Статті в журналах з теми "Flexible mechanical metamaterials"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Flexible mechanical metamaterials".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Zheng, Xiaoyang, Koichiro Uto, Wei-Hsun Hu, Ta-Te Chen, Masanobu Naito, and Ikumu Watanabe. "Reprogrammable flexible mechanical metamaterials." Applied Materials Today 29 (December 2022): 101662. http://dx.doi.org/10.1016/j.apmt.2022.101662.
Повний текст джерелаYasuda, Hiromi, Hang Shu, Weijian Jiao, Vincent Tournat, and Jordan Raney. "Collisions of nonlinear waves in flexible mechanical metamaterials." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A41. http://dx.doi.org/10.1121/10.0010592.
Повний текст джерелаZhai, Zirui, Yong Wang, and Hanqing Jiang. "Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness." Proceedings of the National Academy of Sciences 115, no. 9 (February 12, 2018): 2032–37. http://dx.doi.org/10.1073/pnas.1720171115.
Повний текст джерелаJin, Eunji, In Seong Lee, Dongwook Kim, Hosoowi Lee, Woo-Dong Jang, Myung Soo Lah, Seung Kyu Min, and Wonyoung Choe. "Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial." Science Advances 5, no. 5 (May 2019): eaav4119. http://dx.doi.org/10.1126/sciadv.aav4119.
Повний текст джерелаZhang, Zhan, Christopher Brandt, Jean Jouve, Yue Wang, Tian Chen, Mark Pauly, and Julian Panetta. "Computational Design of Flexible Planar Microstructures." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–16. http://dx.doi.org/10.1145/3618396.
Повний текст джерелаDeng, B., J. R. Raney, K. Bertoldi, and V. Tournat. "Nonlinear waves in flexible mechanical metamaterials." Journal of Applied Physics 130, no. 4 (July 28, 2021): 040901. http://dx.doi.org/10.1063/5.0050271.
Повний текст джерелаDykstra, David M. J., Shahram Janbaz, and Corentin Coulais. "The extreme mechanics of viscoelastic metamaterials." APL Materials 10, no. 8 (August 1, 2022): 080702. http://dx.doi.org/10.1063/5.0094224.
Повний текст джерелаRafsanjani, Ahmad, Katia Bertoldi, and André R. Studart. "Programming soft robots with flexible mechanical metamaterials." Science Robotics 4, no. 29 (April 10, 2019): eaav7874. http://dx.doi.org/10.1126/scirobotics.aav7874.
Повний текст джерелаSlobozhanyuk, Alexey P., Mikhail Lapine, David A. Powell, Ilya V. Shadrivov, Yuri S. Kivshar, Ross C. McPhedran, and Pavel A. Belov. "Flexible Helices for Nonlinear Metamaterials." Advanced Materials 25, no. 25 (May 21, 2013): 3409–12. http://dx.doi.org/10.1002/adma.201300840.
Повний текст джерелаWu, Lingling, Bo Li, and Ji Zhou. "Enhanced thermal expansion by micro-displacement amplifying mechanical metamaterial." MRS Advances 3, no. 8-9 (2018): 405–10. http://dx.doi.org/10.1557/adv.2018.217.
Повний текст джерелаZhou, Xiang, Shixi Zang, and Zhong You. "Origami mechanical metamaterials based on the Miura-derivative fold patterns." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2191 (July 2016): 20160361. http://dx.doi.org/10.1098/rspa.2016.0361.
Повний текст джерелаDemiquel, A., V. Achilleos, G. Theocharis, and V. Tournat. "Envelope vector solitons in nonlinear flexible mechanical metamaterials." Wave Motion 131 (December 2024): 103394. http://dx.doi.org/10.1016/j.wavemoti.2024.103394.
Повний текст джерелаXue, Chenhao, Nan Li, Shenggui Chen, Jiahua Liang, and Wurikaixi Aiyiti. "The Laser Selective Sintering Controlled Forming of Flexible TPMS Structures." Materials 16, no. 24 (December 8, 2023): 7565. http://dx.doi.org/10.3390/ma16247565.
Повний текст джерелаTiwari, Ashish. "Future Directions and Research Gaps in Enhancing the Optical Properties of PMMA with Metamaterials." International Journal of Multidisciplinary Research in Science, Engineering and Technology 2, no. 12 (November 25, 2023): 2303–9. http://dx.doi.org/10.15680/ijmrset.2019.0212013.
Повний текст джерелаPagliocca, Nicholas, Kazi Zahir Uddin, Ibnaj Anamika Anni, Chen Shen, George Youssef, and Behrad Koohbor. "Flexible planar metamaterials with tunable Poisson’s ratios." Materials & Design 215 (March 2022): 110446. http://dx.doi.org/10.1016/j.matdes.2022.110446.
Повний текст джерелаMazur, Ekaterina, and Igor Shishkovsky. "Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials." Materials 15, no. 16 (August 15, 2022): 5600. http://dx.doi.org/10.3390/ma15165600.
Повний текст джерелаTiwari, Ashish. "Enhancing the Optical Properties of PMMA with Metamaterials: Applications and Performance Analysis." International Journal of Multidisciplinary Research in Science, Engineering and Technology 3, no. 12 (November 25, 2023): 1342–49. http://dx.doi.org/10.15680/ijmrset.2020.0312019.
Повний текст джерелаHu, Fuwen, and Tian Li. "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype." Actuators 10, no. 4 (March 26, 2021): 67. http://dx.doi.org/10.3390/act10040067.
Повний текст джерелаLiang, Xudong, and Alfred J. Crosby. "Uniaxial stretching mechanics of cellular flexible metamaterials." Extreme Mechanics Letters 35 (February 2020): 100637. http://dx.doi.org/10.1016/j.eml.2020.100637.
Повний текст джерелаDeng, Bolei, Siqin Yu, Antonio E. Forte, Vincent Tournat, and Katia Bertoldi. "Characterization, stability, and application of domain walls in flexible mechanical metamaterials." Proceedings of the National Academy of Sciences 117, no. 49 (November 20, 2020): 31002–9. http://dx.doi.org/10.1073/pnas.2015847117.
Повний текст джерелаZhou, Shengru, Chao Liang, Ziqi Mei, Rongbo Xie, Zhenci Sun, Ji Li, Wenqiang Zhang, Yong Ruan, and Xiaoguang Zhao. "Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials." Micromachines 15, no. 2 (January 31, 2024): 219. http://dx.doi.org/10.3390/mi15020219.
Повний текст джерелаHu, Songtao, Xiaobao Cao, Tom Reddyhoff, Debashis Puhan, Sorin-Cristian Vladescu, Jing Wang, Xi Shi, Zhike Peng, Andrew J. deMello, and Daniele Dini. "Liquid repellency enhancement through flexible microstructures." Science Advances 6, no. 32 (August 2020): eaba9721. http://dx.doi.org/10.1126/sciadv.aba9721.
Повний текст джерелаSekiguchi, Ten, Hidetaka Ueno, Vivek Anand Menon, Ryo Ichige, Yuya Tanaka, Hiroshi Toshiyoshi, and Takaaki Suzuki. "UV-curable Polydimethylsiloxane Photolithography and Its Application to Flexible Mechanical Metamaterials." Sensors and Materials 35, no. 6 (June 27, 2023): 1995. http://dx.doi.org/10.18494/sam4351.
Повний текст джерелаLi, Nan, Chenhao Xue, Shenggui Chen, Wurikaixi Aiyiti, Sadaf Bashir Khan, Jiahua Liang, Jianping Zhou, and Bingheng Lu. "3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters." Polymers 15, no. 23 (November 24, 2023): 4523. http://dx.doi.org/10.3390/polym15234523.
Повний текст джерелаDunne, Jai. "Chainmail inspired metamaterials for use in protective sports equipment." Graduate Journal of Sports Science, Coaching, Management, & Rehabilitation 1, no. 3 (June 7, 2024): 36. http://dx.doi.org/10.19164/gjsscmr.v1i3.1509.
Повний текст джерелаLuo, Sisi, Jianjiao Hao, Fuju Ye, Jiaxin Li, Ying Ruan, Haoyang Cui, Wenjun Liu, and Lei Chen. "Evolution of the Electromagnetic Manipulation: From Tunable to Programmable and Intelligent Metasurfaces." Micromachines 12, no. 8 (August 20, 2021): 988. http://dx.doi.org/10.3390/mi12080988.
Повний текст джерелаLi, Jian, Yi Yuan, Jiao Wang, Ronghao Bao, and Weiqiu Chen. "Propagation of nonlinear waves in graded flexible metamaterials." International Journal of Impact Engineering 156 (October 2021): 103924. http://dx.doi.org/10.1016/j.ijimpeng.2021.103924.
Повний текст джерелаBar-Sinai, Yohai, Gabriele Librandi, Katia Bertoldi, and Michael Moshe. "Geometric charges and nonlinear elasticity of two-dimensional elastic metamaterials." Proceedings of the National Academy of Sciences 117, no. 19 (April 29, 2020): 10195–202. http://dx.doi.org/10.1073/pnas.1920237117.
Повний текст джерелаChen, Xing, Li Cai, and Jihong Wen. "Extreme mechanical metamaterials with independently adjustable elastic modulus and mass density." Applied Physics Express 15, no. 4 (March 8, 2022): 047001. http://dx.doi.org/10.35848/1882-0786/ac5872.
Повний текст джерелаFilipov, Evgueni T., Tomohiro Tachi, and Glaucio H. Paulino. "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials." Proceedings of the National Academy of Sciences 112, no. 40 (September 8, 2015): 12321–26. http://dx.doi.org/10.1073/pnas.1509465112.
Повний текст джерелаSaoud, Ahmad, Diogo Queiros-Conde, Ahmad Omar, and Thomas Michelitsch. "Intelligent Anti-Seismic Foundation: The Role of Fractal Geometry." Buildings 13, no. 8 (July 25, 2023): 1891. http://dx.doi.org/10.3390/buildings13081891.
Повний текст джерелаWang, Zhigang, Qi Wu, Yifei Lu, Panpan Bao, Yu Yang, Daochun Li, Xiasheng Sun, and Jinwu Xiang. "Design of a Distributedly Active Morphing Wing Based on Digital Metamaterials." Aerospace 9, no. 12 (November 27, 2022): 762. http://dx.doi.org/10.3390/aerospace9120762.
Повний текст джерелаLi, Jian, Ronghao Bao, and Weiqiu Chen. "Exploring static responses, mode transitions, and feasible tunability of Kagome-based flexible mechanical metamaterials." Journal of the Mechanics and Physics of Solids 186 (May 2024): 105599. http://dx.doi.org/10.1016/j.jmps.2024.105599.
Повний текст джерелаEffah, Elijah, Ezekiel Edward Nettey-Oppong, Ahmed Ali, Kyung Min Byun, and Seung Ho Choi. "Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates." Photonics 10, no. 2 (January 23, 2023): 119. http://dx.doi.org/10.3390/photonics10020119.
Повний текст джерелаZhuang, Shulei, Xinyu Li, Tong Yang, Lu Sun, Olga Kosareva, Cheng Gong, and Weiwei Liu. "Graphene-Based Absorption–Transmission Multi-Functional Tunable THz Metamaterials." Micromachines 13, no. 8 (August 1, 2022): 1239. http://dx.doi.org/10.3390/mi13081239.
Повний текст джерелаSong, Yihao, and Yanfeng Shen. "Highly morphing and reconfigurable fluid–solid interactive metamaterials for tunable ultrasonic guided wave control." Applied Physics Letters 121, no. 26 (December 26, 2022): 264102. http://dx.doi.org/10.1063/5.0117634.
Повний текст джерелаFeng, Xiaobin, Ke Cao, Xiege Huang, Guodong Li, and Yang Lu. "Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance." Nanomaterials 12, no. 12 (June 20, 2022): 2113. http://dx.doi.org/10.3390/nano12122113.
Повний текст джерелаKim, Jang Hwan, Su Eon Lee, and Bong Hoon Kim. "Applications of flexible and stretchable three-dimensional structures for soft electronics." Soft Science 3, no. 2 (2023): 16. http://dx.doi.org/10.20517/ss.2023.07.
Повний текст джерелаYu, Junmin, Can Nerse, Kyoung-jin Chang, and Semyung Wang. "A framework of flexible locally resonant metamaterials for attachment to curved structures." International Journal of Mechanical Sciences 204 (August 2021): 106533. http://dx.doi.org/10.1016/j.ijmecsci.2021.106533.
Повний текст джерелаYu, Tianyu, Feilong Zhu, Xiongqi Peng, and Zixuan Chen. "Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect." Nanomaterials 12, no. 23 (November 22, 2022): 4129. http://dx.doi.org/10.3390/nano12234129.
Повний текст джерелаHu, Jiaming, Junyi Wang, Yu Xie, Chenzhi Shi, and Yun Chen. "Finite Element Analysis on Acoustic and Mechanical Performance of Flexible Perforated Honeycomb-Corrugation Hybrid Sandwich Panel." Shock and Vibration 2021 (May 16, 2021): 1–14. http://dx.doi.org/10.1155/2021/9977644.
Повний текст джерелаTzarouchis, Dimitrios C., Maria Koutsoupidou, Ioannis Sotiriou, Konstantinos Dovelos, Dionysios Rompolas, and Panagiotis Kosmas. "Electromagnetic metamaterials for biomedical applications: short review and trends." EPJ Applied Metamaterials 11 (2024): 7. http://dx.doi.org/10.1051/epjam/2024006.
Повний текст джерелаJung, Junbo, Siwon Yoon, Bumjoo Kim, and Joong Bae Kim. "Development of High-Performance Flexible Radiative Cooling Film Using PDMS/TiO2 Microparticles." Micromachines 14, no. 12 (December 10, 2023): 2223. http://dx.doi.org/10.3390/mi14122223.
Повний текст джерелаHuang, Xin, Wei Guo, Shaoyu Liu, Yangyang Li, Yuqi Qiu, Han Fang, Ganguang Yang, et al. "Flexible Mechanical Metamaterials Enabled Electronic Skin for Real‐Time Detection of Unstable Grasping in Robotic Manipulation (Adv. Funct. Mater. 23/2022)." Advanced Functional Materials 32, no. 23 (June 2022): 2270131. http://dx.doi.org/10.1002/adfm.202270131.
Повний текст джерелаHu, Zhou, Zhibo Wei, Kun Wang, Yan Chen, Rui Zhu, Guoliang Huang, and Gengkai Hu. "Engineering zero modes in transformable mechanical metamaterials." Nature Communications 14, no. 1 (March 7, 2023). http://dx.doi.org/10.1038/s41467-023-36975-2.
Повний текст джерелаBertoldi, Katia, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. "Flexible mechanical metamaterials." Nature Reviews Materials 2, no. 11 (October 17, 2017). http://dx.doi.org/10.1038/natrevmats.2017.66.
Повний текст джерелаYang, Haiying, Haibao Lu, Dong-Wei Shu, and Yong Qing (Richard) Fu. "Multimodal origami shape memory metamaterials undergoing compression-twist coupling." Smart Materials and Structures, June 8, 2023. http://dx.doi.org/10.1088/1361-665x/acdcd7.
Повний текст джерелаEl Helou, Charles, Philip R. Buskohl, Christopher E. Tabor, and Ryan L. Harne. "Digital logic gates in soft, conductive mechanical metamaterials." Nature Communications 12, no. 1 (March 12, 2021). http://dx.doi.org/10.1038/s41467-021-21920-y.
Повний текст джерелаHan, Donghai, Wenkang Li, Yushan Hou, Xiaoming Chen, Hongyu Shi, Fanqi Meng, Liuyang Zhang, and Xuefeng Chen. "Controllable Wrinkling Inspired Multifunctional Metamaterial for Near‐Field and Holographic Displays." Laser & Photonics Reviews, December 20, 2023. http://dx.doi.org/10.1002/lpor.202300879.
Повний текст джерелаSano, Tomohiko G., Emile Hohnadel, Toshiyuki Kawata, Thibaut Métivet, and Florence Bertails-Descoubes. "Randomly stacked open cylindrical shells as functional mechanical energy absorber." Communications Materials 4, no. 1 (August 25, 2023). http://dx.doi.org/10.1038/s43246-023-00383-2.
Повний текст джерела