Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: First order dynamic.

Статті в журналах з теми "First order dynamic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "First order dynamic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

ÖZOĞUZ, BANU EBRU, YIĞIT GÜNDÜÇ, and MERAL AYDIN. "DYNAMIC SCALING FOR FIRST-ORDER PHASE TRANSITIONS." International Journal of Modern Physics C 11, no. 03 (May 2000): 553–59. http://dx.doi.org/10.1142/s0129183100000468.

Повний текст джерела
Анотація:
The critical behavior in short time dynamics for the q = 6 and 7 state Potts models in two-dimensions is investigated. It is shown that dynamic finite-size scaling exists for first-order phase transitions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bharadwaj, Shrikant R., and Clifton M. Schor. "Dynamic control of ocular disaccommodation: First and second-order dynamics." Vision Research 46, no. 6-7 (March 2006): 1019–37. http://dx.doi.org/10.1016/j.visres.2005.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sanner, Scott, and Kristian Kersting. "Symbolic Dynamic Programming for First-order POMDPs." Proceedings of the AAAI Conference on Artificial Intelligence 24, no. 1 (July 4, 2010): 1140–46. http://dx.doi.org/10.1609/aaai.v24i1.7747.

Повний текст джерела
Анотація:
Partially-observable Markov decision processes (POMDPs) provide a powerful model for sequential decision-making problems with partially-observed state and are known to have (approximately) optimal dynamic programming solutions. Much work in recent years has focused on improving the efficiency of these dynamic programming algorithms by exploiting symmetries and factored or relational representations. In this work, we show that it is also possible to exploit the full expressive power of first-order quantification to achieve state, action, and observation abstraction in a dynamic programming solution to relationally specified POMDPs. Among the advantages of this approach are the ability to maintain compact value function representations, abstract over the space of potentially optimal actions, and automatically derive compact conditional policy trees that minimally partition relational observation spaces according to distinctions that have an impact on policy values. This is the first lifted relational POMDP solution that can optimally accommodate actions with a potentially infinite relational space of observation outcomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dos Santos, Iguer Luis Domini, Sanket Tikare, and Martin Bohner. "First-order nonlinear dynamic initial value problems." International Journal of Dynamical Systems and Differential Equations 11, no. 3/4 (2021): 241. http://dx.doi.org/10.1504/ijdsde.2021.10040295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bohner, Martin, Sanket Tikare, and Iguer Luis Domini Dos Santos. "First-order nonlinear dynamic initial value problems." International Journal of Dynamical Systems and Differential Equations 11, no. 3/4 (2021): 241. http://dx.doi.org/10.1504/ijdsde.2021.117358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fu, Bin, and Qiongzhang Li. "The expressibility of first order dynamic logic." Journal of Computer Science and Technology 7, no. 3 (July 1992): 268–73. http://dx.doi.org/10.1007/bf02946577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pu, Yewen, Rastislav Bodik, and Saurabh Srivastava. "Synthesis of first-order dynamic programming algorithms." ACM SIGPLAN Notices 46, no. 10 (October 18, 2011): 83–98. http://dx.doi.org/10.1145/2076021.2048076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Atici, F. Merdivenci, and D. C. Biles. "First order dynamic inclusions on time scales." Journal of Mathematical Analysis and Applications 292, no. 1 (April 2004): 222–37. http://dx.doi.org/10.1016/j.jmaa.2003.11.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mantin, Benny, Daniel Granot, and Frieda Granot. "Dynamic pricing under first order Markovian competition." Naval Research Logistics (NRL) 58, no. 6 (July 12, 2011): 608–17. http://dx.doi.org/10.1002/nav.20470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Joshi, S., and R. Khardon. "Probabilistic Relational Planning with First Order Decision Diagrams." Journal of Artificial Intelligence Research 41 (June 21, 2011): 231–66. http://dx.doi.org/10.1613/jair.3205.

Повний текст джерела
Анотація:
Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of decision diagrams (FODD) and developed a value iteration algorithm for this representation. This paper develops several improvements to the FODD algorithm that make the approach practical. These include, new reduction operators that decrease the size of the representation, several speedup techniques, and techniques for value approximation. Incorporating these, the paper presents a planning system, FODD-Planner, for solving relational stochastic planning problems. The system is evaluated on several domains, including problems from the recent international planning competition, and shows competitive performance with top ranking systems. This is the first demonstration of feasibility of this approach and it shows that abstraction through compact representation is a promising approach to stochastic planning.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Erbe, Lynn, Taher Hassan, and Allan Peterson. "Oscillation criteria for first order forced dynamic equations." Applicable Analysis and Discrete Mathematics 3, no. 2 (2009): 253–63. http://dx.doi.org/10.2298/aadm0902253e.

Повний текст джерела
Анотація:
We obtain some new oscillation criteria for solutions to certain first order forced dynamic equations on a time scale T of the form x?(t) + r(t)??(x? (t)) + p(t)?? (x? (t)) + q(t)??(x?(t)) = f(t); with ??(u) :=?u?n-1, ?>0. > 0. Here r(t); p (t) ; q(t) and f (t) are rdcontinuous functions on T and the forcing term f(t) is not required to be the derivative of an oscillatory function. Our results in the special cases when T = R and T = N involve and improve some previous oscillation results for first-order differential and difference equations. An example illustrating the importance of our results is also included.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Schülke, L., and B. Zheng. "Dynamic approach to weak first-order phase transitions." Physical Review E 62, no. 5 (November 1, 2000): 7482–85. http://dx.doi.org/10.1103/physreve.62.7482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Binz, Tim, and Klaus-Jochen Engel. "First-order evolution equations with dynamic boundary conditions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2185 (October 19, 2020): 20190615. http://dx.doi.org/10.1098/rsta.2019.0615.

Повний текст джерела
Анотація:
In this paper, we introduce a general framework to study linear first-order evolution equations on a Banach space X with dynamic boundary conditions, that is with boundary conditions containing time derivatives. Our method is based on the existence of an abstract Dirichlet operator and yields finally to equivalent systems of two simpler independent equations. In particular, we are led to an abstract Cauchy problem governed by an abstract Dirichlet-to-Neumann operator on the boundary space ∂ X . Our approach is illustrated by several examples and various generalizations are indicated. This article is part of the theme issue ‘Semigroup applications everywhere’.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Atici, FM, and DC Biles. "First- and second-order dynamic equations with impulse." Advances in Difference Equations 2005, no. 2 (2005): 193525. http://dx.doi.org/10.1155/ade.2005.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Xue, Shuqiang, Yuanxi Yang, Yamin Dang, and Wu Chen. "Dynamic positioning configuration and its first-order optimization." Journal of Geodesy 88, no. 2 (December 3, 2013): 127–43. http://dx.doi.org/10.1007/s00190-013-0683-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Wang, Yongzhao, Qian Liu, and Qiansheng Feng. "Periodic problem of first order nonlinear uncertain dynamic systems." Journal of Nonlinear Sciences and Applications 10, no. 12 (December 9, 2017): 6288–97. http://dx.doi.org/10.22436/jnsa.010.12.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Benchohra, M., J. Henderson, S. K. Ntouyas‡, and A. Ouahab. "On First Order Impulsive Dynamic Equations on Time Scales." Journal of Difference Equations and Applications 10, no. 6 (May 2004): 541–48. http://dx.doi.org/10.1080/10236190410001667986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

van Eijck, J. "Tableau reasoning and programming with dynamic first order logic." Logic Journal of IGPL 9, no. 3 (May 1, 2001): 411–45. http://dx.doi.org/10.1093/jigpal/9.3.411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Braverman, Elena, and Başak Karpuz. "Nonoscillation of First-Order Dynamic Equations with Several Delays." Advances in Difference Equations 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/873459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Battaglini, Marco, and Rohit Lamba. "Optimal dynamic contracting: The first‐order approach and beyond." Theoretical Economics 14, no. 4 (2019): 1435–82. http://dx.doi.org/10.3982/te2355.

Повний текст джерела
Анотація:
We explore the conditions under which the “first‐order approach” (FO approach) can be used to characterize profit maximizing contracts in dynamic principal–agent models. The FO approach works when the resulting FO‐optimal contract satisfies a particularly strong form of monotonicity in types, a condition that is satisfied in most of the solved examples studied in the literature. The main result of our paper is to show that except for nongeneric choices of the stochastic process governing the types' evolution, monotonicity and, more generally, incentive compatibility are necessarily violated by the FO‐optimal contract if the frequency of interactions is sufficiently high (or, equivalently, if the discount factor, time horizon, and persistence in types are sufficiently large). This suggests that the applicability of the FO approach is problematic in environments in which expected continuation values are important relative to per period payoffs. We also present conditions under which a class of incentive compatible contracts that can be easily characterized is approximately optimal.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wang, Da-Bin, Jian-Ping Sun, and Xiao-Jun Li. "Positive Solutions for System of First-Order Dynamic Equations." Discrete Dynamics in Nature and Society 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/371285.

Повний текст джерела
Анотація:
We study the existence of positive solutions to the system of nonlinear first-order periodic boundary value problems on time scalesxΔ(t)+P(t)x(σ(t))=F(t,x(σ(t))),t∈[0,T]T,x(0)=x(σ(T)), by using a well-known fixed point theorem in cones. Moreover, we characterize the eigenvalue intervals forxΔ(t)+P(t)x(σ(t))=λH(t)G(x(σ(t))),t∈[0,T]T,x(0)=x(σ(T)).
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Occhipinti Liberman, Andrés, Andreas Achen, and Rasmus Kræmmer Rendsvig. "Dynamic term-modal logics for first-order epistemic planning." Artificial Intelligence 286 (September 2020): 103305. http://dx.doi.org/10.1016/j.artint.2020.103305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Cingara, Aleksandar, Miodrag Jovanovic, and Milan Mitrovic. "Analytical first-order dynamic model of binary distillation column." Chemical Engineering Science 45, no. 12 (1990): 3585–92. http://dx.doi.org/10.1016/0009-2509(90)87161-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Selvam, A. George Maria, M. Paul Loganathan, and S. Janci Rani. "Existence of Nonoscillatory Solutions of First-order Neutral Dynamic Equations." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 6 (June 30, 2017): 671–79. http://dx.doi.org/10.23956/ijarcsse/v7i6/0310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Bohner, Martin, and Allian Peterson. "First and second order linear dynamic equations on time scales." Journal of Difference Equations and Applications 7, no. 6 (January 2001): 767–92. http://dx.doi.org/10.1080/10236190108808302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kiviet, Jan F., Garry D. A. Phillips, and Bernhard Schipp. "Alternative bias approximations in first-order dynamic reduced form models." Journal of Economic Dynamics and Control 23, no. 7 (June 1999): 909–28. http://dx.doi.org/10.1016/s0165-1889(98)00055-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Darowicki, K., and P. Ślepski. "Dynamic electrochemical impedance spectroscopy of the first order electrode reaction." Journal of Electroanalytical Chemistry 547, no. 1 (April 2003): 1–8. http://dx.doi.org/10.1016/s0022-0728(03)00154-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Passenbrunner, Thomas E., Mario Sassano, and Luca Zaccarian. "Optimality-based dynamic allocation with nonlinear first-order redundant actuators." European Journal of Control 31 (September 2016): 33–40. http://dx.doi.org/10.1016/j.ejcon.2016.04.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wu, Haihua, and Zhan Zhou. "Stability for first order delay dynamic equations on time scales." Computers & Mathematics with Applications 53, no. 12 (June 2007): 1820–31. http://dx.doi.org/10.1016/j.camwa.2006.09.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Dufour, Jean-Marie, and Jan F. Kiviet. "Exact tests for structural change in first-order dynamic models." Journal of Econometrics 70, no. 1 (January 1996): 39–68. http://dx.doi.org/10.1016/0304-4076(94)01683-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Rizi, V., and S. K. Ghosh. "Dynamic critical behavior above a strong first-order phase transition." Physics Letters A 127, no. 5 (February 1988): 270–74. http://dx.doi.org/10.1016/0375-9601(88)90695-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Bendouma, Bouharket, Amine Benaissa Cherif, and Ahmed Hammoudi. "Systems of first-order nabla dynamic equations on time scales." Malaya Journal of Matematik 06, no. 04 (November 1, 2018): 757–65. http://dx.doi.org/10.26637/mjm0604/0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bohner, M., B. Karpuz, and Ö. Öcalan. "Iterated Oscillation Criteria for Delay Dynamic Equations of First Order." Advances in Difference Equations 2008, no. 1 (2008): 458687. http://dx.doi.org/10.1155/2008/458687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Shimpi, R. P., H. G. Patel, and H. Arya. "New First-Order Shear Deformation Plate Theories." Journal of Applied Mechanics 74, no. 3 (May 31, 2006): 523–33. http://dx.doi.org/10.1115/1.2423036.

Повний текст джерела
Анотація:
First-order shear deformation theories, one proposed by Reissner and another one by Mindlin, are widely in use, even today, because of their simplicity. In this paper, two new displacement based first-order shear deformation theories involving only two unknown functions, as against three functions in case of Reissner’s and Mindlin’s theories, are introduced. For static problems, governing equations of one of the proposed theories are uncoupled. And for dynamic problems, governing equations of one of the theories are only inertially coupled, whereas those of the other theory are only elastically coupled. Both the theories are variationally consistent. The effectiveness of the theories is brought out through illustrative examples. One of the theories has striking similarity with classical plate theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Picard, Rainer, and Sascha Trostorff. "Dynamic first order wave systems with drift term on Riemannian manifolds." Journal of Mathematical Analysis and Applications 505, no. 1 (January 2022): 125465. http://dx.doi.org/10.1016/j.jmaa.2021.125465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bao, Yong. "Indirect Inference Estimation of a First-Order Dynamic Panel Data Model." Journal of Quantitative Economics 19, S1 (November 29, 2021): 79–98. http://dx.doi.org/10.1007/s40953-021-00264-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kim, Kyeong-Hwan, Young-Cheol Yoon, and Sang-Ho Lee. "Dynamic Analysis of MLS Difference Method using First Order Differential Approximation." Journal of the Computational Structural Engineering Institute of Korea 31, no. 6 (December 31, 2018): 331–37. http://dx.doi.org/10.7734/coseik.2018.31.6.331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Brooks, B. P. "Linear stability conditions for a first-order three-dimensional discrete dynamic." Applied Mathematics Letters 17, no. 4 (April 2004): 463–66. http://dx.doi.org/10.1016/s0893-9659(04)90090-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhang, L., and Y. F. Xing. "Extremal Solutions for Nonlinear First-Order Impulsive Integro-Differential Dynamic Equations." Mathematical Notes 105, no. 1-2 (January 2019): 123–31. http://dx.doi.org/10.1134/s0001434619010139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Braverman, Elena, and Başak Karpuz. "Uniform exponential stability of first-order dynamic equations with several delays." Applied Mathematics and Computation 218, no. 21 (July 2012): 10468–85. http://dx.doi.org/10.1016/j.amc.2012.04.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Anderson, Douglas R., and Masakazu Onitsuka. "Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales." Demonstratio Mathematica 51, no. 1 (August 1, 2018): 198–210. http://dx.doi.org/10.1515/dema-2018-0018.

Повний текст джерела
Анотація:
Abstract We establish theHyers-Ulam stability (HUS) of certain first-order linear constant coefficient dynamic equations on time scales, which include the continuous (step size zero) and the discrete (step size constant and nonzero) dynamic equations as important special cases. In particular, for certain parameter values in relation to the graininess of the time scale, we find the minimum HUS constants. A few nontrivial examples are provided. Moreover, an application to a perturbed linear dynamic equation is also included.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhang, Jun, Yu Tian, Zongjin Ren, Jun Shao, and Zhenyuan Jia. "A Novel Dynamic Method to Improve First-order Natural Frequency for Test Device." Measurement Science Review 18, no. 5 (October 1, 2018): 183–92. http://dx.doi.org/10.1515/msr-2018-0026.

Повний текст джерела
Анотація:
Abstract It is important to improve the natural frequency of test device to improve measurement accuracy. First-order frequency is basic frequency of dynamic model, which generally is the highest vibration energy of natural frequency. Taking vector force test device (VFTD) as example, a novel dynamic design method for improving first-order natural frequency by increasing structure stiffness is proposed. In terms of six degree-of-freedom (DOF) of VFTD, dynamic model of VFTD is built through the Lagrange dynamic equation to obtain theoretical natural frequency and mode shapes. Experimental natural frequency obtained by the hammering method is compared with theoretical results to prove rationality of the Lagrange method. In order to improve the stiffness of VFTD, increase natural frequency and meet the requirement of high frequency test, by using the trial and error method combined with curve fitting (TECF), stiffness interval of meeting natural frequency requirement is obtained. Stiffness of VFTD is improved by adopting multiple supports based on the stiffness interval. Improved experimental natural frequency is obtained with the hammering method to show rationality of the dynamic design method. This method can be used in improvement of first-order natural frequency in test structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kiviet, Jan F., and Garry D. A. Phillips. "Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models." Computational Statistics & Data Analysis 56, no. 11 (November 2012): 3705–29. http://dx.doi.org/10.1016/j.csda.2010.07.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

TARAU, PAUL, and VERONICA DAHL. "High-level networking with mobile code and first order AND-continuations." Theory and Practice of Logic Programming 1, no. 3 (May 2001): 359–80. http://dx.doi.org/10.1017/s1471068401001193.

Повний текст джерела
Анотація:
We describe a scheme for moving living code between a set of distributed processes coordinated with unification based Linda operations, and its application to building a comprehensive Logic programming based Internet programming framework. Mobile threads are implemented by capturing first order continuations in a compact data structure sent over the network. Code is fetched lazily from its original base turned into a server as the continuation executes at the remote site. Our code migration techniques, in combination with a dynamic recompilation scheme, ensure that heavily used code moves up smoothly on a speed hierarchy while volatile dynamic code is kept in a quickly updatable form. Among the examples, we describe how to build programmable client and server components (Web servers, in particular) and mobile agents.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Tikare, Sanket. "Generalized first order dynamic equations on time scales with Δ-Carathéodory functions". Differential Equations & Applications, № 1 (2019): 167–82. http://dx.doi.org/10.7153/dea-2019-11-06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

McNeill, Fiona, and Alan Bundy. "Dynamic, Automatic, First-Order Ontology repair by Diagnosis of Failed Plan Execution." International Journal on Semantic Web and Information Systems 3, no. 3 (July 2007): 1–35. http://dx.doi.org/10.4018/jswis.2007070101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Shiwa, Y., H. Matsunaga, M. Yoshikawa, and H. Yoshitomi. "Fluctuation-induced first-order transition and dynamic scaling in Rayleigh-Bénard convection." Physical Review E 49, no. 3 (March 1, 1994): 2082–86. http://dx.doi.org/10.1103/physreve.49.2082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Agwo, H. A. "On the Oscillation of First Order Delay Dynamic Equations With Variable Coefficients." Rocky Mountain Journal of Mathematics 38, no. 1 (February 2008): 1–18. http://dx.doi.org/10.1216/rmj-2008-38-1-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Landolsi, Jihen, Ferid Rehimi, and Adel Kalboussi. "A macroscopic first-order traffic simulation with a modified dynamic node approach." Transportation Letters 12, no. 1 (August 30, 2018): 45–53. http://dx.doi.org/10.1080/19427867.2018.1511320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Sun, Jianfei, Yonghong Wang, Xinya Gao, Sijin Wu, and Lianxiang Yang. "Dynamic measurement of first-order spatial derivatives of deformations by digital shearography." Instruments and Experimental Techniques 60, no. 4 (July 2017): 575–83. http://dx.doi.org/10.1134/s0020441217040145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії