Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Flexible fibers.

Статті в журналах з теми "Flexible fibers"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Flexible fibers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Parasakthibala, Ms G., and Mrs A. S. Monisha. "A Review on Natural Fibers; Its Properties and Application Over Synthetic Fibers." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 1894–97. http://dx.doi.org/10.22214/ijraset.2022.46530.

Повний текст джерела
Анотація:
Abstract: Fibre is a long, thin strand or thread of material made by weaving or knitting threads together. Fibre is a hair like strand of material. A fibre is the smallest visible unit of any textile product. Fibres are flexible and may be spun into yarn and made into fabric. Natural fibres are taken from animals, vegetables or mineral sources. A few examples of widely used natural fibres include animal fibre such as wool and silk vegetables fibres, especially cotton and flax and asbestos, a mineral. Natural fibers are more important part in our human environment. Natural fibers are ecofriendl
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Shengjun, Jiaqi Guo, Yibo Ma, Alan X. Wang, Xianming Kong, and Qian Yu. "Fabrication and Application of SERS-Active Cellulose Fibers Regenerated from Waste Resource." Polymers 13, no. 13 (2021): 2142. http://dx.doi.org/10.3390/polym13132142.

Повний текст джерела
Анотація:
The flexible SERS substrate were prepared base on regenerated cellulose fibers, in which the Au nanoparticles were controllably assembled on fiber through electrostatic interaction. The cellulose fiber was regenerated from waste paper through the dry-jet wet spinning method, an eco-friendly and convenient approach by using ionic liquid. The Au NPs could be controllably distributed on the surface of fiber by adjusting the conditions during the process of assembling. Finite-difference time-domain theoretical simulations verified the intense local electromagnetic fields of plasmonic composites. T
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yan, Yurong, Weipei Li, Ruitian Zhu, Chao Lin, and Rudolf Hufenus. "Flexible Phase Change Material Fiber: A Simple Route to Thermal Energy Control Textiles." Materials 14, no. 2 (2021): 401. http://dx.doi.org/10.3390/ma14020401.

Повний текст джерела
Анотація:
A flexible hollow polypropylene (PP) fiber was filled with the phase change material (PCM) polyethylene glycol 1000 (PEG1000), using a micro-fluidic filling technology. The fiber’s latent heat storage and release, thermal reversibility, mechanical properties, and phase change behavior as a function of fiber drawing, were characterized. Differential scanning calorimetry (DSC) results showed that both enthalpies of melting and solidification of the PCM encased within the PP fiber were scarcely influenced by the constraint, compared to unconfined PEG1000. The maximum filling ratio of PEG1000 with
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jia, Xian-Sheng, Cheng-Chun Tang, Xu Yan, et al. "Flexible Polyaniline/Poly(methyl methacrylate) Composite FibersviaElectrospinning and In Situ Polymerization for Ammonia Gas Sensing and Strain Sensing." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9102828.

Повний текст джерела
Анотація:
Conducting polyaniline (PANI) was in situ polymerized at the surface of electrospun poly(methyl methacrylate) (PMMA) fibers to obtain flexible composite fibers. The electrical conductivity of an individual PANI/PMMA composite fiber was estimated to be 2.0 × 10−1 S cm−1at room temperature. The ammonia sensing properties of the samples were tested by impedance analysis. The PANI/PMMA fibers could obviously respond to low concentration of ammonia at ppb level and could respond to relatively high concentration of ammonia at 10 ppm level quickly. In addition, the sensitivity exhibited a good linear
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Babachov, V. G., E. V. Stepanova, A. M. Zimichev, and O. V. Basargin. "OXIDE CONTINUOUS FIBERS AS A PART OF FLEXIBLE HIGH TEMPERATURE INSULATION." Aviation Materials and Technologies, no. 1 (2021): 34–43. http://dx.doi.org/10.18577/2713-0193-2021-0-1-34-43.

Повний текст джерела
Анотація:
This work is devoted to the production of flexible continuous ceramic fibers based on refractory aluminum and silicon oxides using the Sol-gel method. The processes of transition of water-soluble components of the precursor solution to the oxide form during primary firing of gelified fibers are studied. Structural and phase transformations in fibers under high-temperature heating are examined. The sequence of phase transitions from the amorphous state to the crystal stable phase of α-Al2O3 is shown. The dependence of the mechanical properties of oxide fiber samples on the firing temperature is
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Podsiadły, Bartłomiej, Piotr Walter, Michał Kamiński, Andrzej Skalski, and Marcin Słoma. "Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics." Applied Sciences 12, no. 3 (2022): 941. http://dx.doi.org/10.3390/app12030941.

Повний текст джерела
Анотація:
The following paper presents a simple, low-cost, and repeatable manufacturing process for fabricating conductive, elastic carbon-elastomer nanocomposite fibers for applications in the textile industry and beyond. The presented method allows for the manufacturing of fibers with a diameter of 0.2 mm, containing up to 50 vol. % of graphite powder, 10 vol. % of CNT, and a mix of both fillers. As a result, resistivity below 0.2 Ωm for the 0.2 mm-diameter fibers was achieved. Additionally, conductive fibers are highly elastic, which makes them suitable for use in the textile industry as an element o
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruiz-Bustos, Rocío, Antonio López-Uceda, María López-Martínez, and Joost Van Duijn. "The Mechanical Performance of Recycled Slate Waste Fiber Composites Based on Unsaturated Polyester Resins." Materials 16, no. 17 (2023): 6041. http://dx.doi.org/10.3390/ma16176041.

Повний текст джерела
Анотація:
In the last few decades, there has been increasing social awareness for environmental conservation, which is driving the development of composite materials based on natural fibers. These new materials have interesting properties that allow for their use in a variety of applications. This study deals with the development of composite materials based on unsaturated polyester resins reinforced with recycled mineral fibers, such as slate fibers obtained from slate production waste, which have similar properties to glass fiber. The mechanical properties of these composites have been determined by t
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Yi, Jun Chen, Xiao Han, Yinghui Li, Ziqiang Zhang, and Yanwen Ma. "Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor." Nano 13, no. 12 (2018): 1850146. http://dx.doi.org/10.1142/s1793292018501461.

Повний текст джерела
Анотація:
The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shen, Yanan, Chunyang Wang, Xiao Yang, et al. "New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications." Materials 14, no. 21 (2021): 6306. http://dx.doi.org/10.3390/ma14216306.

Повний текст джерела
Анотація:
With the rapid development of wearable electronics, looking for flexible and wearable generators as their self-power systems has proved an extensive task. Fiber-based thermoelectric generators (FTEGs) are promising candidates for these self-powered systems that collect energy from the surrounding environment or human body to sustain wearable electronics. In this work, we overview performances and device structures of state-of-the-art fiber-based thermoelectric materials, including inorganic fibers (e.g., carbon fibers, oxide fibers, and semiconductor fibers), organic fibers, and hybrid fibers.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Qiuyan, Zhen Xu, Bo Fang, et al. "MXene/graphene hybrid fibers for high performance flexible supercapacitors." J. Mater. Chem. A 5, no. 42 (2017): 22113–19. http://dx.doi.org/10.1039/c7ta07999k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yang, Xuefei, Yihan Qiu, Mei Zhang, Liangjing Zhang, and Hongwei Li. "Facile Fabrication of Polyaniline/Graphene Composite Fibers as Electrodes for Fiber-Shaped Supercapacitors." Applied Sciences 11, no. 18 (2021): 8690. http://dx.doi.org/10.3390/app11188690.

Повний текст джерела
Анотація:
Graphene fiber-based supercapacitors are known as the potential energy resources for wearable/flexible electronics. However, increasing their specific capacitance and energy density remains a significant challenge. This paper indicates a double layer capacitance of the graphene nanosheets accompanied by pseudocapacitive behavior of the polyaniline to prepare composite fibers with high capacitive response. The polyaniline/graphene composite fibers (PANI/GFs) were synthesized by the self-assembled strategy and chemical reduction by HI. The wrinkle architecture of graphene nanosheets and uniform
Стилі APA, Harvard, Vancouver, ISO та ін.
12

du Roure, Olivia, Anke Lindner, Ehssan N. Nazockdast, and Michael J. Shelley. "Dynamics of Flexible Fibers in Viscous Flows and Fluids." Annual Review of Fluid Mechanics 51, no. 1 (2019): 539–72. http://dx.doi.org/10.1146/annurev-fluid-122316-045153.

Повний текст джерела
Анотація:
The dynamics and deformations of immersed flexible fibers are at the heart of important industrial and biological processes, induce peculiar mechanical and transport properties in the fluids that contain them, and are the basis for novel methods of flow control. Here we focus on the low–Reynolds number regime where advances in studying these fiber–fluid systems have been especially rapid. On the experimental side, this is due to new methods of fiber synthesis, microfluidic flow control, and microscope-based tracking measurement techniques. Likewise, there have been continuous improvements in t
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Reid, Smith, Garcia-Torres, Watts, and Crean. "Solvent Treatment of Wet-Spun PEDOT: PSS Fibers for Fiber-Based Wearable pH Sensing." Sensors 19, no. 19 (2019): 4213. http://dx.doi.org/10.3390/s19194213.

Повний текст джерела
Анотація:
There is a growing desire for wearable sensors in health applications. Fibers are inherently flexible and as such can be used as the electrodes of flexible sensors. Fiber-based electrodes are an ideal format to allow incorporation into fabrics and clothing and for use in wearable devices. Electrically conducting fibers were produced from a dispersion of poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT: PSS). Fibers were wet spun from two PEDOT: PSS sources, in three fiber diameters. The effect of three different chemical treatments on the fibers were investigated and compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zheng, Jie, Bin Sun, Xiao-Xiong Wang та ін. "Magnetic-Electrospinning Synthesis of γ-Fe2O3 Nanoparticle–Embedded Flexible Nanofibrous Films for Electromagnetic Shielding". Polymers 12, № 3 (2020): 695. http://dx.doi.org/10.3390/polym12030695.

Повний текст джерела
Анотація:
The exploration of a new family of flexible and high-performance electromagnetic shielding materials is of great significance to the next generation of intelligent electronic products. In this paper, we report a simple magnetic-electrospinning (MES) method for the preparation of a magnetic flexible film, γ-Fe2O3 nanoparticle-embedded polymeric nanofibers. By introducing the extra magnetic field force on γ-Fe2O3 nanoparticles within composite fibers, the critical voltage for spinning has been reduced, along with decreased fiber diameters. The MES fibers showed increased strength for the magneti
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Xie, Song, Yingde Wang, Yongpeng Lei, et al. "A simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance." RSC Advances 5, no. 80 (2015): 64911–17. http://dx.doi.org/10.1039/c5ra03100a.

Повний текст джерела
Анотація:
A simply prepared flexible SiBOC ultrafine fiber mat with high-temperature stability and chemical resistance. I: A typical SiBOC material composed of Si, B, O and C. II: A comparison of SiBOC fibers and SiOC fibers treated under different conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cai, Xin, Chaoqun Zhang, Shengsen Zhang, Yueping Fang, and Dechun Zou. "Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices." Journal of Materials Chemistry A 5, no. 6 (2017): 2444–59. http://dx.doi.org/10.1039/c6ta07868k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sibinski, Maciej, Malgorzata Jakubowska, and Marcin Sloma. "Flexible Temperature Sensors on Fibers." Sensors 10, no. 9 (2010): 7934–46. http://dx.doi.org/10.3390/s100907934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Joung, C. G., N. Phan-Thien, and X. J. Fan. "Direct simulation of flexible fibers." Journal of Non-Newtonian Fluid Mechanics 99, no. 1 (2001): 1–36. http://dx.doi.org/10.1016/s0377-0257(01)00113-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wu, Songmei. "Recent Progress in Flexible Graphene-Based Composite Fiber Electrodes for Supercapacitors." Crystals 11, no. 12 (2021): 1484. http://dx.doi.org/10.3390/cryst11121484.

Повний текст джерела
Анотація:
Graphene has shown the world its fascinating properties, including high specific surface area, high conductivity, and extraordinary mechanical properties, which enable graphene to be a competent candidate for electrode materials. However, some challenges remain in the real applications of graphene-based electrodes, such as continuous preparation of graphene fibers with highly ordered graphene sheets as well as strong interlayer interactions. The combination of graphene with other materials or functional guests hence appears as a more promising pathway via post-treatment and in situ hybridism t
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hongviboonvate, Natsirin, Siros Jitprapai, Thawatchai Mankongsrisuk, Tawatchai Taweemonkongsap, Varat Woranisarakul, and Chaiyong Nualyong. "Factors affecting the durability of flexible ureteroscopes: An academic center review." Insight Urology 41, no. 2 (2020): 88–94. http://dx.doi.org/10.52786/a.13.

Повний текст джерела
Анотація:
Objective: To analyze the factors which affect the durability of the flexible ureteroscope and the causes of scope damage in a single academic center. Material and Method: Between March 2014 and August 2017, 479 flexible ureteroscopic procedures, using 6 flexible ureteroscopes (Olympus model URF-V), were systematically reviewed. Data including indication for procedures, auxiliary device usage, the characteristics of scope damage, and the number of times a scope was used before requiring major repair were gathered. Fisher exact test and Chi-square test were used to evaluate the factors which ca
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Di Giusto, Davide, and Cristian Marchioli. "Turbulence Modulation by Slender Fibers." Fluids 7, no. 8 (2022): 255. http://dx.doi.org/10.3390/fluids7080255.

Повний текст джерела
Анотація:
In this paper, we numerically investigate the turbulence modulation produced by long flexible fibres in channel flow. The simulations are based on an Euler–Lagrangian approach, where fibres are modelled as chains of constrained, sub-Kolmogorov rods. A novel algorithm is deployed to make the resolution of dispersed systems of constraint equations, which represent the fibres, compatible with a state-of-the-art, Graphics Processing Units-accelerated flow-solver for direct numerical simulations in the two-way coupling regime on High Performance Computing architectures. Two-way coupling is accounte
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Jiang, Degang, Jizhen Zhang, Chenwei Li, Wenrong Yang, and Jingquan Liu. "A simple and large-scale method to prepare flexible hollow graphene fibers for a high-performance all-solid fiber supercapacitor." New Journal of Chemistry 41, no. 20 (2017): 11792–99. http://dx.doi.org/10.1039/c7nj02042b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Guo, Hui Fen, Ngan Yi Kitty Lam, Chenxiao Yang, and Li Li. "Simulating three-dimensional dynamics of flexible fibers in a ring spinning triangle: chitosan and cotton fibers." Textile Research Journal 87, no. 11 (2016): 1403–10. http://dx.doi.org/10.1177/0040517516654106.

Повний текст джерела
Анотація:
A three-dimensional particle-level simulation method is developed to simulate fiber dynamics in the ring spinning triangle. The fiber is modeled as a chain of beads connected through massless rods, and its flexibility is defined by the stretching, bending and twisting displacements. As the application of the proposed approach, the effects of the chitosan (CS)/cotton (CT) fiber initial position and length on fiber motion and yarn properties are discussed. The deflections of CS fibers along the roller axis are larger compared with those of CT fibers, which will lead to CS migrating outwards in C
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Alshgari, Razan A., N. Hemalatha, Ajay Suryavanshi, et al. "Investigation on Physical and Mechanical Properties of Abaca Fiber Composites Using Filament Winding." Advances in Polymer Technology 2022 (September 2, 2022): 1–13. http://dx.doi.org/10.1155/2022/5000547.

Повний текст джерела
Анотація:
Composites that were made stronger with jute fiber and glass fiber were used to test the performance of filament wound abaca fiber composites. Tensile, bending, and dynamic mechanical analyses were used to figure out the mechanical properties of the composites. Fiber composites and glass-fiber composites were found to have higher density and mechanical properties than abaca fiber-based composites. This is because resin did not get into the cell cavity of the fiber’s inner tissue structure. The abaca fiber composites that worked the worst were those in which the fibers were pulled out while the
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Qin, Jieyao, Mingxi Lu, Bin Li, et al. "A Rapid Quantitative Analysis of Bicomponent Fibers Based on Cross-Sectional In-Situ Observation." Polymers 15, no. 4 (2023): 842. http://dx.doi.org/10.3390/polym15040842.

Повний текст джерела
Анотація:
To accelerate the industrialization of bicomponent fibers, fiber-based flexible devices, and other technical fibers and to protect the property rights of inventors, it is necessary to develop fast, economical, and easy-to-test methods to provide some guidance for formulating relevant testing standards. A quantitative method based on cross-sectional in-situ observation and image processing was developed in this study. First, the cross-sections of the fibers were rapidly prepared by the non-embedding method. Then, transmission and reflection metallographic microscopes were used for in-situ obser
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Xue, P., Xiao Ming Tao, and Keun Hoo Park. "Electrically Conductive Fibers/Yarns with Sensing Behavior from PVA and Carbon Black." Key Engineering Materials 462-463 (January 2011): 18–23. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.18.

Повний текст джерела
Анотація:
In this study, electrical conductive yarns were prepared by wet-spinning technique and a physically coating process. Carbon black (CB) was used to make the fiber gaining electrical conductivity. The electrical conductivity and morphological characteristics of the developed conductive fibres were studied and compared. The results show that linear resistivity of the produced conductive yarns ranges from 1 to a few hundred kΩ per centimeter, mainly depending on processing technique and substrate fibers. It is also shown that the physically coating processes will not significantly affect the mecha
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Morita, Alice K. M., and Marco A. P. Reali. "Fiber filter built with polypropylene fibers applied to water clarification." Water Supply 19, no. 4 (2018): 1036–43. http://dx.doi.org/10.2166/ws.2018.150.

Повний текст джерела
Анотація:
Abstract Flexible fiber filters are recently developed modular filtration units which have been applied to wastewater and water treatments, satisfactorily removing solids even when operated at high application rates. In this paper, polypropylene fibers, in lieu of the commonly used polyamide fibers, were tested for constructing filtration modules containing parallel fibers. The studied fibers were analyzed by means of scanning electronic microscopy and through solubility assays in hydrochloric acid and sodium hydroxide, aiming to evaluate the risks of using them as filtering media. Three polyp
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Michaelides, Elias, and Tirth R. Patel. "Effect of Bending of Carbon Dioxide Laser Fibers on Power Output." OTO Open 6, no. 3 (2022): 2473974X2211095. http://dx.doi.org/10.1177/2473974x221109569.

Повний текст джерела
Анотація:
Objective The power output from carbon dioxide (CO2) laser fibers has the potential to be diminished if there are any bends along its course, which may alter the effect the laser has on the target tissue. In this study, we assess how bending of CO2 laser flexible fiber assemblies affects the energy output measured at the end of the fiber. Study Design Laboratory study. Setting Laboratory. Methods Eight separate flexible fibers were tested—4 were of a type commonly used in endoscopic airway procedures, and the other 4 were a type used in otologic surgery. Fibers were bent in various configurati
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhang, Liqiang, Kexin Zhu, Yicun Yao, Xiuying Tian, Hailong Xu, and Zhaogang Nie. "Research Progress in Tunable Fiber Lasers Based on Multimode Interference Filters." Micromachines 14, no. 11 (2023): 2026. http://dx.doi.org/10.3390/mi14112026.

Повний текст джерела
Анотація:
Tunable fiber lasers have the advantages of good beam quality, high integration, and adjustable output wavelength, and they are widely used in fields such as optical fiber communication and optical fiber sensing. The fiber filter is one of the key components of tunable fiber lasers. Among the various filters currently used, multimode interference filters have the advantages of simple structure, convenient implementation, flexible tuning methods, and convenient spectral range design. The structures of multimode interference filters based on multimode fibers, no-core fibers, multi-core fibers, t
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ping, Bingyi, Zihang Zhang, Qiushi Liu, Minghao Li, Qingxiu Yang, and Rui Guo. "Liquid Metal Fibers with a Knitted Structure for Wearable Electronics." Biosensors 13, no. 7 (2023): 715. http://dx.doi.org/10.3390/bios13070715.

Повний текст джерела
Анотація:
Flexible conductive fibers have shown tremendous potential in diverse fields, including health monitoring, intelligent robotics, and human–machine interaction. Nevertheless, most conventional flexible conductive materials face challenges in meeting the high conductivity and stretchability requirements. In this study, we introduce a knitted structure of liquid metal conductive fibers. The knitted structure of liquid metal fiber significantly reduces the resistance variation under tension and exhibits favorable durability, as evidenced by the results of cyclic tensile testing, which indicate tha
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Krylov, I. K., N. V. Korneeva, and V. V. Kudinov. "Influence of rigid and flexible matrices on ultimate strength and fracture mechanisms of polymer composite materials upon impact and static loading conditions." Perspektivnye Materialy 10 (2022): 64–82. http://dx.doi.org/10.30791/1028-978x-2022-10-64-82.

Повний текст джерела
Анотація:
An universal method “Break upon Impact and Static” (RUS) has been developed for the experimental determination of the ultimate strength properties of polymer composite materials based on multifilament nanocrystalline ultra-high molecular weight polyethylene (UHMWPE) fibers, which differs in the method of fixing the sample in a testing machine.The method is carried out using a uniform BIS-sample with an intermediate matrix at the ends and equipment for its attachment to the platforms of testing machines. The sample is a round composite rod composed of the fibers and matrices under investigation
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Yermakov, Oleh, Matthias Zeisberger, Henrik Schneidewind, et al. "Advanced fiber in-coupling through nanoprinted axially symmetric structures." Applied Physics Reviews 10, no. 1 (2023): 011401. http://dx.doi.org/10.1063/5.0127370.

Повний текст джерела
Анотація:
Here, we introduce and demonstrate nanoprinted all-dielectric nanostructures located on fiber end faces as a novel concept for the efficient coupling of light into optical fibers, especially at multiple incidence angles and across large angular intervals. Taking advantage of the unique properties of the nanoprinting technology, such as flexibly varying the width, height, and gap distance of each individual element, we realize different polymeric axial-symmetric structures, such as double-pitch gratings and aperiodic arrays, placed on the facet of commercial step-index fibers. Of particular not
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zuniga, Luis, Gabriel Gonzalez, Roberto Orrostieta Chavez, Jason C. Myers, Timothy P. Lodge та Mataz Alcoutlabi. "Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries". Applied Sciences 9, № 19 (2019): 4032. http://dx.doi.org/10.3390/app9194032.

Повний текст джерела
Анотація:
We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solution containing PVP/iron (III) acetylacetonate/titanium (IV) butoxide/ethanol/acetic acid followed by oxidation at 200 °C in air and then carbonization at 550 °C under flowing argon. The morphology and structure of the composite fibers were characterized using X-ray diffraction (XRD), scanning electr
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Li, Changling, Chueh Liu, Wei Wang, et al. "Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning." Chemical Communications 52, no. 76 (2016): 11398–401. http://dx.doi.org/10.1039/c6cc04074h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Słowicka, Agnieszka M., Nan Xue, Paweł Sznajder, Janine K. Nunes, Howard A. Stone, and Maria L. Ekiel-Jeżewska. "Buckling of elastic fibers in a shear flow." New Journal of Physics 24, no. 1 (2022): 013013. http://dx.doi.org/10.1088/1367-2630/ac43eb.

Повний текст джерела
Анотація:
Abstract Three-dimensional dynamics of flexible fibers in shear flow are studied numerically, with a qualitative comparison to experiments. Initially, the fibers are straight, with different orientations with respect to the flow. By changing the rotation speed of a shear rheometer, we change the ratio A of bending to shear forces. We observe fibers in the flow-vorticity plane, which gives insight into the motion out of the shear plane. The numerical simulations of moderately flexible fibers show that they rotate along effective Jeffery orbits, and therefore the fiber orientation rapidly become
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Li, Ziyuan, Wenjia Han, Peng Jia, Xia Li, Yifei Jiang, and Qijun Ding. "Co3O4 Nanoneedle Array Grown on Carbon Fiber Paper for Air Cathodes towards Flexible and Rechargeable Zn–Air Batteries." Nanomaterials 11, no. 12 (2021): 3321. http://dx.doi.org/10.3390/nano11123321.

Повний текст джерела
Анотація:
An economical and efficient method is developed for preparing flexible cathodes. In this work, a dense mesoporous Co3O4 layer was first hydrothermally grown in situ on the surface of chopped carbon fibers (CFs), and then carbon fiber paper (Co3O4/CP) was prepared by a wet papermaking process as a flexible zinc-air battery (ZAB). The high-performance air cathode utilizes the high specific surface area of a single chopped carbon fiber, which is conducive to the deposition and adhesion of the Co3O4 layer. Through the wet papermaking process, Co3O4/CP has ultra-thin, high mechanical stability and
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kang, Jin Gu, Gang Wang, and Sung-Kon Kim. "Joule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes." Materials 13, no. 22 (2020): 5255. http://dx.doi.org/10.3390/ma13225255.

Повний текст джерела
Анотація:
Microscale fiber-based supercapacitors have become increasingly important for the needs of flexible, wearable, and lightweight portable electronics. Fiber electrodes without pre-existing cores enable a wider selection of materials and geometries than is possible through core-containing electrodes. The carbonization of fibrous precursors using an electrically driven route, different from a conventional high-temperature process, is particularly promising for achieving this structure. Here, we present a facile and low-cost process for producing high-performance microfiber supercapacitor electrode
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liu, Zhengyong, Zhi Zhang, Hwa-Yaw Tam, and Xiaoming Tao. "Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications." Photonics 6, no. 2 (2019): 48. http://dx.doi.org/10.3390/photonics6020048.

Повний текст джерела
Анотація:
This paper presents a review of the development of optical fibers made of multiple materials, particularly including silica glass, soft glass, polymers, hydrogels, biomaterials, Polydimethylsiloxane (PDMS), and Polyperfluoro-Butenylvinyleth (CYTOP). The properties of the materials are discussed according to their various applications. Typical fabrication techniques for specialty optical fibers based on these materials are introduced, which are mainly focused on extrusion, drilling, and stacking methods depending on the materials’ thermal properties. Microstructures render multiple functions of
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sikorski, M. E., C. P. Buckley, J. W. S. Hearle, and S. K. Mukhopadhyay. "Flexible thermomechanical analysis of polymeric fibers." Review of Scientific Instruments 64, no. 7 (1993): 1947–55. http://dx.doi.org/10.1063/1.1143981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Sethmann, I. "Creating Flexible Calcite Fibers with Proteins." Science 339, no. 6125 (2013): 1281–82. http://dx.doi.org/10.1126/science.1235357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Niskanen, K. J., and M. J. Alava. "Planar Random Networks with Flexible Fibers." Physical Review Letters 73, no. 25 (1994): 3475–78. http://dx.doi.org/10.1103/physrevlett.73.3475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Li, Gaolin, Zhenhua Jiang, Weilin Wang, Zengyong Chu, Ye Zhang, and Chunhua Wang. "Electrospun PAN/MAPbI3 Composite Fibers for Flexible and Broadband Photodetectors." Nanomaterials 9, no. 1 (2019): 50. http://dx.doi.org/10.3390/nano9010050.

Повний текст джерела
Анотація:
Methylammonium lead triiodide perovskite (CH3NH3PbI3, MAPbI3) has been emerging as an easy processing and benign defect material for optoelectronic devices. Fiber-like perovskite materials are especially in demand for flexible applications. Here we report on a kind of polyacrylonitrile (PAN)/MAPbI3 composite fiber, which was electrospun from the mixing solution of PAN and MAPbI3. The absorption edge and optical gap of the PAN/MAPbI3 composite fibers can be easily tuned as the ratio of the perovskite changes. Both the moisture stability and the thermal stability of the perovskite are improved w
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Itoh, Toshihiro. "Continuous Process for Large-Area Flexible MEMS." Advances in Science and Technology 81 (September 2012): 9–14. http://dx.doi.org/10.4028/www.scientific.net/ast.81.9.

Повний текст джерела
Анотація:
A novel fabrication process for large area flexible MEMS, having been developed in BEANS project, Japan, is introduced. The process consists of continuously high-speed coating for functional film materials, 3-D nano/micro-machining of the films on fibers, and weaving the functional fibers into large-area integration. In the coating process, functional materials, e.g., organic semiconductor, piezoelectric, conductor and insulator films could be formed on fibers with a speed of 20 m/min. In the 3-D nano/micro-machining, a compound reel-to-reel process system including both thermal roller imprint
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lin, Yung Jen, and Shin Yi Shen. "Fabrication of Alumina and Silicon Carbide Fibers from Carbon Fibers." Materials Science Forum 561-565 (October 2007): 603–6. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.603.

Повний текст джерела
Анотація:
Carbon fibers of ~9 μ m in diameter were used as templates to fabricate alumina and silicon carbide fibers. The carbon fibers were placed in a vacuum furnace with aluminum and heated at 1100°C for 8 h to form aluminum carbide. Then, the aluminum carbide fibers were oxidized in air at 1500°C. The resulted fibers were hollow and the alumina layer was porous in the interior. To fabricate silicon carbide fiber, carbon fibers were reacted with Si at 1300°C -1500°C in Ar. The thickness of silicon carbide layers increased with reaction temperature and reaction time. Solid fibers could be obtained aft
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wu, Yu, Sihao Zhou, Jie Yi, Dongsheng Wang, and Wen Wu. "Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor." Journal of Engineered Fibers and Fabrics 17 (January 2022): 155892502211146. http://dx.doi.org/10.1177/15589250221114641.

Повний текст джерела
Анотація:
Continuous production of conductive hydrogel fibers has received extensive interests due to their wide application in strain sensors. In this paper, we report on the fabrication of continuous alginate/polyaniline/graphene hydrogel fibers by the in situ polymerization and wet spinning methods. The obtained hydrogel fiber with good flexibility, high water absorbability (11.37 g/g), proper resistivity (220 Ω·m ) and stable resistance changes at both low strain (10%) and high strain (20% and 50%) could be used as a working strain sensor for a wearable human movements monitor. The conductive algina
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Shahid, Md Abdus, Md Solaiman Miah, and Md Abdur Razzaq. "Fabrication of ecofriendly jute fiber reinforced flexible planar composite as a potential alternative of leather." Journal of Engineered Fibers and Fabrics 18 (January 2023): 155892502211440. http://dx.doi.org/10.1177/15589250221144015.

Повний текст джерела
Анотація:
Natural fiber reinforced composites are a lightweight, affordable, and environmentally friendly replacement for many problematic applications. These natural fibers could be constructed into flexible planar materials with the aid of composite phenomena that can be used for a variety of applications where flexibility is important like as artificial leather. In this work, nonwoven matt made from spinning wastes of jute fiber was used to reinforce the biodegradable polyvinyl alcohol (PVA) matrix. The percentage of fibers within the PVA matrix was adjusted to develop the flexible planar composites.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Li, Li, Chen Chen, Jing Xie, Zehuai Shao, and Fuxin Yang. "The Preparation of Carbon Nanotube/MnO2Composite Fiber and Its Application to Flexible Micro-Supercapacitor." Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/821071.

Повний текст джерела
Анотація:
In recent years, flexible electronic devices pursued for potential applications. The design and the fabrication of a novel flexible nanoarchitecture by coating electrical conductive MWCNT fiber with ultrathin films of MnO2to achieve high specific capacitance, for micro-supercapacitors electrode applications, are demonstrated here. The MWCNT/MnO2composite fiber electrode was prepared by the electrochemical deposition which was carried out through using two different methods: cyclic voltammetry and potentiostatic methods. The cyclic voltammetry method can get “crumpled paper ball” morphology MnO
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Alonso Romero, Alberto, Koffi Novignon Amouzou, Dipankar Sengupta, et al. "Optoelectronic Pressure Sensor Based on the Bending Loss of Plastic Optical Fibers Embedded in Stretchable Polydimethylsiloxane." Sensors 23, no. 6 (2023): 3322. http://dx.doi.org/10.3390/s23063322.

Повний текст джерела
Анотація:
We report the design and testing of a sensor pad based on optical and flexible materials for the development of pressure monitoring devices. This project aims to create a flexible and low-cost pressure sensor based on a two-dimensional grid of plastic optical fibers embedded in a pad of flexible and stretchable polydimethylsiloxane (PDMS). The opposite ends of each fiber are connected to an LED and a photodiode, respectively, to excite and measure light intensity changes due to the local bending of the pressure points on the PDMS pad. Tests were performed in order to study the sensitivity and
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhang, Zheye, Fei Xiao, Jian Xiao, and Shuai Wang. "Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors." Journal of Materials Chemistry A 3, no. 22 (2015): 11817–23. http://dx.doi.org/10.1039/c5ta01990g.

Повний текст джерела
Анотація:
Two types of functionalized carbonaceous fibers,i.e., carbon fiber@reduced graphene oxide@manganese dioxide (CF@RGO@MnO<sub>2</sub>) and CF@thick RGO (CF@TRGO), were successfully prepared for high performance flexible all-solid-state asymmetric supercapacitors.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kertmen, Nuriye. "New Trends in Fibers Used in Denim Fabric Production." Tekstil ve Mühendis 28, no. 121 (2021): 48–59. http://dx.doi.org/10.7216/1300759920212812106.

Повний текст джерела
Анотація:
There is a tendency to use different fibers from cotton to improve the physical properties of conventional denim fabrics, add functional properties, and follow trends and fashion. Warp and weft yarns can be produced with 100% cotton or composed of different fibers optionally for denim fabric. In this study, a piece of detailed information was given about the fibers used for denim fabrics in recent years, and the effects of the fibers were evaluated. In the results of the review, the nature of the fiber and antibacterial property is the most prominent feature nowadays for cellulosic fibers. It
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!