Дисертації з теми "Finite speed of propagation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Finite speed of propagation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Barua, Suchi. "Modelling and analysis of semiconductor optical amplifiers for high-speed communication systems using finite-difference beam propagation method." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1406.
Повний текст джерелаYao, Lan. "Experimental and numerical study of dynamic crack propagation in ice under impact loading." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI043/document.
Повний текст джерелаThe phenomena relating to the fracture behaviour of ice under impact loading are common in civil engineering, for offshore structures, and de-ice processes. To reduce the damage caused by ice impact and to optimize the design of structures or machines, the investigation on the dynamic fracture behaviour of ice under impact loading is needed. This work focuses on the dynamic crack propagation in ice under impact loading. A series of impact experiments is conducted with the Split Hopkinson Pressure Bar. The temperature is controlled by a cooling chamber. The dynamic process of the ice fracture is recorded with a high speed camera and then analysed by image methods. The extended finite element method is complementary to evaluate dynamic fracture toughness at the onset and during the propagation. The dynamic behaviour of ice under impact loading is firstly investigated with cylindrical specimen in order to obtain the dynamic stress-strain relation which will be used in later simulation. We observed multiple cracks in the experiments on the cylindrical specimens but their study is too complicated. To better understand the crack propagation in ice, a rectangular specimen with a pre-crack is employed. By controlling the impact velocity, the specimen fractures with a main crack starting from the pre-crack. The crack propagation history and velocity are evaluated by image analysis based on grey-scale and digital image correlation. The main crack propagation velocity is identified in the range of 450 to 610 m/s which confirms the previous results. It slightly varies during the propagation, first increases and keeps constant and then decreases. The experimentally obtained parameters, such as impact velocity and crack propagation velocity, are used for simulations with the extended finite element method. The dynamic crack initiation toughness and dynamic crack growth toughness are determined when the simulation fits the experiments. The results indicate that the dynamic crack growth toughness is linearly associated with crack propagation velocity and seems temperature independent in the range -15 to -1 degrees
Li, Liangpan. "Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23004.
Повний текст джерелаBacon, David R. "Finite amplitude propagation in acoustic beams." Thesis, University of Bath, 1986. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.483000.
Повний текст джерелаMeyer, Arnd, Frank Rabold, and Matthias Scherzer. "Efficient finite element simulation of crack propagation." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601402.
Повний текст джерелаChao, Jenny C. 1976. "The propagation mechanism of high speed turbulent deflagrations /." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33961.
Повний текст джерелаOrdovas, Miquel Roland. "Covariant projection finite elements for transient wave propagation." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342285.
Повний текст джерелаRitchie, Stephen John Kerr. "The high speed double torsion test." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/11437.
Повний текст джерелаJurgens, Henry Martin. "High-accuracy finite-difference schemes for linear wave propagation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27970.pdf.
Повний текст джерелаLilla, Antonio de. "Finite difference seismic wave propagation using variable grid sizes." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/54427.
Повний текст джерелаIncludes bibliographical references (leaves 115-118).
by Antonio De Lilla.
M.S.
Arshad, Kamran. "Modelling of radio wave propagation using Finite Element Analysis." Thesis, Middlesex University, 2007. http://eprints.mdx.ac.uk/9768/.
Повний текст джерелаHamiche, Karim. "A high-order finite element model for acoustic propagation." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/400677/.
Повний текст джерелаMossberg, Eva. "Higher order finite difference methods for wave propagation problems." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-86003.
Повний текст джерелаBaker, Andrew C. "Finite amplitude propagation of focused ultrasonic waves in water." Thesis, University of Bath, 1989. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329055.
Повний текст джерелаFang, Wen. "Studies of propagation delay for high-speed bipolar logic circuits." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280890.
Повний текст джерелаPríncipe, Ricardo Javier. "Subgrid scale stabilized finite elements for low speed flows." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6870.
Повний текст джерелаLa complejidad de estos problemas matemáticos hace que su solución numérica sea muy difícil. En estos problemas el método de los elementos finitos es inestable, lo que en la práctica implica soluciones numéricas que presentan oscilaciones nodo a nodo de naturaleza no física. En las ecuaciones de Navier Stokes incompresible, dos fuentes bien conocidas de inestabilidad son la condición de incompresibilidad y la presencia del término convectivo. Muchas técnicas de estabilización utilizadas hoy en día se basan en la separación de escalas, descomponiendo la incógnita en una parte gruesa inducida por la discretización del domino y una parte fina de subescala. Modelar la subescala y su influencia conduce a un problema modificado para la escala gruesa que resulta estable.
Aunque las técnicas de estabilización son ampliamente utilizadas hoy en día, importantes problemas permanecen abiertos. Contribuyendo a su comprensión, en este trabajo se analizan varios aspectos del modelado de las subescalas. Para problemas escalares de segundo orden, se encuentra la dependencia de la subescala con el tamaño de la malla en el caso general de mallas anisótropas. Estas ideas son extendidas a sistemas de ecuaciones para considerar el problema de Oseen. También se analiza el modelado de las subescalas en problemas transitorios, obteniendo un mejor esquema de integración temporal para el problema de escala gruesa. Para considerar flujos a baja velocidad, se presenta la extensión de estas técnicas a problemas no lineales acoplados, lo que esta íntimamente relacionado con el problema del modelado de la turbulencia, que es un tema en si mismo.
Los flujos acoplados térmicamente, aparte del interés intrínseco que merecen, son importantes desde un punto de vista ingenieril. Una solución precisa del problema de flujo es necesaria para definir las cargas térmicas sobre las estructuras, que en muchos casos responden fuertemente, haciendo el problema acoplado. Esta clase de problemas, que motivaron este trabajo, incluyen la respuesta estructural en el caso de un incendio.
A general description of a fluid flow involves the solution of the compressible Navier-Stokes equations, a very complex problem whose mathematical structure is not well understood. Therefore, simplified models can be derived by asymptotic analysis under some assumptions on the problem, made in terms of dimensionless parameters that measure the relative importance of different physical processes. Low speed flows can be described by several models including the incompressible Navier Stokes equations whose mathematical structure is much better understood. However many important flows cannot be considered as incompressible, even at low speed, due to the presence of thermal effects. In such kind of problems another class of simplified equations can be derived: the Boussinesq equations and the Low Mach number equations.
The complexity of these mathematical problems makes their numerical solution very difficult. For these problems the standard finite element method is unstable, what in practice means that node to node oscillations of non physical nature may appear in the numerical solution. In the incompressible Navier Stokes equations, two well known sources of numerical instabilities are the incompressibility constraint and the presence of the convective terms. Many stabilization techniques used nowadays are based on scale separation, splitting the unknown into a coarse part induced by the discretization of the domain and a fine subgrid part. The modelling of the subgrid scale and its influence leads to a modified coarse scale problem that now can be shown to be stable.
Although stabilization techniques are nowadays widely used, important problems remain open. Contributing to their understanding, several aspects of the subgrid scale modelling are analyzed in this work. For second order scalar problems, the dependence of the subgrid scale on the mesh size, in the general anisotropic case, is clarified. These ideas are extended to systems of equations to consider the Oseen problem. The modelling of the subgrid scales in transient problems is also analyzed, leading to an improved time discretization scheme for the coarse scale problem. To consider low speed flow models, the extension of these techniques to nonlinear and coupled problems is presented, something that is intimately related to the problem of turbulence modelling, which a entire subject on its own right.
Thermally coupled flow problems, despite the intrinsic interest they deserve, are important from an engineering point of view. An accurate solution of a flow problem is needed to define thermal loads on structures which, in many cases have a strong response, making the problem coupled. This kind of problems, that motivated this work, include the problem of a structural response in the case of fires.
Li, Kuo-Hui. "RF beamformers for high-speed wireless communications." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/14768.
Повний текст джерелаErdem, Birsen. "Finite Volume Solutions Of 1d Euler Equations For High Speed Flows With Finite-rate Chemistry." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/703868/index.pdf.
Повний текст джерелаSlawinski, Raphael. "Finite-difference modeling of seismic wave propagation in fractured media." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0027/NQ49538.pdf.
Повний текст джерелаLidgate, Simon. "Advanced finite difference - beam propagation : method analysis of complex components." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408596.
Повний текст джерелаNešpůrek, Lukáš. "STOCHASTIC CRACK PROPAGATION MODELLING USING THE EXTENDED FINITE ELEMENT METHOD." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233900.
Повний текст джерелаAbdallah, Riyadh A. "Finite element based beam propagation analysis of optical semiconductor devices." Thesis, City, University of London, 2007. http://openaccess.city.ac.uk/20121/.
Повний текст джерелаLee, Sun Ung. "Dynamics of high-speed rotating machines." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326078.
Повний текст джерелаOwadally, A. S. "Propagation models for an improved trade-off between speed and accuracy." Thesis, University of Surrey, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402874.
Повний текст джерелаGhazal, Ammar. "Propagation channel characterisation and modelling for high-speed train communication systems." Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/3079.
Повний текст джерелаWheel, Marcus A. "High speed double torsion testing of pipe grade polyethylenes." Thesis, Imperial College London, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318493.
Повний текст джерелаOzenc, Kaan. "Finite Element Simulation Of Crack Propagation For Steel Fiber Reinforced Concrete." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610837/index.pdf.
Повний текст джерелаGeorge, David L. "Finite volume methods and adaptive refinement for tsunami propagation and inundation /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/6752.
Повний текст джерелаZheng, Hui. "Application of the hybrid finite element procedure to crack band propagation." Ohio : Ohio University, 1987. http://www.ohiolink.edu/etd/view.cgi?ohiou1183125160.
Повний текст джерелаDalo, Dominic N. "A finite element solution of thermal wave propagation in elastic media /." Online version of thesis, 1987. http://hdl.handle.net/1850/8821.
Повний текст джерелаKim, Hyun Sil. "Instability of finite amplitude wave propagation in harmonically heterogeneous elastic solids." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/16437.
Повний текст джерелаO'Rourke, Carl. "Finite-difference time-domain simulation of femtosecond pulse propagation in semiconductor." Thesis, University of Surrey, 2006. http://epubs.surrey.ac.uk/843730/.
Повний текст джерелаHolt-Phoenix, Marianne S. (Marianne Shue). "Wave propagation in finite element and mass-spring-dashpot lattice models." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35683.
Повний текст джерелаIncludes bibliographical references (p. 42).
Numerical efficiency comparisons of a four-node finite element model (FEM), a mass-spring lattice model (MSLM), and a mass-spring-dashpot lattice model (MSDLM) are investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's ratio and angle of incidence is evaluated in each model of an isotropic elastic solid. With regard to phase speed, materials with constant N grid spaces per P-wavelength having Poisson's ratios between 0.0 and 0.25 are modeled more accurately with the MSLM. Materials with Poisson's ratios between 0.35 and 0.5 and N grid spaces per P-wavelength are more accurately modeled with the FEM. Materials whose Poisson's ratio is between 0.25 and 0.35 are modeled equally accurately. With regard to phase speed, viscoelastic materials modeled with FEM and MSDLM show good agreement with known analytical solutions. The computational expense of all three models is also examined. The number of floating point operations (FLOPS) needed to achieve a specified phase speed accuracy is calculated for each different model. While the FEM and MSLM have nearly the same computation cost, the MSDLM is 5 times more costly than either the FEM or MSLM.
by Marianne S. Holt-Phoenix.
Nav.E.and S.M.
Burrows, Richard. "Numerical finite element modelling of the high speed resistance welding process." Thesis, Swansea University, 2008. https://cronfa.swan.ac.uk/Record/cronfa42942.
Повний текст джерелаHurrell, Andrew M. "Finite difference modelling of acoustic propagation and its applications in underwater acoustics." Thesis, University of Bath, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250842.
Повний текст джерелаHayner, Mark A. (Mark Andrew). "Optimized finite difference schemes for wave propagation in high loss viscoelastic material." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36488.
Повний текст джерелаArthurs, Christopher J. "Efficient simulation of cardiac electrical propagation using adaptive high-order finite elements." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:ad31f06f-c4ed-4c48-b978-1ef3b12fe7a1.
Повний текст джерелаKundu, Abhishek. "Efficient uncertainty propagation schemes for dynamical systems with stochastic finite element analysis." Thesis, Swansea University, 2014. https://cronfa.swan.ac.uk/Record/cronfa42292.
Повний текст джерелаGültop, Tekin. "A finite strain theory of elastoplasticity and its application to wave propagation." Doctoral thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/17310.
Повний текст джерелаA constitutive theory of finite strain plasticity is developed by using the methods of convex analysis. The theory abstracts and extends the classical assumptions of a convex region of admissible stresses, and the normality law. The overall effects of plastic behaviour are contained in the theory through the presence of one or more internal variables. The thermodynamic restrictions of the second law together with the use of results of convex analysis lead in a natural way to the evolution equation or flow law. Non-smooth yield surfaces are included in the theory; nevertheless, the form of this theory makes a study of propagation of singular surfaces awkward. With a view to carrying out such a study, an alternative means of treating non-smooth convex yield surfaces is developed. This alternative theory is essentially a synthesis of the theory of Sewell, and that presented earlier in the thesis. The theory of singular surfaces is reviewed in the context of finite strain elastoplasticity, and necessary conditions for the propagation of acceleration waves are derived. A comparison of elastic and plastic wave speeds is made, and inequalities similar to those of Mandel for the small-strain case are derived. The propagation conditions for principal waves in both longitudinal and transverse directions, and the corresponding wave speeds, are found and compared for solids obeying a neo-Hookean elastic law, and with either the von Mises or Tresca yield criteria.
Senarath, Aditha Srikantha. "Finite Different Time-Domain Simulation of Terahertz Waves Propagation Through Unmagnetized Plasma." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1629431383655508.
Повний текст джерелаLand, J. George. "An axisymmetric finite element solution for elastic wave propagation through threaded connections." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-11072008-063025/.
Повний текст джерелаKursungecmez, Hatice. "Numerical simulation of shock propagation in one and two dimensional domains." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14174.
Повний текст джерелаReid, Robert. "Propagation and period-doubling of coherent structures in coupled lattice maps." Thesis, University of Warwick, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369417.
Повний текст джерелаHussain, Tanweer. "Modelling and controlling variation propagation in mechanical assembly of high speed rotating machines." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/28465/.
Повний текст джерелаHaxha, Shyqyri. "Optimization of ultra-high speed electrooptic modulators using the finite element method." Thesis, City University London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397673.
Повний текст джерелаTong, Tsz Kin Jimmy. "A finite element approach to the planing problem of high speed craft." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278920.
Повний текст джерелаTilbrook, Matthew Thomas Materials Science & Engineering Faculty of Science UNSW. "Fatigue crack propagation in functionally graded materials." Awarded by:University of New South Wales. Materials Science & Engineering, 2005. http://handle.unsw.edu.au/1959.4/21885.
Повний текст джерелаJahnke, Gunnar. "Methods for Seismic Wave Propagation on Local and Global Scales with Finite Differences." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-112352.
Повний текст джерелаLiow, J. (Jeih-San). "A two dimensional finite-difference simulation of seismic wave propagation in elastic media." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/25781.
Повний текст джерелаGonzalez, Csaszar Eduardo. "Analysis of optical propagation in isotropic nonlinear devices by the finite element method." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244741.
Повний текст джерела