (November 8, 2021): 194001. http://dx.doi.org/10.1063/5.0064800.
Повний текст джерелаSpilla, Samuele, Fabian Hassler, Anna Napoli, and Janine Splettstoesser. "Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach." New Journal of Physics 17, no. 6 (June 16, 2015): 065012. http://dx.doi.org/10.1088/1367-2630/17/6/065012.
Повний текст джерелаYang, Yuchen, Zhongtao Shen, Xing Zhu, Ziqi Wang, Gengyan Zhang, Jingwei Zhou, Xun Jiang, Chunqing Deng, and Shubin Liu. "FPGA-based electronic system for the control and readout of superconducting quantum processors." Review of Scientific Instruments 93, no. 7 (July 1, 2022): 074701. http://dx.doi.org/10.1063/5.0085467.
Повний текст джерелаGusenkova, Daria, Francesco Valenti, Martin Spiecker, Simon Günzler, Patrick Paluch, Dennis Rieger, Larisa-Milena Pioraş-Ţimbolmaş, et al. "Operating in a deep underground facility improves the locking of gradiometric fluxonium qubits at the sweet spots." Applied Physics Letters 120, no. 5 (January 31, 2022): 054001. http://dx.doi.org/10.1063/5.0075909.
Повний текст джерелаGroszkowski, Peter, and Jens Koch. "Scqubits: a Python package for superconducting qubits." Quantum 5 (November 17, 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Повний текст джерелаRaissi, F., and J. E. Nordman. "Josephson fluxonic diode." Applied Physics Letters 65, no. 14 (October 3, 1994): 1838–40. http://dx.doi.org/10.1063/1.112859.
Повний текст джерелаMilošević, M. V., G. R. Berdiyorov, and F. M. Peeters. "Fluxonic cellular automata." Applied Physics Letters 91, no. 21 (November 19, 2007): 212501. http://dx.doi.org/10.1063/1.2813047.
Повний текст джерелаДисертації з теми "Fluxonium"
Najera, Santos Baldo Luis. "Radio-frequency fluxonium superconducting qubit for AC-charge sensing applications." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS159.
Повний текст джерелаRadio-frequency fluxonium superconducting circuit for AC-charge sensing applicationsSuperconducting-circuits are artificial quantum systems whose properties can be engineered to match the requirements of each specific application. A typical superconducting circuit is engineered to have a sufficiently an-harmonic transition to be used as a qubit, which can be easily manipulated and read-out thanks to its strong (dipolar) interaction with electromagnetic fields. The property of having a strong dipole moment is particularly interesting for interfacing a superconducting circuit with other quantum systems. For instance, fluorescence from individual electronic spins was successfully detected using a superconducting qubit-based microwave-photon detector operating in the 5-10 GHz band. In the realm of circuit quantum acousto-dynamics (cQAD), the coupling between a qubit and a piezoelectric resonator is used to detect and manipulate the phononic state, typically within the 2-10 GHz range. However, adapting these sensing schemes to lower frequencies, below the conventional operating frequency of superconducting qubits, introduces distinct challenges. First, superconducting qubits are read out thanks to the dispersive shift imparted to a nearby superconducting resonator. As the dispersive shift quickly drops for a cavity detuning exceeding the qubit anharmonicity, weakly anharmonic qubits, such as transmons, require nearly resonant resonators with dimensions scaling inversely with the frequency (as an illustration, a 1 MHz λ/2-coplanar cavity requires a 100-m-long waveguide). Second, low-frequency systems are coupled to a hot thermal bath with which they exchange photons randomly, quickly turning pure quantum states into statistical mixtures. The fluxonium qubit, composed of a Josephson junction shunted simultaneously by a large inductance and a capacitance, presents unique opportunities in the realm of low-frequency superconducting qubits.In this work, we demonstrate a heavy fluxonium with an unprecedentedly low transition frequency of 1.8 MHz, while maintaining the ability to manipulate and read out the qubit using standard microwave techniques. This is made possible by the highly non-linear energy spectrum of the fluxonium, where the first transition occurs in the MHz range while transitions to higher excited states are within the 3-10 GHz range. We successfully demonstrate resolved sideband cooling of the fluxonium, reducing its effective temperature to 23 μK and achieving a ground state population of 97.7%. Our experiments further reveal the qubit's coherent manipulation capabilities, with coherence times of T1=34 μs and T2*=39 μs, along with reliable single-shot state readout.We furthermore demonstrate the qubit's enhanced sensitivity to radio-frequency fields, achieved through direct interaction with a capacitively coupled waveguide. By employing cyclic preparation and measurement protocols, we transform the fluxonium into a precise frequency-resolved charge sensor, boasting a charge sensitivity of 33 μe/√Hz. This translates to an energy sensitivity of 2.8ℏ per hertz, rivaling state-of-the-art transport-based sensors while remaining inherently resistant to dc-charge noise. The large gate-capacitance of our fluxonium-based charge sensor (~50 fF) is highly beneficial in real-world charge sensing applications, where the sensitivity gets diluted when the self-capacitance of the probed system exceeds that of the sensor. This work paves the way for new experimental investigations into quantum phenomena within the 1-10 MHz range, including the strong-coupling regime with macroscopic mechanical resonators
Тези доповідей конференцій з теми "Fluxonium"
Ozguler, A., Vladimir Manucharyan, and Maxim Vavilov. "Excitation dynamics in galvanically coupled fluxonium circuits." In Excitation dynamics in galvanically coupled fluxonium circuits. US DOE, 2021. http://dx.doi.org/10.2172/1779479.
Повний текст джерелаGebauer, Richard, Nick Karcher, Daria Gusenkova, Martin Spiecker, Lukas Grünhaupt, Ivan Takmakov, Patrick Winkel, et al. "State preparation of a fluxonium qubit with feedback from a custom FPGA-based platform." In FIFTH INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES (ICQT-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0011721.
Повний текст джерелаGuevel, Loïck Le, Chen Wang, and Joseph C. Bardin. "29.1 A 22nm FD-SOI <1.2mW/Active-Qubit AWG-Free Cryo-CMOS Controller for Fluxonium Qubits." In 2024 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2024. http://dx.doi.org/10.1109/isscc49657.2024.10454522.
Повний текст джерелаKunert, Juergen, Oliver Brandel, Sven Linzen, Torsten May, Ronny Stolz, and Hans-Georg Meyer. "Superconductor digital electronics technology for sensor interfacing at the FLUXONICS Foundry." In 2014 11th International Workshop on Low Temperature Electronics (WOLTE). IEEE, 2014. http://dx.doi.org/10.1109/wolte.2014.6881021.
Повний текст джерела