Добірка наукової літератури з теми "Finite topological spaces"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Finite topological spaces".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Finite topological spaces"
Benoumhani, Moussa, and Ali Jaballah. "Finite fuzzy topological spaces." Fuzzy Sets and Systems 321 (August 2017): 101–14. http://dx.doi.org/10.1016/j.fss.2016.11.003.
Повний текст джерелаOSAKI, Takao. "Reduction of Finite Topological Spaces." Interdisciplinary Information Sciences 5, no. 2 (1999): 149–55. http://dx.doi.org/10.4036/iis.1999.149.
Повний текст джерелаChae, Hi-joon. "FINITE TOPOLOGICAL SPACES AND GRAPHS." Communications of the Korean Mathematical Society 32, no. 1 (January 31, 2017): 183–91. http://dx.doi.org/10.4134/ckms.c160004.
Повний текст джерелаBagchi, Susmit. "Topological Sigma-Semiring Separation and Ordered Measures in Noetherian Hyperconvexes." Symmetry 14, no. 2 (February 20, 2022): 422. http://dx.doi.org/10.3390/sym14020422.
Повний текст джерелаEdelsbrunner, Herbert, and Nimish R. Shah. "Triangulating Topological Spaces." International Journal of Computational Geometry & Applications 07, no. 04 (August 1997): 365–78. http://dx.doi.org/10.1142/s0218195997000223.
Повний текст джерелаClader, Emily. "Inverse limits of finite topological spaces." Homology, Homotopy and Applications 11, no. 2 (2009): 223–27. http://dx.doi.org/10.4310/hha.2009.v11.n2.a11.
Повний текст джерелаNakasho, Kazuhisa, Hiroyuki Okazaki, and Yasunari Shidama. "Finite Dimensional Real Normed Spaces are Proper Metric Spaces." Formalized Mathematics 29, no. 4 (December 1, 2021): 175–84. http://dx.doi.org/10.2478/forma-2021-0017.
Повний текст джерелаK. K, Bushra Beevi, and Baby Chacko. "PARACOMPACTNESS IN GENERALIZED TOPOLOGICAL SPACES." South East Asian J. of Mathematics and Mathematical Sciences 19, no. 01 (April 30, 2023): 287–300. http://dx.doi.org/10.56827/seajmms.2023.1901.24.
Повний текст джерелаKang, Jeong, Sang-Eon Han, and Sik Lee. "The Fixed Point Property of Non-Retractable Topological Spaces." Mathematics 7, no. 10 (September 21, 2019): 879. http://dx.doi.org/10.3390/math7100879.
Повний текст джерелаNogin, Maria, and Bing Xu. "Modal Logic Axioms Valid in Quotient Spaces of Finite CW-Complexes and Other Families of Topological Spaces." International Journal of Mathematics and Mathematical Sciences 2016 (2016): 1–3. http://dx.doi.org/10.1155/2016/9163014.
Повний текст джерелаДисертації з теми "Finite topological spaces"
Lesser, Alice. "Optimal and Hereditarily Optimal Realizations of Metric Spaces." Doctoral thesis, Uppsala University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8297.
Повний текст джерелаThis PhD thesis, consisting of an introduction, four papers, and some supplementary results, studies the problem of finding an optimal realization of a given finite metric space: a weighted graph which preserves the metric's distances and has minimal total edge weight. This problem is known to be NP-hard, and solutions are not necessarily unique.
It has been conjectured that extremally weighted optimal realizations may be found as subgraphs of the hereditarily optimal realization Γd, a graph which in general has a higher total edge weight than the optimal realization but has the advantages of being unique, and possible to construct explicitly via the tight span of the metric.
In Paper I, we prove that the graph Γd is equivalent to the 1-skeleton of the tight span precisely when the metric considered is totally split-decomposable. For the subset of totally split-decomposable metrics known as consistent metrics this implies that Γd is isomorphic to the easily constructed Buneman graph.
In Paper II, we show that for any metric on at most five points, any optimal realization can be found as a subgraph of Γd.
In Paper III we provide a series of counterexamples; metrics for which there exist extremally weighted optimal realizations which are not subgraphs of Γd. However, for these examples there also exists at least one optimal realization which is a subgraph.
Finally, Paper IV examines a weakened conjecture suggested by the above counterexamples: can we always find some optimal realization as a subgraph in Γd? Defining extremal optimal realizations as those having the maximum possible number of shortest paths, we prove that any embedding of the vertices of an extremal optimal realization into Γd is injective. Moreover, we prove that this weakened conjecture holds for the subset of consistent metrics which have a 2-dimensional tight span
Tamburini, Caterina. "The isomorphism problem for directed acyclic graphs: an application to multivector fields." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15793/.
Повний текст джерелаAmeen, Zanyar. "Finitely additive measures on topological spaces and Boolean algebras." Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/56864/.
Повний текст джерелаAyadi, Mohamed. "Propriétés algébriques et combinatoires des espaces topologiques finis." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC106.
Повний текст джерелаIbrahim, Caroline Maher Boulis Heil Wolfgang. "Finite abelian group actions on orientable circle bundles over surfaces." 2004. http://etd.lib.fsu.edu/theses/available/etd-07122004-135529.
Повний текст джерелаAdvisor: Dr. Wolfgang Heil, Florida State University, College of Arts and Sciences, Dept. of Mathematics. Title and description from dissertation home page (viewed Sept. 28, 2004). Includes bibliographical references.
Jasinski, Jakub. "Hrushovski and Ramsey Properties of Classes of Finite Inner Product Structures, Finite Euclidean Metric Spaces, and Boron Trees." Thesis, 2011. http://hdl.handle.net/1807/29762.
Повний текст джерелаКниги з теми "Finite topological spaces"
Barmak, Jonathan A. Algebraic Topology of Finite Topological Spaces and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6.
Повний текст джерелаBarmak, Jonathan A. Algebraic topology of finite topological spaces and applications. Heidelberg: Springer, 2011.
Знайти повний текст джерелаRyszard, Engelking, ed. Theory of dimensions, finite and infinite. Lemgo, Germany: Heldermann, 1995.
Знайти повний текст джерелаTalsi, Jussi. Imbeddings of equivariant complexes into representation spaces. Helsinki: Suomalainen Tiedeakatemia, 1994.
Знайти повний текст джерелаSpaces of constant curvature. 6th ed. Providence, R.I: AMS Chelsea Pub., 2011.
Знайти повний текст джерелаTopology and geometry in dimension three: Triangulations, invariants, and geometric structures : conference in honor of William Jaco's 70th birthday, June 4-6, 2010, Oklahoma State University, Stillwater, OK. Providence, R.I: American Mathematical Society, 2011.
Знайти повний текст джерелаStanford Symposium on Algebraic Topology: Applications and New Directions (2012 : Stanford, Calif.), ed. Algebraic topology: Applications and new directions : Stanford Symposium on Algebraic Topology: Applications and New Directions, July 23--27, 2012, Stanford University, Stanford, CA. Providence, Rhode Island: American Mathematical Society, 2014.
Знайти повний текст джерела1953-, Campillo Antonio, ed. Zeta functions in algebra and geometry: Second International Workshop on Zeta Functions in Algebra and Geometry, May 3-7, 2010, Universitat de Les Illes Balears, Palma de Mallorca, Spain. Providence, R.I: American Mathematical Society, 2012.
Знайти повний текст джерела1980-, Blazquez-Sanz David, Morales Ruiz, Juan J. (Juan José), 1953-, and Lombardero Jesus Rodriguez 1961-, eds. Symmetries and related topics in differential and difference equations: Jairo Charris Seminar 2009, Escuela de Matematicas, Universidad Sergio Arboleda, Bogotá, Colombia. Providence, R.I: American Mathematical Society, 2011.
Знайти повний текст джерелаRichmond, Thomas Alan. Finite-point order compactifications. 1986.
Знайти повний текст джерелаЧастини книг з теми "Finite topological spaces"
Kono, Susumu, and Fumihiro Ushitaki. "Geometry of Finite Topological Spaces and Equivariant Finite Topological Spaces." In K-Monographs in Mathematics, 53–63. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-009-0003-5_4.
Повний текст джерелаTikhomirov, V. M. "Finite Coverings of Topological Spaces." In Selected Works of A. N. Kolmogorov, 221–25. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3030-1_31.
Повний текст джерелаBarmak, Jonathan A. "Basic Topological Properties of Finite Spaces." In Algebraic Topology of Finite Topological Spaces and Applications, 19–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_2.
Повний текст джерелаBarmak, Jonathan A. "Minimal Finite Models." In Algebraic Topology of Finite Topological Spaces and Applications, 37–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_3.
Повний текст джерелаBarmak, Jonathan A. "Simple Homotopy Types and Finite Spaces." In Algebraic Topology of Finite Topological Spaces and Applications, 49–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_4.
Повний текст джерелаBarmak, Jonathan A. "Preliminaries." In Algebraic Topology of Finite Topological Spaces and Applications, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_1.
Повний текст джерелаBarmak, Jonathan A. "Fixed Points and the Lefschetz Number." In Algebraic Topology of Finite Topological Spaces and Applications, 129–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_10.
Повний текст джерелаBarmak, Jonathan A. "The Andrews–Curtis Conjecture." In Algebraic Topology of Finite Topological Spaces and Applications, 137–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_11.
Повний текст джерелаBarmak, Jonathan A. "Strong Homotopy Types." In Algebraic Topology of Finite Topological Spaces and Applications, 73–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_5.
Повний текст джерелаBarmak, Jonathan A. "Methods of Reduction." In Algebraic Topology of Finite Topological Spaces and Applications, 85–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6_6.
Повний текст джерелаТези доповідей конференцій з теми "Finite topological spaces"
Muradov, Firudin Kh. "Ternary semigroups of topological transformations of open sets of finite-dimensional Euclidean spaces." In FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042197.
Повний текст джерелаStimpfl, Franz, Josef Weinbub, René Heinzl, Philipp Schwaha, Siegfried Selberherr, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "A Unified Topological Layer for Finite Element Space Discretization." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498151.
Повний текст джерелаTasolamprou, A. C., M. Kafesaki, C. M. Soukoulis, E. N. Economou, and Th Koschny. "Topological surface states at the free space termination of uncorrugated finite square photonic crystals." In 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2021. http://dx.doi.org/10.1109/metamaterials52332.2021.9577199.
Повний текст джерелаRashid, Mark M., Mili Selimotic, and Tarig Dinar. "General Polyhedral Finite Elements for Rapid Nonlinear Analysis." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49248.
Повний текст джерелаYuksel, Osman, and Cetin Yilmaz. "Size and Topology Optimization of Inertial Amplification Induced Phononic Band Gap Structures." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71342.
Повний текст джерелаAbdel-Malek, K., Walter Seaman, and Harn-Jou Yeh. "An Exact Method for NC Verification of up to 5-Axis Machining." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8560.
Повний текст джерелаSundararaman, Venkatesh, Matthew P. O'Donnell, Isaac V. Chenchiah, and Paul M. Weaver. "Topology Morphing Lattice Structures." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67531.
Повний текст джерелаTakacs, Peter Z., and Eugene L. Church. "Surface profiles and scatter from soft-x-ray optics." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tuo1.
Повний текст джерелаCharlesworth, William W., and David C. Anderson. "Applications of Non-Manifold Topology." In ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium collocated with the ASME 1995 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/cie1995-0737.
Повний текст джерелаChoi, Haejoon, Adrian Matias Chung Baek, and Namhum Kim. "Design of Non-Periodic Lattice Structures by Allocating Pre-Optimized Building Blocks." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98204.
Повний текст джерелаЗвіти організацій з теми "Finite topological spaces"
Lutz, Carsten, and Frank Wolter. Modal Logics of Topological Relations. Technische Universität Dresden, 2004. http://dx.doi.org/10.25368/2022.142.
Повний текст джерела