Статті в журналах з теми "Finite temperature QCD"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Finite temperature QCD.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Finite temperature QCD".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Christ, Norman H. "Finite temperature QCD." Nuclear Physics A 544, no. 1-2 (July 1992): 81–93. http://dx.doi.org/10.1016/0375-9474(92)90566-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

PANDEY, H. C., H. C. CHANDOLA, and H. DEHNEN. "COLOR CONFINEMENT AND FINITE TEMPERATURE QCD PHASE TRANSITION." International Journal of Modern Physics A 19, no. 02 (January 20, 2004): 271–85. http://dx.doi.org/10.1142/s0217751x04017471.

Повний текст джерела
Анотація:
We study an effective theory of QCD in which the fundamental variables are dual magnetic potentials coupled to the monopole field. Dual dynamics are then used to explain the properties of QCD vacuum at zero temperature as well as at finite temperatures. At zero temperature, the color confinement is realized through the dynamical breaking of magnetic symmetry, which leads to the magnetic condensation of QCD vacuum. The flux tube structure of SU(2) QCD vacuum is investigated by solving the field equations in the low energy regimes of the theory, which guarantees dual superconducting nature of the QCD vacuum. The QCD phase transition at finite temperature is studied by the functional diagrammatic evaluation of the effective potential on the one-loop level. We then obtained analytical expressions for the vacuum expectation value of the condensed monopoles as well as the masses of glueballs from the temperature dependent effective potential. These nonperturbative parameters are also evaluated numerically and used to determine the critical temperature of the QCD phase transition. Finally, it is shown that near the critical temperature (Tc≃0.195 GeV ), continuous reduction of vacuum expectation value (VEV) of the condensed monopoles caused the disappearance of vector and scalar glueball masses, which brings a second order phase transition in pure SU(2) gauge QCD.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lawlor, Dale, Simon Hands, Seyong Kim, and Jon-Ivar Skullerud. "Thermal Transitions in Dense Two-Colour QCD." EPJ Web of Conferences 274 (2022): 07012. http://dx.doi.org/10.1051/epjconf/202227407012.

Повний текст джерела
Анотація:
The infamous sign problem makes it impossible to probe dense (baryon density μB > 0) QCD at temperatures near or below the deconfinement threshold. As a workaround, one can explore QCD-like theories such as twocolour QCD (QC2D) which don’t suffer from this sign problem but are qualitively similar to real QCD. Previous studies on smaller lattice volumes have investigated deconfinement and colour superfluid to normal matter transitions. In this study we look at a larger lattice volume Ns = 24 in an attempt to disentangle finite volume and finite temperature effects. We also fit to a larger number of diquark sources to better allow for extrapolation to zero diquark source.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Laermann, E., and O. Philipsen. "LATTICE QCD AT FINITE TEMPERATURE." Annual Review of Nuclear and Particle Science 53, no. 1 (December 2003): 163–98. http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Petersson, B., and E. Laermann. "Finite Temperature QCD on Quadrics." Progress of Theoretical Physics Supplement 122 (1996): 85–96. http://dx.doi.org/10.1143/ptps.122.85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ejiri, Shinji. "Lattice QCD at finite temperature." Nuclear Physics B - Proceedings Supplements 94, no. 1-3 (March 2001): 19–26. http://dx.doi.org/10.1016/s0920-5632(01)00922-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Petreczky, P. "Lattice QCD at finite temperature." Nuclear Physics A 785, no. 1-2 (March 2007): 10–17. http://dx.doi.org/10.1016/j.nuclphysa.2006.11.129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Reinhardt, Hugo, Davide Campagnari, and Markus Quandt. "Hamiltonian Approach to QCD at Finite Temperature." Universe 5, no. 2 (January 22, 2019): 40. http://dx.doi.org/10.3390/universe5020040.

Повний текст джерела
Анотація:
A novel approach to the Hamiltonian formulation of quantum field theory at finite temperature is presented. The temperature is introduced by compactification of a spatial dimension. The whole finite-temperature theory is encoded in the ground state on the spatial manifold S 1 ( L ) × R 2 where L is the length of the compactified dimension which defines the inverse temperature. The approach is then applied to the Hamiltonian formulation of QCD in Coulomb gauge to study the chiral phase transition at finite temperatures.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ayala, Alejandro, C. A. Dominguez, and M. Loewe. "Finite Temperature QCD Sum Rules: A Review." Advances in High Energy Physics 2017 (2017): 1–24. http://dx.doi.org/10.1155/2017/9291623.

Повний текст джерела
Анотація:
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

XIANGJUN, CHEN, and YASUSHI FUJIMOTO. "FINITE TEMPERATURE QCD AT THREE-LOOP." Modern Physics Letters A 11, no. 13 (April 30, 1996): 1033–36. http://dx.doi.org/10.1142/s0217732396001065.

Повний текст джерела
Анотація:
QCD three-loop vacuum graphs are calculated in Feynman gauge. All the temperature-dependent divergences are extracted by using dimensional regularization. Ultraviolet divergences are shown to cancel with each other and the ir divergences remain uncanceled.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Petreczky, Péter. "Progress in finite temperature lattice QCD." Journal of Physics G: Nuclear and Particle Physics 35, no. 4 (March 18, 2008): 044033. http://dx.doi.org/10.1088/0954-3899/35/4/044033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Borsányi, Szabolcs. "Frontiers of finite temperature lattice QCD." EPJ Web of Conferences 137 (2017): 01006. http://dx.doi.org/10.1051/epjconf/201713701006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Sakai, Sunao. "Finite Temperature QCD with Wilson Fermions." Progress of Theoretical Physics Supplement 122 (1996): 109–14. http://dx.doi.org/10.1143/ptps.122.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Laermann, E. "Finite-temperature QCD on the lattice." Physics of Particles and Nuclei 30, no. 3 (May 1999): 304. http://dx.doi.org/10.1134/1.953108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Alexandrou, Constantia, Artan Boriçi, Alessandra Feo, Philippe de Forcrand, Andrea Galli, Fred Jegerlehner, and Tetsuya Takaishi. "One-flavour QCD at finite temperature." Nuclear Physics B - Proceedings Supplements 63, no. 1-3 (April 1998): 406–8. http://dx.doi.org/10.1016/s0920-5632(97)00784-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fingberg, J. "Non-relativistic QCD at finite temperature." Nuclear Physics B - Proceedings Supplements 63, no. 1-3 (April 1998): 415–17. http://dx.doi.org/10.1016/s0920-5632(97)00787-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

de Forcrand, Ph, M. García Pérez, T. Hashimoto, S. Hioki, H. Matsufuru, O. Miyamura, A. Nakamura, I. O. Stamatescu, T. Takaishi, and T. Umeda. "Finite temperature QCD on anisotropic lattices." Nuclear Physics B - Proceedings Supplements 73, no. 1-3 (March 1999): 420–25. http://dx.doi.org/10.1016/s0920-5632(99)85092-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ukawa, Akira. "Progress in finite-temperature lattice QCD." Nuclear Physics A 638, no. 1-2 (August 1998): 339c—350c. http://dx.doi.org/10.1016/s0375-9474(98)00375-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Umeda, T., R. Katayama, H. Matsufuru, and O. Miyamura. "Charmonium in finite temperature lattice QCD." Nuclear Physics B - Proceedings Supplements 94, no. 1-3 (March 2001): 435–38. http://dx.doi.org/10.1016/s0920-5632(01)00997-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gottlieb, Steven. "Finite temperature QCD with dynamical fermions." Nuclear Physics B - Proceedings Supplements 20 (May 1991): 247–57. http://dx.doi.org/10.1016/0920-5632(91)90919-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Dominguez, C. A., and M. Loewe. "QCD sum rules at finite temperature." Zeitschrift für Physik C Particles and Fields 51, no. 1 (March 1991): 69–72. http://dx.doi.org/10.1007/bf01579560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ukawa, Akira. "Finite-temperature QCD on the lattice." Nuclear Physics B - Proceedings Supplements 53, no. 1-3 (February 1997): 106–19. http://dx.doi.org/10.1016/s0920-5632(96)00604-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Schramm, S., and M. C. Chu. "Quark correlations in finite-temperature QCD." Physical Review D 48, no. 5 (September 1, 1993): 2279–83. http://dx.doi.org/10.1103/physrevd.48.2279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Petersson, Bengt. "Finite temperature QCD: Lattice '92 review." Nuclear Physics B - Proceedings Supplements 30 (March 1993): 66–80. http://dx.doi.org/10.1016/0920-5632(93)90178-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ogilvie, Michael. "Interfacial phenomena in finite temperature QCD." Nuclear Physics B - Proceedings Supplements 34 (April 1994): 275–78. http://dx.doi.org/10.1016/0920-5632(94)90365-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kanaya, Kazuyuki. "Finite temperature QCD on the lattice." Nuclear Physics B - Proceedings Supplements 47, no. 1-3 (March 1996): 144–59. http://dx.doi.org/10.1016/0920-5632(96)00040-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kalashnikov, O. K. "QCD infrared pole at finite temperature." Physics Letters B 279, no. 3-4 (April 1992): 367–72. http://dx.doi.org/10.1016/0370-2693(92)90406-t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

PETRECZKY, PÉTER. "QCD AT NONZERO TEMPERATURE: BULK PROPERTIES AND HEAVY QUARKS." Modern Physics Letters A 25, no. 37 (December 7, 2010): 3081–92. http://dx.doi.org/10.1142/s0217732310034523.

Повний текст джерела
Анотація:
We review recent progress in lattice QCD at nonzero temperature with emphasis on the calculations of equation of state and the properties of heavy quark–anti-quark pairs at high temperatures. We also briefly discuss the deconfinement and chiral symmetry restoring aspects of the QCD transition at finite temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Issifu, Adamu, and Francisco A. Brito. "The (De)confinement Transition in Tachyonic Matter at Finite Temperature." Advances in High Energy Physics 2019 (February 27, 2019): 1–9. http://dx.doi.org/10.1155/2019/9450367.

Повний текст джерела
Анотація:
We present a QCD motivated model that mimics QCD theory. We examine the characteristics of the gauge field coupled with the color dielectric function (G) in the presence of temperature (T). The aim is to achieve confinement at low temperatures T<Tc, (Tc is the critical temperature), similar to what occurs among quarks and gluons in hadrons at low energies. Also, we investigate scalar glueballs and QCD string tension and effect of temperature on them. To achieve this, we use the phenomenon of color dielectric function in gauge fields in a slowly varying tachyon medium. This method is suitable for analytically computing the resulting potential, glueball masses, and the string tension associated with the confinement at a finite temperature. We demonstrate that the color dielectric function changes Maxwell’s equation as a function of the tachyon fields and induces the electric field in a way that brings about confinement during the tachyon condensation below the critical temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

GAMBOA, J., J. LÓPEZ-SARRIÓN, M. LOEWE, and F. MÉNDEZ. "CENTRAL CHARGES AND EFFECTIVE ACTION AT FINITE TEMPERATURE AND DENSITY." Modern Physics Letters A 19, no. 03 (January 30, 2004): 223–38. http://dx.doi.org/10.1142/s0217732304012952.

Повний текст джерела
Анотація:
The current algebra for gauge theories like QCD at finite temperature and density is studied. We start considering, the massless Thirring model at finite temperature and density, finding an explicit expression for the current algebra. The central charge only depends on the coupling constant and there are not new effects due to temperature and density. From this calculation, we argue how to compute the central charge for QCD4 and we argue why the central charge in four dimensions could be modified by finite temperature and density.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

WANG, MING-MIN, YU JIANG, BIN WANG, WEI-MIN SUN, and HONG-SHI ZONG. "CALCULATION OF BULK VISCOSITY OF QCD AT ZERO TEMPERATURE AND FINITE CHEMICAL POTENTIAL." Modern Physics Letters A 26, no. 24 (August 10, 2011): 1797–806. http://dx.doi.org/10.1142/s0217732311036164.

Повний текст джерела
Анотація:
In this paper, based on Kubo's formula and the QCD low energy theorem, we propose a direct formula for calculating the bulk viscosity of QCD at finite chemical potential μ and zero temperature. According to this formula, the bulk viscosity at finite μ is totally determined by the dressed quark propagator at finite μ. We then use a dynamical, confining Dyson–Schwinger equation model of QCD to calculate the bulk viscosity at finite μ. It is found that no sharp peak behavior of the bulk viscosity at finite μ is observed, which is quite different from that of the bulk viscosity at finite temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Billó, M., M. Caselle, A. d'Adda, and S. Panzeri. "Finite Temperature Lattice QCD in the Large N Limit." International Journal of Modern Physics A 12, no. 10 (April 20, 1997): 1783–845. http://dx.doi.org/10.1142/s0217751x97001158.

Повний текст джерела
Анотація:
Our aim is to give a self-contained review of recent advances in the analytic description of the deconfinement transition and determination of the deconfinement temperature in lattice QCD at large N. We also include some new results, as for instance in the comparison of the analytic results with Monte Carlo simulations. We first review the general set-up of finite temperature lattice gauge theories, using asymmetric lattices, and develop a consistent perturbative expansion in the coupling βs of the spacelike plaquettes. We study in detail the effective models for the Polyakov loop obtained, in the zeroth order approximation in βs, both from the Wilson action (symmetric lattice) and from the heat kernel action (completely asymmetric lattice). The distinctive feature of the heat kernel model is its relation with two-dimensional QCD on a cylinder; the Wilson model, on the other hand, can be exactly reduced to a twisted one-plaquette model via a procedure of the Eguchi–Kawai type. In the weak coupling regime both models can be related to exactly solvable Kazakov–Migdal matrix models. The instability of the weak coupling solution is due in both cases to a condensation of instantons; in the heat kernel case, this is directly related to the Douglas–Kazakov transition of QCD2. A detailed analysis of these results provides rather accurate predictions of the deconfinement temperature. In spite of the zeroth order approximation they are in good agreement with the Monte Carlo simulations in 2 + 1 dimensions, while in 3 + 1 dimensions they only agree with the Monte Carlo results away from the continuum limit.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Nieto, Agustin. "Perturbative QCD at High Temperature." International Journal of Modern Physics A 12, no. 08 (March 30, 1997): 1431–64. http://dx.doi.org/10.1142/s0217751x97001043.

Повний текст джерела
Анотація:
Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Kashiwa, Kouji. "Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition." Symmetry 11, no. 4 (April 18, 2019): 562. http://dx.doi.org/10.3390/sym11040562.

Повний текст джерела
Анотація:
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss periodicity and the transition. We summarize how these properties play a crucial role in understanding QCD properties at finite temperature and density. This review covers several topics in the investigation of the QCD phase diagram based on the imaginary chemical potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

LOMBARDO, M. P. "Lattice QCD at Finite Temperature and Density." Modern Physics Letters A 22, no. 07n10 (March 28, 2007): 457–71. http://dx.doi.org/10.1142/s0217732307023055.

Повний текст джерела
Анотація:
A general introduction into the subject aimed at a general theoretical physics audience. We introduce the sign problem posed by finite density lattice QCD, and we discuss the main methods proposed to circumvent it, with emphasis on the imaginary chemical potential approach. The interrelation between Taylor expansion and analytic continuation from imaginary chemical potential is discussed in detail. The main applications to the calculation of the critical line, and to the thermodynamics of the hot and normal phase are reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Niégawa, Akira. "Perturbative QCD at Finite Temperature and Density." Progress of Theoretical Physics Supplement 129 (1997): 105–18. http://dx.doi.org/10.1143/ptps.129.105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ejiri, Shinji. "Lattice QCD at Finite Temperature and Density." Progress of Theoretical Physics Supplement 186 (October 1, 2010): 510–15. http://dx.doi.org/10.1143/ptps.186.510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Philipsen, O. "Lattice QCD at finite temperature and density." European Physical Journal Special Topics 152, no. 1 (December 2007): 29–60. http://dx.doi.org/10.1140/epjst/e2007-00376-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Noronha-Hostler, J., R. Bellwied, J. Günther, P. Parotto, A. Pasztor, I. Portillo Vazquez, and C. Ratti. "Strangeness at finite temperature from Lattice QCD." Journal of Physics: Conference Series 779 (January 2017): 012050. http://dx.doi.org/10.1088/1742-6596/779/1/012050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kim, Y. "AdS/QCD at finite density and temperature." Physics of Atomic Nuclei 75, no. 7 (July 2012): 870–72. http://dx.doi.org/10.1134/s1063778812060208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Chen, Xianjun, and Yasushi Fujimoto. "ERRATA: FINITE TEMPERATURE QCD AT THREE-LOOP." Modern Physics Letters A 11, no. 18 (June 14, 1996): 1529. http://dx.doi.org/10.1142/s0217732396003155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Azcoiti, Vicente, and Angelo Galante. "Baryonic thermal fluctuations in finite temperature QCD." Physics Letters B 444, no. 3-4 (December 1998): 421–26. http://dx.doi.org/10.1016/s0370-2693(98)01432-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Miranda, Alex S., C. A. Ballon Bayona, Henrique Boschi-Filho, and Nelson R. F. Braga. "Glueballs at finite temperature from AdS/QCD." Nuclear Physics B - Proceedings Supplements 199, no. 1 (February 2010): 107–12. http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chu, M. C., and S. Schramm. "Instanton content of finite temperature QCD matter." Physical Review D 51, no. 8 (April 15, 1995): 4580–86. http://dx.doi.org/10.1103/physrevd.51.4580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Markum, H., R. Pullirsch, K. Rabitsch, and T. Wettig. "Quantum chaos in QCD at finite temperature." Nuclear Physics B - Proceedings Supplements 63, no. 1-3 (April 1998): 832–34. http://dx.doi.org/10.1016/s0920-5632(97)00914-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Karsch, F. "Lattice QCD at Finite Temperature and Density." Nuclear Physics B - Proceedings Supplements 83-84, no. 1-3 (March 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)00195-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Karsch, Frithjof. "Lattice QCD at finite temperature and density." Nuclear Physics B - Proceedings Supplements 83-84 (April 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)91591-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Mishra, A., H. Mishra, S. P. Misra, and S. N. Nayak. "QCD at finite temperature—a variational approach." Zeitschrift für Physik C Particles and Fields 57, no. 2 (June 1993): 233–40. http://dx.doi.org/10.1007/bf01565054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Dominguez, C. A. "Colour deconfinement in QCD at finite temperature." Nuclear Physics B - Proceedings Supplements 15 (June 1990): 225–27. http://dx.doi.org/10.1016/0920-5632(90)90020-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Gocksch, Andreas. "Quark screening lengths in finite temperature QCD." Nuclear Physics B - Proceedings Supplements 20 (May 1991): 284–87. http://dx.doi.org/10.1016/0920-5632(91)90926-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії