Добірка наукової літератури з теми "Fixed Target Experiment"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fixed Target Experiment".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fixed Target Experiment"

1

Meehan, Kathryn C. "The fixed-target experiment at STAR." Journal of Physics: Conference Series 742 (August 2016): 012022. http://dx.doi.org/10.1088/1742-6596/742/1/012022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Adamovich, M., M. Adinolfi, Y. Alexandrov, C. Angelini, C. Bacci, D. Barberis, D. Barney, et al. "Trigger for the WA92 fixed-target beauty experiment." Nuclear Physics B - Proceedings Supplements 44, no. 1-3 (November 1995): 435–40. http://dx.doi.org/10.1016/s0920-5632(95)80067-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Massacrier, L., M. Anselmino, R. Arnaldi, S. J. Brodsky, V. Chambert, W. den Dunnen, J. P. Didelez, et al. "Studies of Transverse-Momentum-Dependent Distributions with a Fixed-Target ExpeRiment Using the LHC Beams (AFTER@LHC)." International Journal of Modern Physics: Conference Series 40 (January 2016): 1660107. http://dx.doi.org/10.1142/s2010194516601071.

Повний текст джерела
Анотація:
We report on the studies of Transverse-Momentum-Dependent distributions (TMDs) at a future fixed-target experiment –AFTER@LHC– using the [Formula: see text] or Pb ion LHC beams, which would be the most energetic fixed-target experiment ever performed. AFTER@LHC opens new domains of particle and nuclear physics by complementing collider-mode experiments, in particular those of RHIC and the EIC projects. Both with an extracted beam by a bent crystal or with an internal gas target, the luminosity achieved by AFTER@LHC surpasses that of RHIC by up to 3 orders of magnitude. With an unpolarised target, it allows for measurements of TMDs such as the Boer-Mulders quark distributions and the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using polarised targets, one can access the quark and gluon Sivers TMDs through single transverse-spin asymmetries in Drell-Yan and quarkonium production. In terms of kinematics, the fixed-target mode combined with a detector covering [Formula: see text] allows one to measure these asymmetries at large [Formula: see text] in the polarised nucleon.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gertsenberger, Konstantin. "Event Display for the Fixed Target Experiment BM@N." EPJ Web of Conferences 108 (2016): 02022. http://dx.doi.org/10.1051/epjconf/201610802022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gemme, C. "Beauty hadroproduction at fixed target in the WA92 experiment." Nuclear Physics B - Proceedings Supplements 75, no. 3 (April 1999): 76–82. http://dx.doi.org/10.1016/s0920-5632(99)00328-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rabe, Patrick, John H. Beale, Agata Butryn, Pierre Aller, Anna Dirr, Pauline A. Lang, Danny N. Axford, et al. "Anaerobic fixed-target serial crystallography." IUCrJ 7, no. 5 (August 21, 2020): 901–12. http://dx.doi.org/10.1107/s2052252520010374.

Повний текст джерела
Анотація:
Cryogenic X-ray diffraction is a powerful tool for crystallographic studies on enzymes including oxygenases and oxidases. Amongst the benefits that cryo-conditions (usually employing a nitrogen cryo-stream at 100 K) enable, is data collection of dioxygen-sensitive samples. Although not strictly anaerobic, at low temperatures the vitreous ice conditions severely restrict O2 diffusion into and/or through the protein crystal. Cryo-conditions limit chemical reactivity, including reactions that require significant conformational changes. By contrast, data collection at room temperature imposes fewer restrictions on diffusion and reactivity; room-temperature serial methods are thus becoming common at synchrotrons and XFELs. However, maintaining an anaerobic environment for dioxygen-dependent enzymes has not been explored for serial room-temperature data collection at synchrotron light sources. This work describes a methodology that employs an adaptation of the `sheet-on-sheet' sample mount, which is suitable for the low-dose room-temperature data collection of anaerobic samples at synchrotron light sources. The method is characterized by easy sample preparation in an anaerobic glovebox, gentle handling of crystals, low sample consumption and preservation of a localized anaerobic environment over the timescale of the experiment (<5 min). The utility of the method is highlighted by studies with three X-ray-radiation-sensitive Fe(II)-containing model enzymes: the 2-oxoglutarate-dependent L-arginine hydroxylase VioC and the DNA repair enzyme AlkB, as well as the oxidase isopenicillin N synthase (IPNS), which is involved in the biosynthesis of all penicillin and cephalosporin antibiotics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Topilskaya, Nataliya, and Alexey Kurepin. "Some proposed fixed target experiments with the LHC beams." EPJ Web of Conferences 204 (2019): 03002. http://dx.doi.org/10.1051/epjconf/201920403002.

Повний текст джерела
Анотація:
The physics opportunities offered by using the multi-TeV LHC beams for a fixed target experiment have been widely discussed in recent years. This mode is convenient to investigate rare processes of particle production and polarization phenomena because the expected luminosity exceeds the luminosity of the collider. The main physical goals of these experiments are: i) investigations of the large-x gluon, antiquark and heavy quark content in the nucleon and nucleus; ii) investigations of the dynamics and spin of quarks and gluons inside nucleus; iii) studies of the ion-ion collisions between SPS and RHIC energies towards large rapidities. With the LHC lead beam energy scan on a fixed target it would be possible to investigate the energy range up to 72 GeV to search for the critical point for the phase transition to the Quark Gluon Plasma (QGP).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gertsenberger, K. V. "The unified database for the fixed target experiment BM@N." Physics of Particles and Nuclei Letters 13, no. 5 (September 2016): 634–39. http://dx.doi.org/10.1134/s1547477116050228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brodsky, S. J., F. Fleuret, C. Hadjidakis, and J. P. Lansberg. "Physics opportunities of a fixed-target experiment using LHC beams." Physics Reports 522, no. 4 (January 2013): 239–55. http://dx.doi.org/10.1016/j.physrep.2012.10.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lansberg, Jean-Philippe, Gianluca Cavoto, Cynthia Hadjidakis, Jibo He, Cédric Lorcé, and Barbara Trzeciak. "Physics at a Fixed-Target Experiment Using the LHC Beams." Advances in High Energy Physics 2015 (2015): 1–2. http://dx.doi.org/10.1155/2015/319654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Fixed Target Experiment"

1

CAPIROSSI, VITTORIA. "Study of the characteristics of the NUMEN Project targets to optimize the energy resolution in the measurements of the Double Charge Exchange reactions cross section." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2897010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mariani, Saverio. "Fixed-target physics with the LHCb experiment at CERN." Doctoral thesis, 2022. http://hdl.handle.net/2158/1264217.

Повний текст джерела
Анотація:
Owing to its detector geometry covering the forward direction and its excellent track reconstruction and particle identification performance, the LHCb experiment at CERN started in 2015 a pioneering study of beam-gas collisions by injecting noble gases in the LHC accelerator. In this thesis, my contributions to this physics programme, addressing the demand for extending the physics reach of the LHC complex stressed in the 2020 European Strategy for Particle Physics Update, are presented. Using a sample of proton-helium collisions collected in 2016, I performed the measurement of the non- prompt antiproton production at sqrt(sNN) = 110 GeV, complementing a previous analysis only considering the prompt component. The results provide a key ingredient to a more accurate description of the antiproton production in collisions between primary cosmic rays and the interstellar medium, representing the dominant limitation for the interpretation of data on the antiproton flux in space. This is being measured by experiments, notably the AMS-02 spectrometer, searching for an excess over the expected flux that could provide an indirect evidence for a hypothetical Dark Matter particle annihilation or decay process. Being the particle identification performance in fixed-target data limited by the size of calibration samples, I conceived and developed a machine-learning and data-based approach to its parametrization and demonstrated that it achieves a better performance with respect to models based on the LHCb detailed simulation. An upgrade of the fixed-target device is ongoing, mainly consisting in the installation of a 20-cm-long cell confining the gas target in a region upstream the nominal LHCb interaction point. During my Ph.D. programme, I have been responsible for the software activities aiming to allow beam-beam and beam-gas data to be simultaneously acquired. I tested and adapted the full event reconstruction sequence on simulated beam-gas data and implemented a selection strategy within the challenging real-time framework being deployed for the LHCb upgrade. In view of the significant increase of the luminosity and of the wider choice of gas species offered by the target upgrade, this work is paving the way to the implementation of a unique full-scale fixed-target experiment at the LHC.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

deNiverville, Patrick. "Searching for hidden sector dark matter with fixed target neutrino experiments." Thesis, 2016. http://hdl.handle.net/1828/7502.

Повний текст джерела
Анотація:
We study the sensitivity of fixed target neutrino experiments (LSND, T2K, CENNS, and COHERENT) and proton beam dumps (MiniBooNE off-target, and SHiP) to sub-GeV dark matter. In order to reproduce the observed thermal relic abundance, these states are coupled to the Standard Model via new, low mass mediators in the form of a kinetically mixed U(1)0 vector mediator or a vector mediator gauging baryon number. We present a model for the production of low mass dark matter from proton-nucleon collisions in fixed targets. Sensitivity projections are made using signals from elastic electron- and nucleon-dark matter scattering, as well as coherent nuclear-dark matter scattering and dark matter induced inelastic π 0 production. A fixed target Monte Carlo code has been developed for this analysis, and documentation is included. We find that analyses using current and future proton fixed target experiments are capable of placing new limits on the hidden sector dark matter parameter space for dark matter masses of up to 500\,MeV and mediator masses as large as a few GeV.
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
4

DeNiverville, Patrick. "Observing a light dark matter beam with neutrino experiments." Thesis, 2011. http://hdl.handle.net/1828/3472.

Повний текст джерела
Анотація:
We consider the sensitivity of high luminosity neutrino experiments to light stable states, as arise in scenarios of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate to the Standard model via light mediators, providing a portal for access to the dark matter state in colliders or fixed targets. This framework implies that neutrino beams produced at a fixed target will also carry an additional “dark matter beam”, which can mimic neutrino scattering off electrons or nuclei in the detector. We therefore develop a Monte Carlo code to simulate the production of a dark matter beam at two proton fixed-target facilities with high luminosity, LSND and MiniBooNE, and with this simulation determine the existing limits on light dark matter. We find in particular that MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are strongly constrained.
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fixed Target Experiment"

1

Nurushev, Sandibek B., Mikhail F. Runtso, and Mikhail N. Strikhanov. "Results of the Experiments with Fixed Targets." In Introduction to Polarization Physics, 401–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32163-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brugger, M., H. Burkhardt, B. Goddard, F. Cerutti, and R. G. Alia. "Interactions of Beams with Surroundings." In Particle Physics Reference Library, 183–203. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_5.

Повний текст джерела
Анотація:
AbstractWith the exceptions of Synchrotron Radiation sources, beams of accelerated particles are generally designed to interact either with one another (in the case of colliders) or with a specific target (for the operation of Fixed Target experiments, the production of secondary beams and for medical applications). However, in addition to the desired interactions there are unwanted interactions of the high energy particles which can produce undesirable side effects. These interactions can arise from the unavoidable presence of residual gas in the accelerator vacuum chamber, or from the impact of particles lost from the beam on aperture limits around the accelerator, as well as the final beam dump. The wanted collisions of the beams in a collider to produce potentially interesting High Energy Physics events also reduces the density of the circulating beam and can produce high fluxes of secondary particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Millward, Jason M., João S. Periquito, Paula Ramos Delgado, Christian Prinz, Thoralf Niendorf, and Sonia Waiczies. "Preparation of Ex Vivo Rodent Phantoms for Developing, Testing, and Training MR Imaging of the Kidney and Other Organs." In Methods in Molecular Biology, 75–85. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0978-1_5.

Повний текст джерела
Анотація:
AbstractHere we describe a simple and inexpensive protocol for preparing ex vivo rodent phantoms for use in MR imaging studies. The experimental animals are perfused and fixed with formaldehyde, and then wrapped with gauze and sealed with liquid latex. This yields a phantom that preserves all organs in situ, and which avoids the need to keep fixed animals and organs in containers that have dimensions very different from living animals. This is especially important for loading in MR detectors, and specifically the RF coils, they are usually used with. The phantom can be safely stored and conveniently reused, and can provide MR scientists with a realistic phantom with which to establish protocols in preparation for preclinical in vivo studies—for renal, brain, and body imaging. The phantom also serves as an ideal teaching tool, for trainees learning how to perform preclinical MRI investigations of the kidney and other target organs, while avoiding the need for handling living animals, and reducing the total number of animals required.This protocol chapter is part of the PARENCHIMA initiative “MRI Biomarkers for CKD” (CA16103), a community-driven Action of the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SOUDER, P. A. "Charged Lepton-Hadron Asymmetries in Fixed Target Experiments." In Precision Tests of the Standard Electroweak Model, 599–625. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503662_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Keith Baker, Oliver. "Quantum Information Science in High Energy Physics." In Topics on Quantum Information Science [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98577.

Повний текст джерела
Анотація:
We demonstrate that several anomalies seen in data from high energy physics experiments have their origin in quantum entanglement, and quantum information science more generally. A few examples are provided that help clarify this proposition. Our research clearly shows that there is a thermal behavior in particle kinematics from high energy collisions at both collider and fixed target experiments that can be attributed to quantum entanglement and entanglement entropy. And in those cases where no quantum entanglement is expected, the thermal component in the kinematics is absent, in agreement with our hypothesis. We show evidence that these phenomena are interaction independent, but process dependent, using results from proton-proton scattering at the Large Hadron Collider (LHC) and antineutrino-nucleus scattering at Fermilab. That is, this thermal behavior due to quantum entanglement is shown to exist in both the strong and electroweak interactions. However, the process itself must include quantum entanglement in the corresponding wave functions of interacting systems in order for there to be thermalization.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Terranova, Francesco. "Scattering and decay." In A Modern Primer in Particle and Nuclear Physics, 19–57. Oxford University PressOxford, 2021. http://dx.doi.org/10.1093/oso/9780192845245.003.0002.

Повний текст джерела
Анотація:
Abstract Chapter 2 introduces the language of particle physics offering a student-friendly and detailed explanation of the covariant formalism and the rationale behind it. It introduces relativistic kinematics from the conservation of four-momentum and apply it to one- two- and three-particle decays. The Fermi golden rule is the anchor to describe the dynamics of particles and the rule is extended to be compatible with special relativity. Here the chapter clarifies the concept of “unstable particles” and derives the Breit–Wignet distribution from Heisenberg’s uncertainty principle. Particle scattering and cross-sections are introduced in analogy with decays, with special emphasis on fixed-target and collider experiments. The chapter closes by providing the fully covariant formula for the scattering of two particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Histochemistry." In Histological Techniques: An Introduction for Beginners in Toxicology, 275–95. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781849739924-00275.

Повний текст джерела
Анотація:
The processes of histochemistry and its sub-type, immunohistochemistry (IHC), allow the researcher to delve further and more specifically into the chemical characteristics of their specimens and samples. They can specifically identify proteins and reveal changes that have been induced by your experimental manipulations. Paramount to producing standardised and reproducible results is the initial design and preliminary optimisation of the histochemical study. Therefore, clear positive and negative controls are essential for determining the success of your staining whether this is using chemical or immunological interactions for identifying your target of interest. There are many different histochemical techniques available; we focus on the most common and standard methods for specifically labelling proteins in formalin-fixed paraffin tissue sections. In particular, we will devote the latter half of the chapter to the discussion of immunohistochemistry, which has become a vital component of research studies across many disciplines. Due to the occasionally finicky nature of IHC optimisation, we have also provided some basic advice on troubleshooting your protocols.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"The Ecology and Management of Wood in World Rivers." In The Ecology and Management of Wood in World Rivers, edited by PETER A. BISSON, STEVEN M. WONDZELL, GORDON H. REEVES, and STAN V. GREGORY. American Fisheries Society, 2003. http://dx.doi.org/10.47886/9781888569568.ch21.

Повний текст джерела
Анотація:
<em>Abstract.</em>—Advances in understanding wood dynamics in rivers of western North America have led to several important management trends. First, there is a trend away from using “hard” engineering approaches to anchoring wood in streams toward using “soft” placement techniques that allow some wood movement. Second, wood is being placed in locations where channel form and hydraulics favor stability and where wood is likely to accumulate. Third, there is an increased emphasis on passive recruitment of wood from natural source areas (instead of active placement) where the likelihood that it will enter streams through channel migration, windthrow, and landslides is high. Fourth, restoration targets for wood loads are incorporating landscape-scale objectives; thus, managing wood to emulate the spatial and temporal variability produced by natural disturbances is replacing fixed prescriptions for wood in individual reaches. Predicting the effects of wood restoration on individual fish populations in western North America is problematic because local biophysical conditions generate so much experimental noise that it is rarely possible to partition the effects of wood restoration from other sources of variation. Development of appropriate monitoring techniques, combined with a regional network of experimental catchments that include restored and unrestored streams, would help track changes in population status and gauge the effectiveness of wood restoration efforts.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fixed Target Experiment"

1

"The status of the KLOE experiment." In Heavy quarks at fixed target. American Institute of Physics, 1999. http://dx.doi.org/10.1063/1.57742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Status of the HERA-B experiment." In Heavy quarks at fixed target. American Institute of Physics, 1999. http://dx.doi.org/10.1063/1.57783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barberis, D., C. Gemme, and L. Malferrari. "Charm and beauty production in experiment WA92." In Heavy quarks at fixed target. American Institute of Physics, 1999. http://dx.doi.org/10.1063/1.57763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"The COMPASS experiment at CERN: Prospects for charm and structure function measurements." In Heavy quarks at fixed target. American Institute of Physics, 1999. http://dx.doi.org/10.1063/1.57757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

James, C., R. A. Burnstein, A. Chakravorty, A. Chan, Y. C. Chen, W. S. Choong, K. Clark, et al. "CP violation in strange baryon decays: A report from Fermilab experiment 871." In Heavy quarks at fixed target. American Institute of Physics, 1999. http://dx.doi.org/10.1063/1.57786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ceccucci, Augusto. "Towards results on direct CP violation in Kaon decays from the CERN-SPS experiment NA48." In Heavy quarks at fixed target. American Institute of Physics, 1999. http://dx.doi.org/10.1063/1.57743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gemme, Claudia. "Beauty hadroproduction at fixed target in WA92 experiment." In INTERSECTIONS BETWEEN PARTICLE AND NUCLEAR PHYSICS. ASCE, 1997. http://dx.doi.org/10.1063/1.54269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rakotozafindrabe, Andry, Mauro Anselmino, R. Arnaldi, E. Scomparin, Stanley J. Brodsky, Valérie Chambert, Jean-Pierre Didelez, et al. "AFTER@LHC: A Fixed-Target ExpeRiment at the LHC." In XXI International Workshop on Deep-Inelastic Scattering and Related Subjects. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.191.0250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Echevarria, Miguel G., S. J. Brodsky, G. Cavoto, C. Da Silva, F. Donato, E. G. Ferreiro, C. Hadjidakis, et al. "Spin Physics with a fixed-target experiment at the LHC." In 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lansberg, Jean-Philippe, Valérie Chambert, Jean-Pierre Didelez, Bernard Genolini, Cynthia Hadjidakis, Cedric Lorcé, Philippe Rosier, et al. "Prospective for A Fixed-Target ExpeRiment at the LHC: AFTER @ LHC." In 36th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.174.0547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Fixed Target Experiment"

1

Begel, Michael. Production of High Mass Pairs of Direct Photons and Neutral Mesons in a Tevatron Fixed Target Experiment. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/1421514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Avvakumov, Sergey E. Search for muon neutrino (anti-muon neutrino) ---> electron neutrino (anti-electron neutrino) oscillations in the E815 (NuTeV) fixed target neutrino experiment at Fermilab. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/1420960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gutierrez, Gaston, and Marco A. Reyes. Fixed target experiments at the Fermilab Tevatron. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1209250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gardner, R. Charm production physics from Fermilab fixed-target experiments. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/79134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tsai, Yu-Dai, Gabriel Magill, Ryan Plestid, Maxim Pospelov, and Kevin Kelly. Fixed-Target Minicharge Searches: FerMINI and Neutrino Experiments. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1524808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Russ, J., R. Yarema, and T. Zimmerman. Studies of the LBL CMOS Integrated Amplifier / Discriminator for Randomly Timed Inputs from Fixed Target Experiments. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/1151483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Proposed Fermilab fixed target experiment: Kaons at the Tevatron. Environmental Assessment. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10144211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії