Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Flamelettes.

Статті в журналах з теми "Flamelettes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Flamelettes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

FURUKAWA, JUNICHI, YOSHIKI NOGUCHI, TOSHISUKE HIRANO, and FORMAN A. WILLIAMS. "Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane–air flames." Journal of Fluid Mechanics 462 (July 10, 2002): 209–43. http://dx.doi.org/10.1017/s0022112002008650.

Повний текст джерела
Анотація:
The density change across premixed flames propagating in turbulent flows modifies the turbulence. The nature of that modification depends on the regime of turbulent combustion, the burner design, the orientation of the turbulent flame and the position within the flame. The present study addresses statistically stationary turbulent combustion in the flame-sheet regime, in which the laminar-flame thickness is less than the Kolmogorov scale, for flames stabilized on a vertically oriented cylindrical burner having fully developed upward turbulent pipe flow upstream from the exit. Under these conditions, rapidly moving wrinkled laminar flamelets form the axisymmetric turbulent flame brush that is attached to the burner exit. Predictions have been made of changes in turbulence properties across laminar flamelets in such situations, but very few measurements have been performed to test the predictions. The present work measures individual velocity changes and changes in turbulence across flamelets at different positions in the turbulent flame brush for three different equivalence ratios, for comparison with theory.The measurements employ a three-element electrostatic probe (EP) and a two-component laser-Doppler velocimeter (LDV). The LDV measures axial and radial components of the local gas velocity, while the EP, whose three sensors are located in a vertical plane that passes through the burner axis, containing the plane of the LDV velocity components, measures arrival times of flamelets at three points in that plane. From the arrival times, the projection of flamelet orientation and velocity on the plane are obtained. All of the EP and LDV sensors are located within a fixed volume element of about 1 mm diameter to provide local, time-resolved information. The technique has the EP advantages of rapid response and good sensitivity and the EP disadvantages of intrusiveness and complexity of interpretation, but it is well suited to the type of data sought here.Theory predicts that the component of velocity tangent to the surface of a locally planar flamelet remains constant in passing through the flamelet. The data are consistent with this prediction, within the accuracy of the measurement. The data also indicate that the component of velocity normal to the flamelet, measured with respect to the flamelet, tends to increase in passing through the flamelet, as expected. The flamelets thereby can generate anisotropy in initially isotropic turbulence. They also produce differences in turbulent spectra conditioned on unburnt or burnt gas. Local modifications of turbulence by flamelets thus are demonstrated experimentally. The modifications are quantitatively different at different locations in the turbulent flame brush but qualitatively similar in that the turbulence is enhanced more strongly in the radial direction than in the axial direction at all positions in these flames.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ashurst, W. T., and F. A. Williams. "Vortex modification of diffusion flamelets." Symposium (International) on Combustion 23, no. 1 (January 1991): 543–50. http://dx.doi.org/10.1016/s0082-0784(06)80301-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hiestermann, Marian, Matthias Haeringer, Marcel Dèsor, and Wolfgang Polifke. "Comparison of non-premixed and premixed flamelets for ultra WET aero engine combustion conditions." Journal of the Global Power and Propulsion Society 8 (October 8, 2024): 370–89. http://dx.doi.org/10.33737/jgpps/188264.

Повний текст джерела
Анотація:
The Water-Enhanced Turbofan (WET) is a future concept for aero engine applications being developed by MTU Aero Engines AG. Steam is injected into the combustion chamber to reduce temperature peaks and emission of pollutants. Depending on the steam content, the combustion process is modified. To analyze the effect of steam on the reaction kinetics and the temperature, detailed chemistry has to be employed. By comparing laminar flame speed and mole fraction distribution across the flame front, an appropriate chemical mechanism for the considered operating conditions including high steam loads was selected. Tabulated chemistry based on flamelets was employed, which enables the use of complex mechanisms in CFD analysis at reasonable computational costs. A comparison of premixed freely propagating flames and non-premixed counterflow diffusion flames to represent the manifolds was investigated. Various definitions of the progress variable are studied for ultra WET combustion considered under aero engine conditions. The manifolds from both model flames are compared from dry to ultra WET conditions with kerosene in an adapted Sandia Flame D large eddy simulation. While the premixed flamelets are generated efficiently, the results obtained with non-premixed flamelets are more reliable for the range of operating conditions investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Josephson, Alexander J., Troy M. Holland, Sara Brambilla, Michael J. Brown, and Rodman R. Linn. "Predicting Emission Source Terms in a Reduced-Order Fire Spread Model—Part 1: Particulate Emissions." Fire 3, no. 1 (February 25, 2020): 4. http://dx.doi.org/10.3390/fire3010004.

Повний текст джерела
Анотація:
A simple, easy-to-evaluate, surrogate model was developed for predicting the particle emission source term in wildfire simulations. In creating this model, we conceptualized wildfire as a series of flamelets, and using this concept of flamelets, we developed a one-dimensional model to represent the structure of these flamelets which then could be used to simulate the evolution of a single flamelet. A previously developed soot model was executed within this flamelet simulation which could produce a particle size distribution. Executing this flamelet simulation 1200 times with varying conditions created a data set of emitted particle size distributions to which simple rational equations could be tuned to predict a particle emission factor, mean particle size, and standard deviation of particle sizes. These surrogate models (the rational equation) were implemented into a reduced-order fire spread model, QUIC-Fire. Using QUIC-Fire, an ensemble of simulations were executed for grassland fires, southeast U.S. conifer forests, and western mountain conifer forests. Resulting emission factors from this ensemble were compared against field data for these fire classes with promising results. Also shown is a predicted averaged resulting particle size distribution with the bulk of particles produced to be on the order of 1 μm in size.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bray, Ken. "Laminar Flamelets in Turbulent Combustion Modeling." Combustion Science and Technology 188, no. 9 (June 2, 2016): 1372–75. http://dx.doi.org/10.1080/00102202.2016.1195819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gouldin, F. C., K. N. C. Bray, and J. Y. Chen. "Chemical closure model for fractal flamelets." Combustion and Flame 77, no. 3-4 (September 1989): 241–59. http://dx.doi.org/10.1016/0010-2180(89)90132-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krass, B. J., B. W. Zellmer, I. K. Puri, and S. Singh. "Application of Flamelet Profiles to Flame Structure in Practical Burners." Journal of Energy Resources Technology 121, no. 1 (March 1, 1999): 66–72. http://dx.doi.org/10.1115/1.2795062.

Повний текст джерела
Анотація:
Partial premixing can be induced by design in combustors, occurs inadvertently during turbulent nonpremixed combustion, or arises through inadequate fuel-air mixing. Therefore, it is of interest to investigate the effect of partial premixing in a burner that mimics conditions that might occur under practice. In this investigation, we report on similitude of partially premixed flames encountered in practical complex and multi-dimensional burners with simpler, less complex flames, such as counterflow flamelets. A burner is designed to simulate the more complex multi-dimensional flows that might be encountered in practice, and includes the effects of staging, swirl, and possible quenching by introduction of secondary air. The measurements indicate that the structure of partially premixed flames in complex, practical devices can be analyzed in a manner similar to that of flamelets, even if substantial heat transfer occurs. In particular, the flame structure can be characterized in terms of a modified mixture fraction that differentiates the lean and rich zones, and identifies the spatial location of the flame.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Olson, S. L., F. J. Miller, and I. S. Wichman. "Characterizing fingering flamelets using the logistic model." Combustion Theory and Modelling 10, no. 2 (April 2006): 323–47. http://dx.doi.org/10.1080/13647830600565446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Law, C. K., and C. J. Sung. "Structure, aerodynamics, and geometry of premixed flamelets." Progress in Energy and Combustion Science 26, no. 4-6 (August 2000): 459–505. http://dx.doi.org/10.1016/s0360-1285(00)00018-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BYCHKOV, VITALIY, MICHAEL A. LIBERMAN, and RAYMOND REINMANN. "VELOCITY OF TURBULENT FLAMELETS OF FINITE THICKNESS." Combustion Science and Technology 168, no. 1 (July 2001): 113–29. http://dx.doi.org/10.1080/00102200108907833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Gao, Yushan, Wang Han, Zheng Chen, Qingfei Fu, and Lijun Yang. "Effects of radiation, curvature, and preferential diffusion on the extinction of laminar non-premixed flames." AIP Advances 12, no. 11 (November 1, 2022): 115118. http://dx.doi.org/10.1063/5.0121889.

Повний текст джерела
Анотація:
The combined effects of radiative heat loss, curvature, and preferential diffusion on laminar non-premixed flames (or flamelets) are investigated in this work by using asymptotic analysis. A general theoretical description of flame temperature and extinction is derived for curved flames with non-unity Lewis numbers and radiative heat loss. Special attention is paid to the effects of curvature and radiative heat loss on the flammability limits. The results show that (1) a curved flamelet always has two extinction limits: one is the kinetic extinction limit, and the other is the curvature-induced extinction limit for the adiabatic case or the radiative extinction limit for the radiative case; (2) the curvature exerts a different influence on the adiabatic and radiative flames. Specifically for the adiabatic flame, it is found that both flame temperature and flame position significantly decrease as the curvature increases and that a new extinction limit at a low stretch rate occurs due to the existence of curvature. Furthermore, a higher curvature coupled with the increase in the Lewis number results in a lower flammability limit and narrower flammable zone. Therefore, the presence of curvature has a negative impact on the adiabatic flame. On the contrary, for the radiative flame, the results show that the increase in curvature has a positive effect on the flammability limit and thereby increases the flammable zone. It is expected that curved flamelets hold smaller (larger) flammable zones than planar flamelets under the adiabatic (radiative) condition. All results show that the change in flame curvature has a stronger effect on the flame structure and extinction than the deviation of the Lewis number from unity.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lee, Sung-Taick, Edward W. Price, and Robert K. Signan. "Effect of multidimensional flamelets in composite propellant combustion." Journal of Propulsion and Power 10, no. 6 (November 1994): 761–68. http://dx.doi.org/10.2514/3.23813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Price, Edward W. "Effect of multidimensional flamelets in composite propellant combustion." Journal of Propulsion and Power 11, no. 4 (July 1995): 717–29. http://dx.doi.org/10.2514/3.23897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bychkov, Vitaliy. "Velocity of Turbulent Flamelets with Realistic Fuel Expansion." Physical Review Letters 84, no. 26 (June 26, 2000): 6122–25. http://dx.doi.org/10.1103/physrevlett.84.6122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gouldin, F. C., S. M. Hilton, and T. Lamb. "Experimental evaluation of the fractal geometry of flamelets." Symposium (International) on Combustion 22, no. 1 (January 1989): 541–50. http://dx.doi.org/10.1016/s0082-0784(89)80061-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Matsuoka, Tsuneyoshi, Kentaro Nakashima, Yuji Nakamura, and Susumu Noda. "Appearance of flamelets spreading over thermally thick fuel." Proceedings of the Combustion Institute 36, no. 2 (2017): 3019–26. http://dx.doi.org/10.1016/j.proci.2016.07.112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chen, Xiaotong, Zhanbin Lu, and Shuangfeng Wang. "Near limit premixed flamelets in Hele-Shaw cells." Proceedings of the Combustion Institute 36, no. 1 (2017): 1585–93. http://dx.doi.org/10.1016/j.proci.2016.08.059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kurata, Osamu. "X-shaped flames consisting of rotating slant flamelets." Combustion and Flame 152, no. 1-2 (January 2008): 206–17. http://dx.doi.org/10.1016/j.combustflame.2007.06.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Barths, H., C. Hasse, and N. Peters. "Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines." International Journal of Engine Research 1, no. 3 (June 1, 2000): 249–67. http://dx.doi.org/10.1243/1468087001545164.

Повний текст джерела
Анотація:
An overview over flamelet modelling for turbulent non-premixed combustion is given. A short review of previous contributions to simulations of direct injection (DI) diesel engine combustion using the representative interactive flamelet concept is presented. A surrogate fuel consisting of 70 per cent (liquid volume) n-decane and 30 per cent α-methyl-naphthalene is experimentally compared to real diesel fuel. The resemblance of their physical and chemical properties is shown to result in very similar combustion and pollutant formation for both fuels. In order to account for variations of the scalar dissipation rate within the computational domain, a method using multiple flamelets, called the Eulerian particle flamelet model, is used. A strategy is described for subdividing the computational domain and assigning the resulting subdomains to different flamelet histories represented by Eulerian marker particles. Experiments conducted with an Audi DI diesel engine and diesel fuel are compared to simulations using the surrogate fuel. The use of multiple flamelets, each having a different history, significantly improves the description of the ignition phase, leading to a better prediction of pressure, heat release and exhaust emissions of soot and NOx. The effect of the number of flamelet particles on the predictions is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Langella, Ivan, and Nedunchezhian Swaminathan. "Unstrained and strained flamelets for LES of premixed combustion." Combustion Theory and Modelling 20, no. 3 (March 2016): 410–40. http://dx.doi.org/10.1080/13647830.2016.1140230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Peters, N. "Partially premixed diffusion flamelets in non-premixed turbulent combustion." Symposium (International) on Combustion 20, no. 1 (January 1985): 353–60. http://dx.doi.org/10.1016/s0082-0784(85)80521-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Murayama, Motohide, and Tadao Takeno. "Fractal-like character of flamelets in turbulent premixed combustion." Symposium (International) on Combustion 22, no. 1 (January 1989): 551–59. http://dx.doi.org/10.1016/s0082-0784(89)80062-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Agathou, Maria S., and Dimitrios C. Kyritsis. "Experimental investigation of bio-butanol laminar non-premixed flamelets." Applied Energy 93 (May 2012): 296–304. http://dx.doi.org/10.1016/j.apenergy.2011.12.060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Burluka, A. A., M. A. Gorokhovski, and R. Borghi. "Statistical model of turbulent premixed combustion with interacting flamelets." Combustion and Flame 109, no. 1-2 (April 1997): 173–87. http://dx.doi.org/10.1016/s0010-2180(96)00147-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Furukawa, J. "Burning Velocities of Flamelets in a Turbulent Premixed Flame." Combustion and Flame 113, no. 4 (June 1998): 487–91. http://dx.doi.org/10.1016/s0010-2180(97)00239-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Domingo, Pascale, Luc Vervisch, and Ken Bray. "Partially premixed flamelets in LES of nonpremixed turbulent combustion." Combustion Theory and Modelling 6, no. 4 (December 2002): 529–51. http://dx.doi.org/10.1088/1364-7830/6/4/301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Card, J. M., Wm T. Ashurst, and F. A. Williams. "Modification of methane-air nonpremixed flamelets by vortical interactions." Combustion and Flame 97, no. 1 (April 1994): 48–60. http://dx.doi.org/10.1016/0010-2180(94)90115-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

MENEVEAU, C., and T. POINSOT. "Stretching and quenching of flamelets in premixed turbulent combustion." Combustion and Flame 86, no. 4 (September 1991): 311–32. http://dx.doi.org/10.1016/0010-2180(91)90126-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Riesmeier, E., S. Honnet, and N. Peters. "Flamelet Modeling of Pollutant Formation in a Gas Turbine Combustion Chamber Using Detailed Chemistry for a Kerosene Model Fuel." Journal of Engineering for Gas Turbines and Power 126, no. 4 (October 1, 2004): 899–905. http://dx.doi.org/10.1115/1.1787507.

Повний текст джерела
Анотація:
Combustion and pollutant formation in a gas turbine combustion chamber is investigated numerically using the Eulerian particle flamelet model. The code solving the unsteady flamelet equations is coupled to an unstructured computational fluid dynamics (CFD) code providing solutions for the flow and mixture field from which the flamelet parameters can be extracted. Flamelets are initialized in the fuel-rich region close to the fuel injectors of the combustor. They are represented by marker particles that are convected through the flow field. Each flamelet takes a different pathway through the combustor, leading to different histories for the flamelet parameters. Equations for the probability of finding a flamelet at a certain position and time are additionally solved in the CFD code. To model the chemical properties of kerosene, a detailed reaction mechanism for a mixture of n-decane and 1,2,4-trimethylbenzene is used. It includes a detailed NOx submechanism and the buildup of polycyclic aromatic hydrocarbons up to four aromatic rings. The kinetically based soot model describes the formation of soot particles by inception, further growth by coagulation, and condensation as well as surface growth and oxidation. Simulation results are compared to experimental data obtained on a high-pressure rig. The influence of the model on pollutant formation is shown, and the effect of the number of flamelets on the model is investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ghenaï, Chaouki, Christian Chauveau, and Iskender Gökalp. "Spatial and temporal dynamics of flamelets in turbulent premixed flames." Symposium (International) on Combustion 26, no. 1 (January 1996): 331–37. http://dx.doi.org/10.1016/s0082-0784(96)80233-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Shamim, Tariq, and Arvind Atreya. "The effect of time-dependent partial premixing in radiating flamelets." Combustion and Flame 123, no. 1-2 (October 2000): 241–51. http://dx.doi.org/10.1016/s0010-2180(00)00143-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kolla, H., and N. Swaminathan. "Strained flamelets for turbulent premixed flames II: Laboratory flame results." Combustion and Flame 157, no. 7 (July 2010): 1274–89. http://dx.doi.org/10.1016/j.combustflame.2010.03.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

UEDA, TOSH IH ISA, and ROBERT K. CHENG. "Interaction of Jet Diffusion Flamelets with Grid-generated Co-flow Turbulence." Combustion Science and Technology 80, no. 1-3 (November 1991): 121–35. http://dx.doi.org/10.1080/00102209108951780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Margolis, R. S. Cant, K. N. C. Bray, L. W. Kostiuk, and B. Rogg. "Flow Divergence Effects in Strained Laminar Flamelets for Premixed Turbulent Combustion." Combustion Science and Technology 95, no. 1-6 (December 1993): 261–76. http://dx.doi.org/10.1080/00102209408935337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sundaram, B., and A. Y. Klimenko. "A PDF approach to thin premixed flamelets using multiple mapping conditioning." Proceedings of the Combustion Institute 36, no. 2 (2017): 1937–45. http://dx.doi.org/10.1016/j.proci.2016.07.116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Klimenko, A. Y. "On the relation between the conditional moment closure and unsteady flamelets." Combustion Theory and Modelling 5, no. 3 (September 2001): 275–94. http://dx.doi.org/10.1088/1364-7830/5/3/302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

WATANABE, H., R. KUROSE, S. HWANG, and F. AKAMATSU. "Characteristics of flamelets in spray flames formed in a laminar counterflow." Combustion and Flame 148, no. 4 (March 2007): 234–48. http://dx.doi.org/10.1016/j.combustflame.2006.09.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Yanez, Jorge, Mike Kuznetsov, and Fernando Veiga-López. "On the velocity, size, and temperature of gaseous dendritic flames." Physics of Fluids 34, no. 11 (November 2022): 113601. http://dx.doi.org/10.1063/5.0118271.

Повний текст джерела
Анотація:
Dendritic combustion in Hele–Shaw cells is investigated qualitatively using a simplified one-dimensional thermo-diffusive model. Formulas for the velocity, size, and temperature of the flamelets are derived. The temperature and velocity of the flames increase for small radii to allow for their survival regardless of the activation energy. In addition, the results obtained with very large activation energy were compared with experimental results, finding that additional tests are required due to the strong influence of gravity on the velocity and size estimations. Conditions for the existence of this anomalous propagation are investigated, confirming analytically that it can only happen for low Lewis numbers.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sabelnikov, V. A., A. N. Lipatnikov, S. Nishiki, and T. Hasegawa. "Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions." Journal of Fluid Mechanics 867 (March 20, 2019): 45–76. http://dx.doi.org/10.1017/jfm.2019.128.

Повний текст джерела
Анотація:
The second-order structure functions (SFs) of the velocity field, which characterize the velocity difference at two points, are widely used in research into non-reacting turbulent flows. In the present paper, the approach is extended in order to study the influence of combustion-induced thermal expansion on turbulent flow within a premixed flame brush. For this purpose, SFs conditioned to various combinations of mixture states at two different points (reactant–reactant, reactant–product, product–product, etc.) are introduced in the paper and a relevant exact transport equation is derived in the appendix. Subsequently, in order to demonstrate the capabilities of the newly developed approach for advancing the understanding of turbulent reacting flows, the conditioned SFs are extracted from three-dimensional (3-D) direct numerical simulation data obtained from two statistically 1-D planar, fully developed, weakly turbulent, premixed, single-step-chemistry flames characterized by significantly different (7.53 and 2.50) density ratios, with all other things being approximately equal. Obtained results show that the conditioned SFs differ significantly from standard mean SFs and convey a large amount of important information on various local phenomena that stem from the influence of combustion-induced thermal expansion on turbulent flow. In particular, the conditioned SFs not only (i) indicate a number of already known local phenomena discussed in the paper, but also (ii) reveal a less recognized phenomenon such as substantial influence of combustion-induced thermal expansion on turbulence in constant-density unburned reactants and even (iii) allow us to detect a new phenomenon such as the appearance of strong local velocity perturbations (shear layers) within flamelets. Moreover, SFs conditioned to heat-release zones indicate a highly anisotropic influence of combustion-induced thermal expansion on the evolution of small-scale two-point velocity differences within flamelets, with the effects being opposite (an increase or a decrease) for different components of the local velocity vector.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kerkemeier, S. G., C. N. Markides, C. E. Frouzakis, and K. Boulouchos. "Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air." Journal of Fluid Mechanics 720 (February 27, 2013): 424–56. http://dx.doi.org/10.1017/jfm.2013.22.

Повний текст джерела
Анотація:
AbstractThe autoignition of an axisymmetric nitrogen-diluted hydrogen plume in a turbulent coflowing stream of high-temperature air was investigated in a laboratory-scale set-up using three-dimensional numerical simulations with detailed chemistry and transport. The plume was formed by releasing the fuel from an injector with bulk velocity equal to that of the surrounding air coflow. In the ‘random spots’ regime, autoignition appeared randomly in space and time in the form of scattered localized spots from which post-ignition flamelets propagated outwards in the presence of strong advection. Autoignition spots were found to occur at a favourable mixture fraction close to the most reactive mixture fraction calculated a priori from considerations of homogeneous mixtures based on inert mixing of the fuel and oxidizer streams. The value of the favourable mixture fraction evolved in the domain subject to the effect of the scalar dissipation rate. The hydroperoxyl radical appeared as a precursor to the build-up of the radical pool and the ensuing thermal runaway at the autoignition spots. Subsequently, flamelets propagated in all directions with complex dynamics, without anchoring or forming a continuous flame sheet. These observations, as well as the frequency of and scatter in appearance of the spots, are in good agreement with experiments in a similar set-up. In agreement with experimental observations, an increase in turbulence intensity resulted in a downstream shift of autoignition. An attempt is made to understand the key processes that control the mean axial and radial locations of the spots, and are responsible for the observed scatter. The advection of the most reactive mixture through the domain, and hence the history of evolution of the developing radical pools were considered to this effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Davidovic, Marco, Tobias Falkenstein, Mathis Bode, Liming Cai, Seongwon Kang, Jörn Hinrichs, and Heinz Pitsch. "LES ofn-Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 72, no. 5 (September 2017): 29. http://dx.doi.org/10.2516/ogst/2017019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lipatnikov, A. N., V. A. Sabelnikov, S. Nishiki, and T. Hasegawa. "Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows." Physics of Fluids 30, no. 8 (August 2018): 085101. http://dx.doi.org/10.1063/1.5040967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kostiuk, L. W., and K. N. C. Bray. "Mean Effects of Stretch on Laminar Flamelets in a Premixed Turbulent Flame." Combustion Science and Technology 95, no. 1-6 (December 1993): 193–212. http://dx.doi.org/10.1080/00102209408935334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Barlow, R. S., and J. Y. Chen. "On transient flamelets and their relationship to turbulent methane-air jet flames." Symposium (International) on Combustion 24, no. 1 (January 1992): 231–37. http://dx.doi.org/10.1016/s0082-0784(06)80032-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Rogg, B., F. Behrendt, and J. Warnatz. "Turbulent non-premixed combustion in partially premixed diffusion flamelets with detailed chemistry." Symposium (International) on Combustion 21, no. 1 (January 1988): 1533–41. http://dx.doi.org/10.1016/s0082-0784(88)80386-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Barths, H., N. Peters, N. Brehm, A. Mack, M. Pfitzner, and V. Smiljanovski. "Simulation of pollutant formation in a gas-turbine combustor using unsteady flamelets." Symposium (International) on Combustion 27, no. 2 (January 1998): 1841–47. http://dx.doi.org/10.1016/s0082-0784(98)80026-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Mercier, Renaud, Cédric Mehl, Benoît Fiorina, and Vincent Moureau. "Filtered Wrinkled Flamelets model for Large-Eddy Simulation of turbulent premixed combustion." Combustion and Flame 205 (July 2019): 93–108. http://dx.doi.org/10.1016/j.combustflame.2019.03.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Furukawa, Junichi, Yasuko Yoshida, and Forman A. Williams. "Evolution of Gas Velocities Behind Flamelets in a Premixed Turbulent Bunsen Flame." Combustion Science and Technology 185, no. 4 (April 3, 2013): 661–75. http://dx.doi.org/10.1080/00102202.2012.740104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Yeung, P. K., S. S. Girimaji, and S. B. Pope. "Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets." Combustion and Flame 79, no. 3-4 (March 1990): 340–65. http://dx.doi.org/10.1016/0010-2180(90)90145-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Massey, James C., Ivan Langella, and Nedunchezhian Swaminathan. "Large Eddy Simulation of a Bluff Body Stabilised Premixed Flame Using Flamelets." Flow, Turbulence and Combustion 101, no. 4 (August 15, 2018): 973–92. http://dx.doi.org/10.1007/s10494-018-9948-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії