Добірка наукової літератури з теми "Fixation CO2"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fixation CO2".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fixation CO2":

1

SAIKI, Hiroshi. "Biological CO2 Fixation." Shigen-to-Sozai 110, no. 14 (1994): 1075–81. http://dx.doi.org/10.2473/shigentosozai.110.1075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Javor, Barbara J. "CO2 fixation in halobacteria." Archives of Microbiology 149, no. 5 (March 1988): 433–40. http://dx.doi.org/10.1007/bf00425584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Qi Peng, Xiu Lin Wang, Xiao Yong Shi, Ke Qiang Li, and Li Hong Yue. "Study on Biological Fixation of High-Concentration CO2 Using Chlorella Pyrenoidosa." Advanced Materials Research 343-344 (September 2011): 361–67. http://dx.doi.org/10.4028/www.scientific.net/amr.343-344.361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
CO2 emissions have serious impact on the world economy, especially at high-concentration. Green algae are known to have a tolerance to high CO2 level. In this paper, the rate of CO2 fixation using Chlorella Pyrenoidosa was analyzed in different environments. 1) Chlorella Pyrenoidosa fixed CO2 slowly in air, while this alga could rapidly grow in high-concentration CO2 until CO2 level was beyond 10%. At 25% CO2, the rate of CO2 fixation was lower than that at 10% CO2, but still 1.18 times as higher as in air. 2) At lower initial inoculation density of Chlorella Pyrenoidosa, its growth rate was relatively high but the rate of CO2 fixation was low. When initial inoculation density beyond 0.187×108cells/ml, the average rate of CO2 fixation was ranged from 2.786 gCO2/L·d to 2.847 gCO2/L·d. 3) During the five days, the average rate of CO2 fixation was 3.044 gCO2/L·d in NaNO3 resource. When NH4Cl or NaNO2 is regarded as N resource, the rate of CO2 fixation was almost neglectable.
4

Hungate, B. A., B. D. Duval, P. Dijkstra, D. W. Johnson, M. E. Ketterer, P. Stiling, W. Cheng, J. Millman, A. Hartley, and D. B. Stover. "Nitrogen inputs and losses in response to chronic CO<sub>2</sub> exposure in a subtropical oak woodland." Biogeosciences 11, no. 12 (June 23, 2014): 3323–37. http://dx.doi.org/10.5194/bg-11-3323-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Rising atmospheric CO2 concentrations may alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 years of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light or nutrients in shaping the response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on nonsymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response of N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.
5

Hungate, B. A., B. D. Duval, P. Dijkstra, D. W. Johnson, M. E. Ketterer, P. Stiling, W. Cheng, J. Millman, A. Hartley, and D. B. Stover. "Nitrogen inputs and losses in response to chronic CO<sub>2</sub> exposure in a sub-tropical oak woodland." Biogeosciences Discussions 11, no. 1 (January 2, 2014): 61–106. http://dx.doi.org/10.5194/bgd-11-61-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Rising atmospheric CO2 concentrations could alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 yr of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light and nutrients in shaping response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on asymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient, and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.
6

Braun, Alexander, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler. "Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling." Biogeosciences 18, no. 12 (June 21, 2021): 3689–700. http://dx.doi.org/10.5194/bg-18-3689-2021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Heterotrophic CO2 fixation is a significant yet underappreciated CO2 flux in environmental carbon cycling. In contrast to photosynthesis and chemolithoautotrophy – the main recognized autotrophic CO2 fixation pathways – the importance of heterotrophic CO2 fixation remains enigmatic. All heterotrophs – from microorganisms to humans – take up CO2 and incorporate it into their biomass. Depending on the availability and quality of growth substrates, and drivers such as the CO2 partial pressure, heterotrophic CO2 fixation contributes at least 1 %–5 % and in the case of methanotrophs up to 50 % of the carbon biomass. Assuming a standing stock of global heterotrophic biomass of 47–85 Pg C, we roughly estimate that up to 5 Pg C might be derived from heterotrophic CO2 fixation, and up to 12 Pg C yr−1 originating from heterotrophic CO2 fixation is funneled into the global annual heterotrophic production of 34–245 Pg C yr−1. These first estimates on the importance of heterotrophic fixation of inorganic carbon indicate that this pathway should be incorporated in present and future carbon cycling budgets.
7

Pu, Xin, and Yejun Han. "Promotion of Carbon Dioxide Biofixation through Metabolic and Enzyme Engineering." Catalysts 12, no. 4 (April 3, 2022): 399. http://dx.doi.org/10.3390/catal12040399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Carbon dioxide is a major greenhouse gas, and its fixation and transformation are receiving increasing attention. Biofixation of CO2 is an eco–friendly and efficient way to reduce CO2, and six natural CO2 fixation pathways have been identified in microorganisms and plants. In this review, the six pathways along with the most recent identified variant pathway were firstly comparatively characterized. The key metabolic process and enzymes of the CO2 fixation pathways were also summarized. Next, the enzymes of Rubiscos, biotin-dependent carboxylases, CO dehydrogenase/acetyl-CoA synthase, and 2-oxoacid:ferredoxin oxidoreductases, for transforming inorganic carbon (CO2, CO, and bicarbonate) to organic chemicals, were specially analyzed. Then, the factors including enzyme properties, CO2 concentrating, energy, and reducing power requirements that affect the efficiency of CO2 fixation were discussed. Recent progress in improving CO2 fixation through enzyme and metabolic engineering was then summarized. The artificial CO2 fixation pathways with thermodynamical and/or energetical advantages or benefits and their applications in biosynthesis were included as well. The challenges and prospects of CO2 biofixation and conversion are discussed.
8

Luo, Shanshan, Paul P. Lin, Liang-Yu Nieh, Guan-Bo Liao, Po-Wen Tang, Chi Chen, and James C. Liao. "A cell-free self-replenishing CO2-fixing system." Nature Catalysis 5, no. 2 (February 2022): 154–62. http://dx.doi.org/10.1038/s41929-022-00746-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractBiological CO2 fixation is so far the most effective means for CO2 reduction at scale and accounts for most of the CO2 fixed on Earth. Through this process, carbon is fixed in cellular components and biomass during organismal growth. To uncouple CO2 fixation from growth and cellular regulation, cell-free CO2 fixation systems represent an alternative approach since the rate can be independently manipulated. Here we designed an oxygen-insensitive, self-replenishing CO2 fixation system with opto-sensing. The system comprises a synthetic reductive glyoxylate and pyruvate synthesis (rGPS) cycle and the malyl-CoA-glycerate (MCG) pathway to produce acetyl-coenzyme A (CoA), pyruvate and malate from CO2, which are also intermediates in the cycle. We solved various problems associated with the in vitro system, and implemented opto-sensing modules to control the regeneration of cofactors. We accomplished sustained operation for 6 hours with a CO2-fixing rate comparable to or greater than typical CO2 fixation rates of photosynthetic or lithoautotrophic organisms.
9

Gong, Fuyu, Zhen Cai, and Yin Li. "Synthetic biology for CO2 fixation." Science China Life Sciences 59, no. 11 (October 26, 2016): 1106–14. http://dx.doi.org/10.1007/s11427-016-0304-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

TANAKA, KOJI. "CO2 fixation by enzyme model." Kagaku To Seibutsu 30, no. 8 (1992): 530–32. http://dx.doi.org/10.1271/kagakutoseibutsu1962.30.530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Fixation CO2":

1

Paoli, George Carl. "Organization and regulation of the Rhodobacter capsulatus CO2 fixation genes /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487943610782543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Castro, Gómez Fernando Simón. "Theoretical studies on transition metal catalyzed carbon dioxide fixation." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/403368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
S’han dut a terme estudis teòrics amb la finalitat d’avaluar mecanismes de reacció per a processos de fixació de CO2, catalitzats per complexos de metalls de transició. D’aquesta forma, s’han descrit detalladament els passos del mecanisme de reacció (reaccions d’opertura d’anell, inserció de CO2 i tancament de l’anell) per la formació de carbonats cíclics a partir de CO2 i diferents epòxids, sota l’acció catalítica de complexos de Zn(salen), conjuntament amb Nbu4X (X = I, Br). Les energies d’activació calculades DFT calculationsmitjançant DFT són qualitatives, seguint la línea dels resultats experimentals. Per altra banda, es va considerar un catalitzador d’alumini realment actiu per estudiar aquesta reacció però des d’un punt de vista quantitatiu. D’aquesta forma, es va examinar l’activitat del sistema catalític mitjançant el càlcul teòric de les freqüències de repetició (TOFs). Els resultats obtinguts es varen trobar en el mateix ordre de magnitud que en el cas dels experiments. L’últim mecanimse estudiat involucra la eracció de copolimerització entre CO2 i òxid de ciclohexè, catalitzat per un sistema binari format per l’esmentat complex d’alumini i NBu4I. Es van suposar tres possibles rutes per descriure la reacció depenent del nombre de catalitzadors involucrats en la reacció de propagació. Els resultats sugereixen que la copolimerització alternada és més favorable respecte la formació de carbonat cíclic. A més dels estudis anteriors, es van utilitzar mètodes d’espectrometria de masses de mobilitat d’ions (IM-MS) per a proporcionar informació estructural sobre una sèrie de complexos de metalls de transició involucrats en catàlisi homogènia. Es varen determinar les seccions eficaces de col•lisió (CCS) teòriques i es van ser comparades amb les resultants dels experiments de IM-MS. El resultat obtingut concordava perfectament entre ambdues metodologies.
Se han llevado a cabo estudios teóricos con el fin de evaluar mecanismos de reacción para procesos de fijación de CO2 catalizados por complejos de metales de transición. De este modo, se describieron detalladamente los pasos del mecanismo de reacción (reacciones de apertura de anillo, de inserción de CO2 y de cierre de anillo) para la formación catalítica de carbonatos cíclicos a partir de CO2 y diferentes epóxidos, basada en complejos de Zn(salen), conjuntamente con NBu4X (X = I, Br). Se encontró que las energías de activación DFT calculadas están de manera cualitativa en línea con los resultados experimentales. Por otra parte, se consideró un catalizador de aluminio altamente activo para estudiar la misma reacción, pero desde un punto de vista cuantitativo. Así pues, se examinó la actividad del sistema catalizador mediante el cálculo teórico de las frecuencias de repetición (TOFs). Estas últimas resultaron en el mismo orden de magnitud que los experimentos. El último de los mecanismos estudiados aquí involucra la reacción de copolimerización entre CO2 y óxido de ciclohexeno catalizada por el sistema binario compuesto por dicho complejo de aluminio y NBu4I. Se encontraron tres posibles rutas para describir la reacción dependiendo el número de catalizadores involucrados en la reacción de propagación. Los resultados sugieren que la copolimerización alternada es más favorable con respecto a la formación del carbonato cíclico. Además de los estudios anteriores, se usaron métodos de espectrometría de masas de movilidad iónica (IM-MS) para proporcionar información estructural sobre una serie de complejos de metales de transición involucrados en catálisis homogénea. Se determinaron las secciones eficaces de colisión (CCS) teóricas y se compararon con las resultantes de los experimentos IM-MS. Se encontró un excelente acuerdo entre el resultado de ambas metodologías.
Theoretical studies have been conducted in order to evaluate reaction mechanisms for CO2 fixation processes catalyzed by transition metal complexes. Thus, detailed mechanistic steps (ring-opening, CO2 insertion and ring-closing reactions) were described for the catalytic formation of cyclic carbonates from CO2 and a series of epoxides based on Zn(salen) complexes, in conjunction with NBu4X(X=I, Br). The computed DFT activation energies were found to be qualitatively in line with the experimental findings. Moreover, a highly active Al catalyst (derived from amino triphenolate ligands) was considered to study the same reaction, but from a quantitative point of view. In light of this, the activity of this catalyst system was examined by means of the theoretical calculation of frequencies (TOFs). The latter resulted in the same order of magnitude as the experiments. The last mechanism studied here comprises the copolymerization reaction between CO2 and cyclohexene oxide mediated by the binary system composed of the aforementioned Al complex species and NBu4I. Three possible pathways were found to describe the reaction depending on the number of Al complexes involved in the propagation step. Results suggest that the alternating copolymerization should be the most favorable pathway over the formation of the five-membered cyclic carbonate product. In addition to the above studies, methods of ion mobility mass spectrometry (IM-MS) have been employed to provide structural information on a series of transition metal complexes involved in homogeneous catalysis. Theoretical collision cross sections (CCSs) were determined and compared with those resulting from IM-MS experiments. The outcome from both methodologies yielded excellent agreement.
3

Spona-Friedl, Marina [Verfasser]. "Substrate dependent heterotrophic CO2-fixation as indicator for metabolic phenotypes / Marina Spona-Friedl." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1219903590/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cozzolino, Mariachiara. "CO2 fixation in cyclic carbonates and polycarbonates by salen-like based metal complexes." Doctoral thesis, Universita degli studi di Salerno, 2019. http://elea.unisa.it:8080/xmlui/handle/10556/4254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
2017 - 2018
At the current rate of consumption of petroleum resources, they are predicted to be exhausted within the next century. For this reason, the development of new chemical processes using biorenewable resources is attracting an increasing interest... [edited by Author]
XXXI ciclo
5

Preiner, Martina [Verfasser], William [Gutachter] Martin, and Michael [Gutachter] Schmitt. "The abiotic pattern of biotic CO2 fixation / Martina Preiner ; Gutachter: William Martin, Michael Schmitt." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2020. http://d-nb.info/1206414278/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yoshida, Shosuke. "Engineering of a Type III Rubisco from a Hyperthermophilic Archaeon Aimed to Enhance Catalytic Performance at Ambient Temperatures." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/57249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第13793号
工博第2897号
新制||工||1428(附属図書館)
26009
UT51-2008-C709
京都大学大学院工学研究科合成・生物化学専攻
(主査)教授 今中 忠行, 教授 青山 安宏, 教授 濵地 格
学位規則第4条第1項該当
7

Kirstetter, Anne-Sophie. "Etude de la fixation du carbone inorganique chez la levure pour la production industrielle de molécules d’intérêt." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC015/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ces dernières années ont vu un grand développement des biotechnologies blanches et de l'ingénierie métabolique avec l'objectif de remplacer les procédés de synthèse de molécules d’intérêt de l’industrie chimique classique par des voies de synthèse biologique. Dans ce contexte, les réactions anaplérotiques, qui produisent les acides dicarboxyliques, sont particulièrement intéressantes puisqu'au delà de la production de ces molécules d’intérêt elles permettent une fixation nette de carbone, réduisant ainsi l’impact environnemental des procédés. Ce travail de thèse a donc porté sur l'élaboration d'une stratégie d'ingénierie métabolique faisant appel à des réactions de fixation de carbone inorganique chez la levure pour la production d'acide malique, une molécule plateforme ayant de nombreuses applications industrielles. La levure Saccharomyces cerevisiae a été choisie comme hôte pour sa commodité d’utilisation dans les procédés industriels et ses nombreux outils génétiques. L'approche développée repose sur la mise en place d'une voie de production d'acide malique par surexpression de la phosphonéolpyruvate carboxylase d'Escherichia coli (PEPC), de la malate déshydrogénase peroxysomale de S. cerevisiae relocalisée dans le cytosol (MDH) et du transporteur d'acides dicarboxyliques de Schizosaccharomyces pombe. La souche de levure recombinante obtenue a été caractérisée lors d'essais en fioles, en présence notamment de carbonate de calcium pour assurer un apport de carbone inorganique. Ces essais ont permis de mettre en évidence un effet stimulant de l'apport de carbone inorganique sur la production de malate et d'obtenir des concentrations de malate de l'ordre de 2,5 g/L à partir de 50 g/L de glucose, pour un rendement maximal de 0,046 gramme de malate par gramme de glucose. Des essais en bioréacteur de 5 L en présence d'air ou d'air enrichi à 5% de CO2 ont montré un effet positif de l'apport de carbone inorganique sous forme de dioxyde de carbone sur la production de malate. La concentration maximale de malate obtenue est de 1,46 g/L à partir de 50 g/L de glucose, soit un rendement de 0,029 gramme de malate par gramme de glucose. Des souches intermédiaires exprimant la PEPC et la MDH obtenues pour la production de malate ont également été caractérisées pour la production d'éthanol, car elles semblaient présenter une augmentation du rendement de production d'éthanol par effet transhydrogénase par rapport à la souche sauvage. Les essais n'ont cependant pas permis de confirmer cette augmentation de rendement
White biotechnologies have been developing quickly during the last decades, aiming at replacing chemical syntheses by biological processes for the industrial production of target compounds. In this context, the implementation of anaplerotic reactions in the metabolism is of great interest, since those reactions allow both production of dicarboxylic acids and direct fixation of inorganic carbon. This work is about the development of a metabolic engineering strategy using inorganic carbon fixation reactions to produce malic acid, a compound with various industrial applications. The yeast Saccharomyces cerevisiae was chosen as a host for its convenient use in industrial processes and the availability of genetic tools. The approach developed to produce malic acid is based on the overexpression of Escherichia coli phosphoenolpyruvate carboxylase (PEPC), S. cerevisiae peroxysomale malate dehydrogenase relocated in the cytosol (MDH) and Schizosaccharomyces pombe dicarboxylic acid carrier. A recombinant yeast strain expressing those three genes was obtained and characterised in shake-flasks experiments, involving more specifically calcium carbonate as an inorganic carbon source. Those experiments showed an enhancement of the malate production in the presence of calcium carbonate and allowed to obtain a concentration of 2.5 g/L from 50 g/L glucose, for a maximal yield of 0.046 gram malate per gram glucose. Fermentation experiments were performed in a 5 L bioreactor in the presence of air or 5% CO2 enriched air; they confirmed the positive effect of inorganic carbon addition as CO2 on malate production. A malate concentration of 1.46 g/L from 50 g/L glucose was obtained, giving a yield of 0.029 gram malate per gram glucose. Intermediate recombinant strains expressing PEPC and MDH were also characterised, for ethanol production, as they seemed to give increased ethanol yields, probably due to a transhydrogenase effect. Shake flasks and bioreactors experiments did unfortunately not confirm the yield improvement
8

Joshi, Gauri Suresh. "Regulation of CO2 fixation in Rhodopseudomonas palustris mediated by a unique two-component regulatory system." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1273605616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Garcia, Susana. "Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures." Thesis, University of Nottingham, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carrillo, Camacho Martina [Verfasser], and Tobias J. [Akademischer Betreuer] Erb. "Implementation of CO2 fixation pathways into Methylorubrum extorquens AM1 / Martina Carrillo Camacho ; Betreuer: Tobias J. Erb." Marburg : Philipps-Universität Marburg, 2021. http://d-nb.info/1229619917/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Fixation CO2":

1

Steenbock Symposium (14th 1984 University of Wisconsin-Madison). Nitrogen fixation and CO2 metabolism: A Steenbock Symposium in honor of Professor Robert H. Burris. Edited by Ludden Paul W, Burris John E, and Burris R. H. New York: Elsevier, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Symposium on Host-Guest Molecular Interactions: from Chemistry to Biology (1990 : Ciba Foundation), ed. Host-guest molecular interactions: From chemistry to biology. Chichester: Wiley, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ishida, Hitoshi, Charles Machan, Marc Robert, and Nobuharu Iwasawa, eds. Molecular Catalysts for CO2 Fixation/Reduction. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-622-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Halmann, Martin M. Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products. CRC Press, 2018. http://dx.doi.org/10.1201/9781315139098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Halmann, Martin M. Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Halmann, Martin M. Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halmann, Martin M. Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halmann, Martin M. Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Amit. Photocatalysis. Edited by Gaurav Sharma. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photocatalysis is important in fighting environmental pollution, such as pharmaceutical effluents, dyes, pesticides and endocrine disruptors. It is also used for the production of clean energy, e.g. by way of hydrogen production from watersplitting, or CO2 conversion into fuels. Further, photocatalytic N2 fixation is promising for achieving sustainable ammonia synthesis. The book discusses new materials and reaction engineering techniques, such as heterojunction formations, composites, ion exchangers, photocatalytic membranes, etc.
10

(Editor), Jenó Manninger, Ulrich Bosch (Editor), Peter Cserháti (Editor), Károly Fekete (Editor), and György Kazár (Editor), eds. Internal fixation of femoral neck fractures: An Atlas. Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fixation CO2":

1

Dow, C. S. "CO2 Fixation in Rhodopseudomonas Blastica." In Microbial Growth on C1 Compounds, 28–37. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3539-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ravanchi, Maryam Takht, and Mansooreh Soleimani. "Porous Materials for CO2 Fixation." In Chemo-Biological Systems for CO2 Utilization, 161–88. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Harris, Mark. "The Chemistry of CO2 Fixation." In The Science of Global Warming Remediation, 79–84. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003341826-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maeda, Kazuhiko. "Photocatalytic Approach for CO2 Fixation." In Lecture Notes in Energy, 153–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25400-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meijer, W. G. "Genetics of CO2 fixation in methylotrophs." In Microbial Growth on C1 Compounds, 118–25. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0213-8_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Banerjee, Priya, Uttariya Roy, Avirup Datta, and Aniruddha Mukhopadhyay. "Novel Composite Materials for CO2 Fixation." In Chemo-Biological Systems for CO2 Utilization, 189–202. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fuchs, Georg, Siegfried Länge, Elisabeth Rude, Sigrid Schäfer, Rolf Schauder, Rudolf Schultz, and Erhard Stupperich. "Autotrophic CO2 Fixation in Chemotrophic Anaerobic Bacteria." In Microbial Growth on C1 Compounds, 39–43. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3539-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wadano, Akira, Manabu Tsukamoto, Yoshihisa Nakano, and Toshio Iwaki. "Modification of CO2 fixation of photosynthetic prokaryote." In Plant Responses to Air Pollution and Global Change, 149–56. Tokyo: Springer Japan, 2005. http://dx.doi.org/10.1007/4-431-31014-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wilson, Robert H., and Spencer M. Whitney. "Improving CO2 Fixation by Enhancing Rubisco Performance." In Directed Enzyme Evolution: Advances and Applications, 101–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50413-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gong, Fuyu, Huawei Zhu, Jie Zhou, Tongxin Zhao, Lu Xiao, Yanping Zhang, and Yin Li. "Enhanced Biological Fixation of CO2 Using Microorganisms." In An Economy Based on Carbon Dioxide and Water, 359–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15868-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fixation CO2":

1

Dewi, RG, UWR Siagian, KE Prasetya, SEF Sitanggang, A. Primananda, VTF Harisetyawan, IN Ikhsan, and GN Sevie. "CO2 BIO-FIXATION POTENTIAL IN POWER PLANT DEVELOPMENT TOWARDS INDONESIA’S DEEP DECARBONIZATION." In 7th International Conference on Sustainable Built Environment. Universitas Islam Indonesia, 2023. http://dx.doi.org/10.20885/icsbe.vol4.art23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Indonesia’s NDC target, both unconditional and conditional, has not significantly contributed to balancing GHG removals and emissions in three-quarters of the 21st century to keep global temperature increases below 1.5 °C. A more in-depth analysis is needed to reduce GHG emissions to preserve global temperatures at 1.5°C. The AIM-ExSS and AIM/Enduse models analyze Indonesia’s long-term (2050) power mitigation through several scenarios. (i) The BaU (Business as Usual) or baseline scenario assumes no effort to improve energy efficiency or add renewable energy since the base year, resulting in additional electricity needs being met by conventional fossil power plants. CM1: extended-conditional NDC (iii) CM2: Extended-unconditional NDC (iv) CM3 is an ambitious power decarbonization scenario. In 2050, CM1 and CM2 reduced GHG emissions by 22% and 24%, respectively. CM3 potentially reduces 2,422 million tons of CO2e, or 92% of the 2050 baseline emissions. CCS (carbon capture and storage) technology is a key technology for deep decarbonization in the power sector. In addition to geologic sequestration, CO2 bio-fixation by cultivating microalgae can be considered as CCS. This study assessed Airlift-Vertigro bio-reactors to cultivate Botryococcus braunii for CO2 bio-fixation and biofuel (microalgal oil), which can be used to achieve carbon neutrality in the power sector.
2

Berberog˘lu, Halil, Pedro S. Gomez, and Laurent Pilon. "Radiation Characteristics of Promising Algae for CO2 Fixation and Biofuel Production." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper reports experimental measurements of the radiation characteristics of green algae used for carbon dioxide fixation via photosynthesis. Particular attention was paid to three widely used species namely Botryococcus braunii, Chlorella sp., and Chlorococcum littorale. Their extinction and absorption coefficients were obtained from normal-normal and normal-hemispherical transmittance measurements over the spectral range from 400 to 800 nm. Moreover, a polar nephelometer is used to measure the scattering phase function of the microorganisms at 632.8 nm. It was observed that for all strains, scattering dominates over absorption. The magnitudes of the extinction and scattering cross-section are functions of the size, shape, and chlorophyll content of each strains in a non-trivial manner. Absorption peaks at 435, 475, and 676 nm corresponding to chlorophyll a and chlorophyll b have been clearly identified in the three species considered. The results can be used for scaling and optimization of CO2 fixation in ponds or photobioreactors as well as in the development of controlled ecological life support systems.
3

Brettfeld, Eliza-Gabriela, Daria-Gabriela Popa, Corina-Ioana Moga, Diana Constantinescu-Aruxandei, and Florin Oancea. "Optimization of an Experimental Model for Microalgae Cultivation with CO2 Fixation." In Priochem 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/chemproc2023013030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Du, Jijun, Qing Wang, Ping Zeng, and Fan Zhang. "The Cultivation of Mixed Microalgae and CO2 Fixation in a Photo-Bioreactor." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5514660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brettfeld, Eliza-Gabriela, Daria Gabriela Popa, Corina Moga, Tănase Dobre, Diana Constantinescu-Aruxandei, and Florin Oancea. "Sustainable CO2 Capture and Bio-Fixation Using Functionalized Deep Eutectic Solvents and Microalgae." In NeXT-Chem 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/proceedings2023090035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suzuki, Chika, Muneyuki Ishikawa, Yuki Kamimoto, and Ryoichi Ichino. "A study on Seaweed Beds in Eutrophic Regions assuming CO2 Dissolving and Fixation." In OCEANS 2015 - MTS/IEEE Washington. IEEE, 2015. http://dx.doi.org/10.23919/oceans.2015.7401871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mihaila, Eliza-Gabriela, Daria Gabriela Popa, Maria Daria Dima, Ioana Marcela Stoian, Cristian Florian Dinca, Diana Constantinescu-Aruxandei, and Florin Oancea. "Experimental Model for High-Throughput Screening of Microalgae Strains Useful for CO2 Fixation." In Priochem 2021. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/chemproc2022007025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Geiger, Robert, and David Staack. "Reforming and fixation of carbon oxides in atmospheric pressure non-thermal CO/CO2 plasmas." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Adachi, Tadashi, and Akiko Miya. "Microalgae Culturing Reactor for Carbon Dioxide Elimination and Oxygen Recovery - CO2 Fixation Activity Under Various Irradiation Cycle -." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Contreras, Elizabeth Q., and Ashok Santra. "Wellbore Integrity and CO2 Sequestration Using Polyaramide Vesicles." In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204385-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A new cementing additive is chemically engineered to react with formation fluids that act antagonistically towards cement. Engineered polymer capsules house encapsulants to react with antagonistic gases downhole like CO2 to form a more benign and beneficial material. Embedded in cement, the polymer capsules with semi-permeable shells allow fluids to permeate and react with encapsulants to produce beneficial byproducts, such as calcite and water from CO2. Reactivity between the encapsulant and antagonist gas CO2 is demonstrated using thermal gravimetric analysis (TGA) and other tests from oilfield equipment. When cement fails, casing-in-casing events, or CCA, causes antagonistic gases like CO2 to migrate to the surface. Embedded in the cement for such moments such as cement failure, additives housed within polyaramide vesicles chemically and physically intersect CO2 from gas migration events. The shape of the polyaramide additive is unique and versatile. Furthermore, because the material is polymeric, it imparts beneficial mechanical properties like elasticity to cement. A vesicle in form, this polymer allows the manufacturing of new cement additives for applications such as increasing the integrity and sustainability of oil well cement. Data also shows production of calcite by the bulk of the material. This technology applies to CO2 fixation and self-healing cement using reactive polymer vesicles.

Звіти організацій з теми "Fixation CO2":

1

Jessop, Phillip G. New Tools for CO2 Fixation by Homogeneous Catalysis - Final Technical Report. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/899864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

C. Henry Copeland, Paul Pier, Samantha Whitehead, and David Behel. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/902822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

C. Henry Copeland, Paul Pier, Samantha Whitehead, and David Behel. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/902823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

C. Henry Copeland, Paul Pier, Samantha Whitehead, Paul Enlow, Richard Strickland, and David Behel. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/825555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tabita, F. Robert. The ecology and genomics of C02 fixation in oceanic river plumes. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/937075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

PAUL, JOHN H. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1084239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kirchhoff, Helmut, and Ziv Reich. Protection of the photosynthetic apparatus during desiccation in resurrection plants. United States Department of Agriculture, February 2014. http://dx.doi.org/10.32747/2014.7699861.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this project, we studied the photosynthetic apparatus during dehydration and rehydration of the homoiochlorophyllous resurrection plant Craterostigmapumilum (retains most of the photosynthetic components during desiccation). Resurrection plants have the remarkable capability to withstand desiccation, being able to revive after prolonged severe water deficit in a few days upon rehydration. Homoiochlorophyllous resurrection plants are very efficient in protecting the photosynthetic machinery against damage by reactive oxygen production under drought. The main purpose of this BARD project was to unravel these largely unknown protection strategies for C. pumilum. In detail, the specific objectives were: (1) To determine the distribution and local organization of photosynthetic protein complexes and formation of inverted hexagonal phases within the thylakoid membranes at different dehydration/rehydration states. (2) To determine the 3D structure and characterize the geometry, topology, and mechanics of the thylakoid network at the different states. (3) Generation of molecular models for thylakoids at the different states and study the implications for diffusion within the thylakoid lumen. (4) Characterization of inter-system electron transport, quantum efficiencies, photosystem antenna sizes and distribution, NPQ, and photoinhibition at different hydration states. (5) Measuring the partition of photosynthetic reducing equivalents between the Calvin cycle, photorespiration, and the water-water cycle. At the beginning of the project, we decided to use C. pumilum instead of C. wilmsii because the former species was available from our collaborator Dr. Farrant. In addition to the original two dehydration states (40 relative water content=RWC and 5% RWC), we characterized a third state (15-20%) because some interesting changes occurs at this RWC. Furthermore, it was not possible to detect D1 protein levels by Western blot analysis because antibodies against other higher plants failed to detect D1 in C. pumilum. We developed growth conditions that allow reproducible generation of different dehydration and rehydration states for C. pumilum. Furthermore, advanced spectroscopy and microscopy for C. pumilum were established to obtain a detailed picture of structural and functional changes of the photosynthetic apparatus in different hydrated states. Main findings of our study are: 1. Anthocyan accumulation during desiccation alleviates the light pressure within the leaves (Fig. 1). 2. During desiccation, stomatal closure leads to drastic reductions in CO2 fixation and photorespiration. We could not identify alternative electron sinks as a solution to reduce ROS production. 3. On the supramolecular level, semicrystalline protein arrays were identified in thylakoid membranes in the desiccated state (see Fig. 3). On the electron transport level, a specific series of shut downs occur (summarized in Fig. 2). The main events include: Early shutdown of the ATPase activity, cessation of electron transport between cyt. bf complex and PSI (can reduce ROS formation at PSI); at higher dehydration levels uncoupling of LHCII from PSII and cessation of electron flow from PSII accompanied by crystal formation. The later could severe as a swift PSII reservoir during rehydration. The specific order of events in the course of dehydration and rehydration discovered in this project is indicative for regulated structural transitions specifically realized in resurrection plants. This detailed knowledge can serve as an interesting starting point for rationale genetic engineering of drought-tolerant crops.

До бібліографії