Добірка наукової літератури з теми "Flippases"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Flippases".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Flippases":

1

Takeda, Miyoko, Kanako Yamagami, and Kazuma Tanaka. "Role of Phosphatidylserine in Phospholipid Flippase-Mediated Vesicle Transport in Saccharomyces cerevisiae." Eukaryotic Cell 13, no. 3 (January 3, 2014): 363–75. http://dx.doi.org/10.1128/ec.00279-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.
2

Jing, Weidong, Mehmet Yabas, Angelika Bröer, Lucy Coupland, Elizabeth E. Gardiner, Anselm Enders, and Stefan Bröer. "Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets." Blood Advances 3, no. 3 (January 23, 2019): 219–29. http://dx.doi.org/10.1182/bloodadvances.2018023473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The asymmetric distribution of phospholipids in the plasma/organellar membranes is generated and maintained through phospholipid flippases in resting cells, but becomes disrupted in apoptotic cells and activated platelets, resulting in phosphatidylserine (PS) exposure on the cell surface. Stable PS exposure during apoptosis requires inactivation of flippases to prevent PS from being reinternalized. Here we show that flippase ATP8A1 is highly expressed in both murine and human platelets, but is not present in the plasma membrane. ATP8A1 is cleaved by the cysteine protease calpain during apoptosis, and the cleavage is prevented indirectly by caspase inhibition, involving blockage of calcium influx into platelets and subsequent calpain activation. In contrast, in platelets activated with thrombin and collagen and exposing PS, ATP8A1 remains intact. These data reveal a novel mechanism of flippase cleavage and suggest that flippase activity in intracellular membranes differs between platelets undergoing apoptosis and activation.
3

Slavetinsky, Christoph J., Andreas Peschel, and Christoph M. Ernst. "Alanyl-Phosphatidylglycerol and Lysyl-Phosphatidylglycerol Are Translocated by the Same MprF Flippases and Have Similar Capacities To Protect against the Antibiotic Daptomycin in Staphylococcus aureus." Antimicrobial Agents and Chemotherapy 56, no. 7 (April 9, 2012): 3492–97. http://dx.doi.org/10.1128/aac.00370-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTThe lysinylation of negatively charged phosphatidylglycerol by MprF proteins reduces the affinity of cationic antimicrobial peptides (CAMPs) for bacterial cytoplasmic membranes and reduces the susceptibility of several Gram-positive bacterial pathogens to CAMPs. MprF ofStaphylococcus aureusencompasses a lysyl-phosphatidylglycerol (Lys-PG) synthase and a Lys-PG flippase domain. In contrast,Clostridium perfringensencodes two MprF homologs which specifically synthesize alanyl-phosphatidylglycerol (Ala-PG) or Lys-PG, while only the Lys-PG synthase is fused to a putative flippase domain. It remains unknown whether cationic Lys-PG and zwitterionic Ala-PG differ in their capacities to be translocated by MprF flippases and if both can reduce CAMP susceptibility in Gram-positive bacteria. By expressing the MprF proteins ofC. perfringensin anS. aureus mprFdeletion mutant, we found that both lipids can be efficiently produced inS. aureus. Simultaneous expression of the Lys-PG and Ala-PG synthases led to the production of both lipids and slightly increased the overall amounts of aminoacyl phospholipids. Ala-PG production by the correspondingC. perfringensenzyme did not affect susceptibility to CAMPs such as nisin and gallidermin or to the CAMP-like antibiotic daptomycin. However, coexpression of the Ala-PG synthase with flippase domains of Lys-PG synthesizing MprF proteins led to a wild-type level of daptomycin susceptibility, indicating that Ala-PG can also protect bacterial membranes against daptomycin and suggesting that Lys-PG flippases can also translocate the related lipid Ala-PG. Thus, bacterial aminoacyl phospholipid flippases exhibit more relaxed substrate specificity and Ala-PG and Lys-PG are more similar in their capacities to modulate membrane functions than anticipated.
4

MENON, A. "Flippases." Trends in Cell Biology 5, no. 9 (September 1995): 355–60. http://dx.doi.org/10.1016/s0962-8924(00)89069-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Watkins, W. E., III III, and A. K. Menon. "Reconstitution of Phospholipid Flippase Activity from E. coli Inner Membrane: A Test of the Protein Translocon as a Candidate Flippase." Biological Chemistry 383, no. 9 (September 17, 2002): 1435–40. http://dx.doi.org/10.1515/bc.2002.162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractPhospholipid flipping in biogenic membranes is a key feature of membrane bilayer assembly. Flipping is facilitated by proteinaceous transporters (flippases) that do not need metabolic energy to function. No flippase has yet been identified. The architecture of the E. coli protein translocon suggests that it could account for the flippase activity in the bacterial inner membrane. To test this possibility, we used E. coli cells depleted of SecYE or YidC to assay flipping in proteoliposomes reconstituted from detergent extracts of their inner membranes. We conclude that the protein translocon contributes minimally, if at all, to phospholipid flippase activity in the inner membrane.
6

Devaux, Philippe F. "Phospholipid flippases." FEBS Letters 234, no. 1 (July 4, 1988): 8–12. http://dx.doi.org/10.1016/0014-5793(88)81291-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Daleke, David L. "Phospholipid Flippases." Journal of Biological Chemistry 282, no. 2 (November 27, 2006): 821–25. http://dx.doi.org/10.1074/jbc.r600035200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Basante-Bedoya, Miguel A., Stéphanie Bogliolo, Rocio Garcia-Rodas, Oscar Zaragoza, Robert A. Arkowitz, and Martine Bassilana. "Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans." PLOS Genetics 18, no. 12 (December 14, 2022): e1010549. http://dx.doi.org/10.1371/journal.pgen.1010549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
9

Rajasekharan, Archita, Vincent Gerard Francis, and Sathyanarayana N. Gummadi. "Biochemical evidence for energy-independent flippase activity in bovine epididymal sperm membranes: an insight into membrane biogenesis." REPRODUCTION 146, no. 3 (September 2013): 209–20. http://dx.doi.org/10.1530/rep-13-0121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
During the maturation process spermatozoa undergo a series of changes in their lateral and horizontal lipid profiles. However, lipid metabolism in spermatozoa is not clearly understood for two reasons: i) the mature spermatozoa are devoid of endoplasmic reticulum, which is the major site of phospholipid (PL) synthesis in somatic cells, and ii) studies have been superficial due to the difficulty in culturing spermatozoa. We hypothesize that spermatozoa contain biogenic membrane flippases since immense changes in lipids occur during spermatogenic differentiation. To test this, we isolated spermatozoa from bovine epididymides and reconstituted the detergent extract of sperm membranes into proteoliposomes.In vitroassays showed that proteoliposomes reconstituted with sperm membrane proteins exhibit ATP-independent flip–flop movement of phosphatidylcholine (PC), phosphatidylserine, and phosphatidylglycerol. Half-life time of PC flipping was found to be ∼3.2±1 min for whole sperm membrane, which otherwise would have taken ∼11–12 h in the absence of protein. Further biochemical studies confirm the flip–flop movement to be protein-mediated, based on its sensitivity to protease and protein-modifying reagents. To further determine the cellular localization of flippases, we isolated mitochondria of spermatozoa and checked for ATP-independent flippase activity. Interestingly, mitochondrial membranes showed flip–flop movement but were specific for PC with half-life time of ∼5±2 min. Our results also suggest that spermatozoa have different populations of flippases and that their localization within the cellular compartments depends on the type of PL synthesis.
10

Lenoir, Guillaume, and Joost C. M. Holthuis. "The elusive flippases." Current Biology 14, no. 21 (November 2004): R912—R913. http://dx.doi.org/10.1016/j.cub.2004.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Flippases":

1

McDowell, Stephen C. "Lipid Flippases and Elemental Homeostasis Systems in Arabidopsis thaliana." Thesis, University of Nevada, Reno, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3566276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Many molecules in living systems are present in charged forms, and these molecules are often highly regulated. The work presented in the following chapters addresses two main topics involving charged molecules using the model plant Arabidopsis thaliana: elemental homeostasis and lipid flippases. The study of elemental homeostasis is referred to as ionomics and is the topic of Chapter II. P4-ATPases are thought to be the principle class of proteins with lipid flippase activity and are the topics of Chapter III and Chapter IV.

Plants, especially seed crops, are an important source of mineral nutrition in the human diet and are thus important targets for biofortification and toxic element exclusion. Here, we report the results of a pilot ionomic screen in which we quantified the concentrations of 14 elements in Arabidopsis seeds. To identify conditional ionomic phenotypes, plants were grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. To help identify the genetic networks regulating the seed ionome, elemental concentrations were evaluated in mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes observed in the mutant screen supports an estimate that up to 11% of the Arabidopsis genome encodes proteins of functional relevance to the seed ionome. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280, and CNGC2. Reproducible ionomic differences were also observed between the Col-0 reference accession and eight of the other nine accessions screened. Significantly, all 15 mutants with reproducible ionomic phenotypes showed at least one change under standard soil conditions. This suggests that the sole use of a standard growth environment might be the most effective strategy for continued reverse-genetic efforts to identify genes that impact the Arabidopsis seed ionome. Nonetheless, each soil modification had a unique impact on the Col-0 seed ionome and elicited several conditional phenotypes in both the mutant and accession screens, indicating that seed elemental homeostasis is sensitive to soil conditions. Together, the results of this study establish that elemental analysis is a sensitive approach to identify genes and environmental conditions that impact elemental accumulation in Arabidopsis seed.

By flipping lipids between membrane leaflets, P4-ATPases are thought to help create and maintain asymmetry in biological membranes. Lipid asymmetry between membrane leaflets has been implicated in a wide range of biological processes including: vesicular trafficking, cell signaling, modulation of membrane permeability, protein recruitment, and regulation of protein activity. Additionally, one P4-ATPase, Neo1p, is essential in yeast. In Arabidopsis thaliana, 12 P4-ATPases have been identified: Aminophospholipid ATPase 1 (ALA1) to ALA12. However, very little is known about P4-ATPases in the context of plant systems.

Of the 12 ALA isoforms, only ALA3 has been extensively studied. Previous studies have shown that loss of ALA3 results in pleiotropic phenotypes affecting root, shoot, and reproductive development. Here, we expand on the previous studies by showing that multiple phenotypes for ala3 mutants are strongly sensitive to growth conditions. We also expand on the ala3 pollen phenotype by identifying three points of defect in ala3 pollen tubes: delayed germination, slow growth, and reduced overall length. Furthermore, we show that ala3 pistils have reduced ovule production, thus providing the first evidence of a female reproductive defect in ala3 mutants. Together, these results support a model in which ALA3 functions in multiple cell types and is critical to plants for development and adaptation to varied growth conditions.

Two other ALA isoforms, ALA6 and ALA7, were also examined in this study. We provide in-vitro and in-vivo evidence that ALA6 and ALA7 are important for rapid, sustained pollen tube growth. Expression of fluorescently labeled ALA6 fusion proteins indicates that the subcellular localization of ALA6 includes the plasma membrane and highly mobile endomembrane structures. We also show that staining by lipophilic FM dyes is reduced by ∼10-fold in ala6-1/7-2 pollen tubes relative to wild-type, suggesting differences in plasma membrane composition. Furthermore, tandem mass spectroscopy analysis revealed significant differences between the lipid compositions of ala6-1/7-2 and wild-type pollen grains, both in the concentrations of different headgroups and in the average number of double bonds present within acyl side chains. Together, these results support a model in which ALA6 and ALA7 function to directly or indirectly regulate the distribution and concentration of lipids in pollen and are thus critical for pollen fitness.

2

Lamy, Anaïs. "Lipid Flippases from Plasmodium Parasites : from Heterologous Production towards Functional Characterization." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS447/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le paludisme est une maladie dévastatrice causée par un parasite du genre Plasmodium. Du fait de la propagation de souches résistantes aux actuels antipaludéens, il est nécessaire de comprendre les fonctions physiologiques essentielles du parasite afin de trouver de nouvelles cibles thérapeutiques. Les transporteurs membranaires sont une classe importante de cibles chez l'homme du fait de leur rôle physiologique essentiel pour la cellule. Cependant, chez les parasite du genre Plasmodium, seulement quelques transporteurs ont été biochimiquement caractérisés. Des études récentes de délétion de gènes dans un model murin ont montrées que l’ATPase de type P4, ou flippase, ATP2 de Plasmodium est essentielle pour le parasite. Chez les Eucaryotes, l’activité de translocation des lipides des ATPases de type P4 est nécessaire pour maintenir l’asymétrie des membranes, un élément clé dans de nombreux processus essentiels comme la formation de vésicules ou l’apoptose. Les flippases forment des complexes hétéromériques avec les protéines de la famille Cdc50 qui sont également trouvées dans le génome de Plasmodium. Pour comprendre le rôle fonctionnel de ces transporteurs putatifs durant l’infection par le parasite, nous avons besoin d’étudier leur mécanisme de transport et d’identifier leur (s) substrat (s). Nous avons entrepris l’expression hétérologue chez Saccharomyces cerevisiae d’ATP2, en complexe avec les sous unités Cdc50, de trois espèces différentes de Plasmodium. Nous avons réussi à co-exprimer l’orthologue ATP2 de P. chabaudi (PcATP2) et les sous unités PcCdc50 correspondantes. Par co-immunoprécipitation et une chromatographie d’exclusion stérique détectée par fluorescence, nous sommes parvenus à identifier la sous unité s’associant à PcATP2 : PcCdc50.1. Nous avons ensuite purifié le complexe PcATP2/PcCdc50.1 en utilisant des nanobodies reconnaissant la GFP fusionnée à l’extrémité C-terminale de PcATP2 et nous avons initié la caractérisation fonctionnelle avec des tests de phosphorylation et d’activité ATPasique
Malaria is a devastating disease caused by a parasite of the genus Plasmodium. Due to the spread of strains resistant to current antimalarial drugs, it is necessary to understand essential physiological functions of the parasite in order to find new drug targets. Membrane transport proteins are an important class of drug targets in humans, as they perform essential physiological roles of the cell. However, for Plasmodium parasites, just a few membrane transporters have been biochemically described. Recent gene-deletion studies in malaria mouse models have shown that the Plasmodium P4-ATPase, or lipid flippase, ATP2 is essential for the parasite. In eukaryotes, the phospholipid translocation activity of P4-ATPases is needed to maintain the asymmetric distribution of membranes, a key element in many essential processes like vesicle budding or apoptosis. Lipid flippases form heteromeric complexes with members of the Cdc50 protein family, also found in the genomes of Plasmodium parasites. To understand the functional role of these still putative transporters during malaria infection we need to study their transport mechanism and identify their substrate(s). We have conducted the heterologous expression in Saccharomyces cerevisiae of ATP2 in complex with the Cdc50 subunits from three different Plasmodium species. We succeeded to co-express the ATP2 ortholog of P. chabaudi (PcATP2) and the related putative PcCdc50 proteins. By co-immunoprecipitation and Fluorescence-detection Size Exclusion Chromatography, we have managed to identify the Cdc50 β-subunit that associates to PcATP2: PcCdc50.1. We then purified the complex PcATP2/PcCdc50.1 using immobilized nanobodies that recognize the GFP fused at the C-terminal end of PcATP2 and we initiated the functional characterization using ATPase and phosphorylation activity assays
3

Basante-Bedoya, Miguel Angel. "Transporteurs lipidiques dans la morphogenèse du champignon pathogène opportuniste de l’Homme Candida albicans." Electronic Thesis or Diss., Université Côte d'Azur, 2021. http://theses.univ-cotedazur.fr/2021COAZ6030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Candida albicans est un champignon pathogène opportuniste de l'homme qui peut causer des infections superficielles ou systémiques; sa capacité à passer d'une forme ovoïde à une forme filamenteuse est associée à sa virulence. Pendant cette croissance filamenteuse hautement polarisée, une accumulation de vésicules (Spitzenkörper), caractéristique des champignons filamenteux, ainsi qu'une distribution enrichie de lipides, tels que l'ergostérol, les dérivés phosphorylés du phosphatidylinositol (PI(4)P, PI(4,5)P2) et la phosphatidylsérine (PS) est observée à l'apex des filaments. Cependant, l'importance de l'asymétrie de ces lipides dans la bicouche membranaire est méconnue. Les flippases (P4-ATPases) transportent les lipides à travers la bicouche membranaire pour générer et maintenir son asymétrie. C. albicans a 5 flippases, incluant Drs2 qui est critique pour la croissance filamenteuse et la distribution de phosphatidylsérine (PS). De plus, un mutant de délétion drs2 est hypersensible au fluconazole et au cuivre et nous montrons ici qu’un tel mutant est aussi critique à la virulence dans un modèle murin d'infection systémique. Pour préciser le rôle de Drs2 pendant la croissance filamenteuse de C. albicans, nous avons étudié la distribution de cette ATPase, ainsi que celle de lipides et régulateurs clés, pendant l'initiation et le maintien de ce processus de croissance. Nous avons également caractérisé des mutants ponctuels de Drs2, analogues à ceux altérés pour le transport de PS chez S. cerevisiae. De plus, nous avons examiné l’importance d'autres flippases, telles que Dnf1-3, dans la croissance filamenteuse invasive ainsi que le rôle de transporteurs de lipides appartenant à la famille des « oxysterol binding protein » (Osh). Nos résultats indiquent que Drs2 joue un rôle unique dans le maintien de la croissance filamenteuse de C. albicans, qui paraît particulièrement critique après la formation du premier septum, et indiquent qu’une interaction entre Drs2 et Osh4, via PI(4)P, joue un rôle essentiel pour la croissance filamenteuse
Candida albicans is a human opportunistic fungal pathogen that can cause superficial or systemic infections; its ability to change from an ovoid to a filamentous form is associated with its virulence. During this highly polarized filamentous growth, an accumulation of vesicles (Spitzenkörper), characteristic of filamentous fungi, as well as a polarized distribution of lipids, such as ergosterol, phosphorylated derivatives of phosphatidylinositol (PI(4)P, PI(4,5)P2) and phosphatidylserine (PS) is observed at the apex of filaments. However, the importance of the asymmetry of these lipids in the membrane bilayer is not completely understood. Flippases (P4-ATPases) transport lipids across the membrane bilayer to generate and maintain its asymmetry. C. albicans has 5 flippases, including Drs2 which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to fluconazole and copper. We show here that such a mutant is also critical to virulence in a mouse model of systemic infection. To clarify the role of Drs2 during C. albicans filamentous growth, we studied the distribution of this ATPase, as well as that of key lipids and regulators, during the initiation and maintenance of this growth process. We also characterized point mutants of Drs2, analogous to those altered for PS transport in S. cerevisiae. In addition, we examined the importance of other flippases, such as Dnf1-3, in invasive growth and the role of lipid transporters belonging to the oxysterol binding protein (Osh) family. Our results indicate in particular that Drs2 plays a unique role in the maintenance of invasive filamentous growth of C. albicans, which appears to be more critical after the first septum formation, and that an interaction between Drs2 and Osh4, via PI(4)P, plays an essential role during invasive filamentous growth
4

Ezanno, Pierre. "Flippase, tension mécanique et mécanosensibilité." Paris 6, 2009. http://www.theses.fr/2009PA066167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Membranaires ou solubles, les protéines sont sensibles à leur environnement. La tension mécanique latérale de membrane via les lipides est un paramètre physico-chimique de l’environnement des protéines membranaires. La flippase (une protéine membranaire) peut moduler cette tension en créant une asymétrie de population des lipides entre les deux feuillets d’une membrane. La flippase des érythrocytes (ATPase dépendante du Mg ATP) est, dans cette thèse, utilisée non purifiée : à partir de sa membrane native. Une protéine membranaire mécanosensible change de conformation en fonction de la tension mécanique dans la membrane. Le MscL (Mechano sensitive channel Large conductance) en est un exemple. La flippase reste active dans les systèmes membranaires géants utilisés, malgré une étape de déshydratation partielle de la membrane (étape nécessaire à la formation de liposomes géants). Un ajout de Mg ATP déclenche l’activité flippase qui est détectée par un changement de forme de liposomes. Ensuite, la tension mécanique latérale a été déclenchée dans une membrane qui contient la flippase et aussi le MscL dont le changement de conformation est observé en électrophysiologie. En présence d’activité flippase, le comportement du MscL est modifié : la tension requise d’ouverture semble plus basse
Membrane proteins and soluble proteins are sensitive to their environment. The lateral mechanical tension in membrane via lipids is a physico-chemical parameter of membrane protein environment. The flippase (a membrane protein) can modulate this tension creating an asymmetry of lipids populations between both of membrane leaflets. Flippase from erythrocytes (a Mg ATP dependent ATPase) is, in this thesis, used unpurified: from its native membrane. A mechanosensitive membrane protein changes conformation according to the mechanical tension in the membrane; for example, the MscL (Mechano sensitive channel Large conductance). The flippase is still active in giant membrane systems used, despite a partial dehydration step of membrane (required step in making giant liposomes). An addition of MG ATP triggers the flippase activity which is detected by liposome shape changes. Then, the lateral mechanical tension is triggered in a membrane containing the flippase and the MscL the opening of which is monitored by electrophysiology. In the presence of flippase activity, the MscL’s behaviour is modified: the required tension to open the channel seems to be lowered
5

Dieudonne, Thibaud. "Functional and Structural Characterization of Lipid Flippases : The Yeast Drs2p/Cdc50p and the Disease-Related Human Atp8b1/Cdc50a Complexes Structure and Autoregulation of a P4-ATPase Lipid Flippase Screening of Detergents for Stabilization of Functional Membrane Proteins High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les cellules sont entourées de membranes lipidiques organisées en bicouche séparant ainsi le milieu intracellulaire du milieu extérieur. L’une des caractéristiques des cellules eucaryotes est de posséder une distribution asymétrique des lipides constituants les membranes de la voie sécrétoire. En effet, dans ces membranes, la phosphatidylcholine (PC) et les sphingolipides (SL) sont majoritairement retrouvés sur le feuillet externe alors que la phosphatidylsérine (PS) et la phosphatidyléthanolamine (PE) sont séquestrées sur le feuillet interne. Cette asymétrie est maintenue grâce à la présence de transporteurs de lipides. Parmi ces transporteurs, on retrouve les flippases, qui grâce à l’énergie apportée par la consommation d’ATP, transportent les lipides du feuillet interne vers le feuillet externe. Les flippases appartiennent à la superfamille des ATPases de type P et ont été reliées à différentes pathologies humaines lorsqu’elles sont mutées. Par exemple, des mutations du gène ATP8B1 sont responsables d’une forme de cholestase intrahépatique, une maladie hépatique sévère. Dans cette thèse, nous avons étudier le mécanisme de régulation de deux flippases : la flippase de levure PS spécifique Drs2p/Cdc50p ainsi que la flippase humaine ATP8B1/CDC50A. Les deux flippases ont été exprimées dans la levure de bière S. cerevisiae et purifiées afin de réaliser leur caractérisation fonctionnelle. Nos résultats montrent que les deux flippases sont régulées par des phosphoinositides et auto-inhibées par leurs extrémités N- et C-terminales
Living cells are surrounded by membranes organized in bilayers, separating the intracellular medium from the extracellular environment. A hallmark of eukaryotic membranes from the late secretory/endocytic pathways is the asymmetric distribution of phospholipids between the two leaflets. Indeed, phosphatidylcholine (PC) and sphingolipids (SL) are mainly found in the outer leaflet whereas phosphatidylserine (PS) and phosphatidylethanolamine (PE) are sequestered in the inner leaflet. This asymmetry is maintained thanks to different membrane lipid transporters. Among them, flippases, which are transporters fueled by ATP hydrolysis, translocate lipids from the outer to the inner leaflet. Flippases belong to the P4-ATPase family and have been linked to several diseases. For instance, mutated forms of a human P4-ATPase, ATP8B1, are responsible for intrahepatic cholestasis, a severe liver disease. In this thesis, we investigated the regulatory mechanism of two flippases, the yeast PS-specific flippase complex Drs2p/Cdc50p, and the human disease-related flippase complex ATP8B1/CDC50A. Both proteins were expressed in S. cerevisiae and purified for downstream functional characterization. Our results demonstrate that both flippases are tightly regulated by phosphoinositides and autoinhibited by their N- and C-terminal extensions
6

Johansson, Martin. "Instruktionsfilmer och det flippade klassrummet - Det flippade klassrummet, varför inte?" Thesis, Malmö universitet, Fakulteten för lärande och samhälle (LS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-34640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Det flippade klassrummet är en relativt ny undervisningsmetod som grundar sig på att eleverna förbereder sig inför lektionen genom att ta del av det kursmoment som läraren i vanliga fall skulle gå igenom på lektionen. Vanligtvis sker detta genom att de får se en instruktionsfilm som läraren gjort. På så sätt frigörs tid till annan aktivitet på lektionen, såsom hjälp med läxor eller grupparbeten. Det flippade klassrummet har fått en hel del publicitet och instruktionsfilmerna som är en produkt av metoden finns det många av t.ex. Youtube.Syftet med detta examensarbete är att undersöka matematiklärares förhållningssätt och inställning till det flippade klassrummet och instruktionsfilmer, och om vilka faktorer som de anser vara de viktigaste begränsningarna för det flippade klassrummet. För detta användes en kvalitativ metod med semistrukturerade intervjuer som sedan transkriberades. Intervjuerna analyserades sedan och tolkades med hjälp av ramfaktorteorin och en teori om teknikintegrering i undervisningen. Det största hindret som lärarna såg med det flippade klassrummet var att metoden ställde stora krav på att eleverna förberedde sig inför lektionen, vilket fyra av fem lärare inte trodde att deras elever skulle kunna hantera. En av lärarna ansåg istället att det största hindret av att det var ett stort tidskrävande projekt att börja producera instruktionsfilmer.
7

Andersson, Hanna. "Den flippade läxan : En systematisk litteraturstudie av läxor i det flippade matematikklassrummet." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Syftet med denna litteraturstudie är att redogöra för läxans roll i det flippade matematiklassrummet. Arbetsmetoden ”Flippat klassrum” karaktäriseras av en förflyttning av traditionella föreläsningar ut ur klassrummet. Direkta instruktioner ges istället som läxa, ”flippad läxa”, ofta i form av videoföreläsningar. Litteraturstudien baserar sig på nio artiklar och behandlar den flippade matematikläxans utformning, elevers åsikter om arbetsmetoden, och vilka fördelar respektive nackdelar flippad läxa har i förhållande till traditionell läxa. ”Flippad läxa” är fortfarande är ett relativt outforskat begrepp, vilket gör det svårt att dra generella slutsatser. Studiens resultat tyder dock på att metoden kan ha flera fördelar, bland annat i att videoföreläsningar som läxa ger eleverna ett större ansvar för sitt eget lärande, och att videons bestämda speltid har potential att minska skillnaden i den tid, som olika elever använder för att göra samma läxa.
The purpose of this study is to investigate homework given in the flipped mathematics classroom. One of the characteristics of the “flipped classroom” is that traditional lectures are not placed in class time. Direct instruction is instead given as homework, “flipped homework”, often in the form of video lectures. The literature review is based on nine articles and focuses on the design of flipped mathematics homework, pupil’s views of the method, and the possible advantages and disadvantages of flipped homework in relation to traditional homework. There is still a lack of research done on “flipped homework”, which makes it difficult to draw any general conclusions. However, the results indicate that the teaching method may have some advantages, including that video lectures gives the students a greater responsibility for their own learning, and that the fixed time of the video have the potential to reduce the difference in time spent by different students on the same homework.
8

Villazana-Kretzer, Diana L. "Giardia lamblia genomic and molecular analyses of flippase /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peters, Ida. "Det flippade klassrummet : ur ett elevperspektiv." Thesis, Högskolan Kristianstad, Sektionen för lärande och miljö, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-13239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Studien, som utfördes på en kommunal gymnasial och vuxenutbildning, syftar till att undersöka elevers uttryckta uppfattningar av fenomenet "det flippade klassrummet". Det flippade klassrummet är ett arbetssätt som innebär att det som traditionellt sker i klassrummet nu äger rum i hemarbetet och tvärtom. Informanterna, eleverna, fick först uppleva det flippade klassrummet genom att deltaga i lektioner planerade utifrån arbetssättet. Därefter intervjuades de i olika former. Intervjuerna transkriberades och analyserades vilket genererade fem olika kategorier där eleverna på skilda sätt uttrycker sig om det flippade klassrummet. Den första kategorin fick benämningen "flippa klassrummet – teknik och lärande" där uttryckta uppfattningar som berör användningen av den digitala tekniken sorterats in. Den andra kategorin som uppkom vid analysen behandlar uttryckta uppfattningar där eleverna diskuterar hur det flippade klassrummet leder till en anpassning till samhällsförändring. Den tredje kategorin benämns "flippa klassrummet-leder till förändrat klassrumsklimat" där elever uttrycker att det flippade klassrummet erbjuder ett annat klassrumsklimat, i detta fall exempelvis gällande struktur och diskussioner. Den fjärde kategorin berör elevsvar där eleverna uttrycker att det flippade klassrummet leder till effektivt lärande, både i form av direkta effekter men även indirekta effekter. I den femte och sista kategorin behandlar elevsvar där eleverna uttrycker sig om hur det flippade klassrummet inverkar på dem, i både positiv och negativ mening. Resultatet visar att eleverna överlag uttrycker sig positivt om arbetssättet och påpekar både möjligheter och svårigheter. Dessa uttryckta uppfattningar kan och bör tas i beaktning av undervisande lärare.
10

Naito, Tomoki. "Phospholipid Flippase Activity and Cellular Function of Class 5 P4-ATPases." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Flippases":

1

Edizioni, Poiana, and Matteo Maschio. Nft: Monetizzare con I Token Non Fungibili - Come Utilizzare le Criptovalute Attraverso le Blockchain per Creare, Acquistare, Vendere e Flippare NFT. Independently Published, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Howard, James. NFT : Monetizzare con l'Arte Digitale e le Blockchain: I Migliori Casi Studio per Imparare a Creare, Vendere, Acquistare e Flippare Non-Fungible Tokens. Independently Published, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Flippases":

1

Roelofsen, Ben, Esther Middelkoop, Willem P. Vermeulen, Alexander J. Smith, and J. A. F. Op den Kamp. "Phospholipid Flippases: Neither Exclusively, Nor Only Involved In Maintaining Membrane Phospholipid Asymmetry." In Molecular Dynamics of Biomembranes, 367–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61126-1_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pollock, Naomi L., Petra H. M. Niesten, and Richard Callaghan. "The Flippase Delusion?" In Transmembrane Dynamics of Lipids, 225–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118120118.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cook, Shelley M., and David L. Daleke. "Substrate Specificity of the Aminophospholipid Flippase." In Transmembrane Dynamics of Lipids, 199–223. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118120118.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thélot, François A., and Maofu Liao. "Cryo-EM Analysis of the Lipopolysaccharide Flippase MsbA." In Lipopolysaccharide Transport, 233–47. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2581-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jensen, Maria S., Sara Costa, Thomas Günther-Pomorski, and Rosa L. López-Marqués. "Cell-Based Lipid Flippase Assay Employing Fluorescent Lipid Derivatives." In P-Type ATPases, 371–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3179-8_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Paulusma, C. C., A. Groen, C. Kunne, K. S. Ho-Mok, D. E. Folmer, D. R. De Waart, L. N. Bull, and R. P. J. Oude Elferink. "ATP8B1, a phosphatidylserine flippase deficient in inherited intrahepatic cholestasis." In Bile Acid Biology and Therapeutic Actions, 9–17. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9644-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marek, Magdalena, and Thomas Günther-Pomorski. "Assay of Flippase Activity in Proteoliposomes Using Fluorescent Lipid Derivatives." In P-Type ATPases, 181–91. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3179-8_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dieudonné, Thibaud, Christine Jaxel, Maylis Lejeune, Guillaume Lenoir, and Cédric Montigny. "Expression in Saccharomyces cerevisiae and Purification of a Human Phospholipid Flippase." In Methods in Molecular Biology, 231–46. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3147-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Azouaoui, Hassina, Cédric Montigny, Aurore Jacquot, Raphaëlle Barry, Philippe Champeil, and Guillaume Lenoir. "Coordinated Overexpression in Yeast of a P4-ATPase and Its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex." In P-Type ATPases, 37–55. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3179-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Montigny, Cédric, Hassina Azouaoui, Aurore Jacquot, Marc le Maire, Christine Jaxel, Philippe Champeil, and Guillaume Lenoir. "Overexpression of Membrane Proteins in Saccharomyces cerevisiae for Structural and Functional Studies: A Focus on the Rabbit Ca2+-ATPase Serca1a and on the Yeast Lipid “Flippase” Complex Drs2p/Cdc50p." In Membrane Proteins Production for Structural Analysis, 133–71. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0662-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Flippases":

1

Calianu, Andreea, and Radu Tamaian. "Computational Design of New Teixobactin Analogues as Inhibitors of Lipid II Flippase MurJ." In ECMC 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecmc2022-13295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Flippases":

1

Harper, Jeffrey F. Final Report for DE-FG02-04ER15626: P-type ATPases in Plants – Role of Lipid Flippases in Membrane Biogenesis. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1223536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії