Дисертації з теми "Finite differences"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Finite differences".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Floyd, Stewart Allen. "A qualitative analysis of finite difference equations in R[superscript n]." Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/29441.
Повний текст джерела蔡景華 and King-wah Choi. "Finite difference modelling of estuarine hydrodynamics." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1985. http://hub.hku.hk/bib/B30425153.
Повний текст джерелаHayman, Kenneth John. "Finite-difference methods for the diffusion equation." Title page, table of contents and summary only, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phh422.pdf.
Повний текст джерелаAmpadu, Ebenezer. "Implementation of some finite difference methods for the pricing of derivatives using C++ programming." Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/.
Повний текст джерелаDemirayak, Murat Neslitürk Ali İhsan. "Analysis Of Finite Difference Methods For Convection-Diffusion Problem/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000481.pdf.
Повний текст джерелаAğıroğlu, İzzet Onur Tanoğlu Gamze. "An application of the finite differences method to a dynamical interface problem/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000445.pdf.
Повний текст джерелаTrojan, Alice von. "Finite difference methods for advection and diffusion." Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phv948.pdf.
Повний текст джерелаChoi, King-wah. "Finite difference modelling of estuarine hydrodynamics /." [Hong Kong] : University of Hong Kong, 1985. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1232503X.
Повний текст джерелаReimers, Mark Allan. "Hyper-finite methods for multi-dimensional stochastic processes." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/27515.
Повний текст джерелаScience, Faculty of
Mathematics, Department of
Graduate
Kama, Phumezile. "Non-standard finite difference methods in dynamical systems." Thesis, Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-07132009-163422.
Повний текст джерелаDea, John R. "High-order non-reflecting boundary conditions for the linearized Euler equations." Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Sept/08Sep%5FDea%5FPhD.pdf.
Повний текст джерелаDissertation Advisor(s): Neta, Beny. "September 2008." Description based on title screen as viewed on November 6, 2008. Includes bibliographical references (p. 161-170). Also available in print.
Johnson, Fen Rui. "A study of finite and linear elasticity." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1096.
Повний текст джерелаChirvasa, Mihaela. "Finite difference methods for 1st Order in time, 2nd order in space, hyperbolic systems used in numerical relativity." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4213/.
Повний текст джерелаDiese Doktorarbeit beschäftigt sich mit der Entwicklung numerischer Verfahren für die Diskretisierung des Anfangswertproblems und des Anfangs-Randwertproblems unter Einsatz von finite-Differenzen-Techniken für bestimmte hyperbolischer Systeme erster Ordnung in der Zeit und zweiter Ordnung im Raum. Diese Art von Systemen erscheinen in einigen Formulierungen der Einstein'schen-Feldgleichungen, wie zB. den ADM, BSSN oder NOR Formulierungen, oder der sogenanten verallgemeinerten harmonischen Darstellung. Im Hinblick auf das Anfangswertproblem untersuche ich zunächst tiefgehend die mathematischen Eigenschaften von finite-Differenzen-Operatoren (FDO) erster und zweiter Ordnung mit 2n-facher Genaugigkeit. Anschließend erweitere ich eine in der Literatur beschriebene Methode zur Stabilitätsanalyse für Systeme mit zentrierten FDOs in zweiter und vierter Genauigkeitsordung auf Systeme mit gemischten zentrierten und nicht zentrierten Ableitungsoperatoren 2n-facher Genauigkeit, eingeschlossen zusätzlicher Dämpfungsterme, wie sie bei numerischen Simulationen der allgemeinen Relativitätstheorie üblich sind. Bei der Untersuchung der einfachen Wellengleichung als Fallbeispiel wird besonderes Augenmerk auf die Analyse der Courant-Grenzen und numerischen Geschwindigkeiten gelegt. Obwohl unzentrierte, diskrete Ableitungsoperatoren größere Diskretisierungs-Fehler besitzen als zentrierte Ableitungsoperatoren, wird gezeigt, daß man in bestimmten Situationen eine Dezentrierung des numerischen Moleküls von nur einem Punkt bezüglich des zentrierten FDO eine höhere Genauigkeit des numerischen Systems erzielen kann. Die Wellen-Gleichung in einer Dimension wurde ebenfalls im Hinblick auf das Anfangswertproblem untersucht. In Abhängigkeit des Wertes des sogenannten Shift-Vektors, müssen entweder zwei (vollständig eingehende Welle), eine (eingehende Welle) oder keine Randbedingung (ausgehende Welle) definiert werden. In dieser Arbeit wurden alle drei Fälle mit Hilfe der 'Ghost-point-methode' numerisch simuliert und untersucht, und zwar auf eine Weise, daß alle diese Algorithmen stabil sind und eine 2n-Genauigkeit besitzen. In der 'ghost-point-methode' werden die Evolutionsgleichungen bis zum letzen Punkt im Gitter diskretisiert unter Verwendung von zentrierten FDOs und die zusätzlichen Punkte die am Rand benötigt werden ('Ghost-points') werden unter Benutzung von Randwertbedingungen und Extrapolationen abgeschätzt. Für den Zufluß-Randwert wurde zusätzlich noch eine andere Implementierung entwickelt, welche auf der sogenannten SBP-SAT (Summation by parts-simulatanous approximation term) basiert. In dieser Methode werden die diskreten Ableitungen durch Operatoren angenähert, welche die 'Summation-by-parts' Regeln erfüllen. Die Randwertbedingungen selber werden in zusätzlichen Termen integriert, welche zu den Evolutionsgleichnungen der Punkte nahe des Randes hinzuaddiert werden und zwar auf eine Weise, daß die 'summation-by-parts' Eigenschaften erhalten bleiben. Am Ende dieser Arbeit wurde noch eine eindimensionale (kugelsymmetrische) Version der BSSN Formulierung abgeleitet und einige physikalisch relevanten Anfangs-Randwertprobleme werden diskutiert. Die Randwert-Algorithmen, welche für diesen Fall ausgearbeitet wurden, basieren auf der 'Ghost-point-Methode' and erfüllen die innere 2n-Genauigkeit solange genügend Reibung in den Gleichungen zugefügt wird.
Steinle, Peter John. "Finite difference methods for the advection equation /." Title page, table of contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phs8224.pdf.
Повний текст джерелаPersson, Jonas. "Accurate Finite Difference Methods for Option Pricing." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7097.
Повний текст джерелаGhosh, Swarnava Ghosh. "Orbital-free density functional theory using higher-order finite differences." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53603.
Повний текст джерелаWang, Xi. "Finite Differences Based on Radial Basis Functions to Price Options." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243518.
Повний текст джерелаSena, Giuseppe A. (Giuseppe Antonio). "Very large scale finite differences in modeling of seismic waves." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/58055.
Повний текст джерелаAshworth, Eileen. "Heat flow into underground openings: Significant factors." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185768.
Повний текст джерелаWerpers, Jonatan. "Numerical simulation of solitons in the nerve axon using finite differences." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234383.
Повний текст джерелаLønsethagen, Simen Andreas Andreassen. "Krylov Subspace Accelerated Algebraic Multigrid for Mimetic Finite Differences on GPUs." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19328.
Повний текст джерелаSjöberg, Alexander. "Adaptive finite differences to price European options under the Bates model." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-206899.
Повний текст джерелаDumanois, Stephane. "Least Squares Radial Basis Function generated Finite Differences for Option Pricing." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-312815.
Повний текст джерелаSvärd, Magnus. "Stable high-order finite difference methods for aerodynamics /." Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4621.
Повний текст джерелаSousa, Ercília. "Finite differences for the convection-diffusion equation : on stability and boundary conditions." Thesis, University of Oxford, 2001. http://ora.ox.ac.uk/objects/uuid:8369da31-2229-4e05-846c-de3072ac1a37.
Повний текст джерелаSharp, Richard Paul. "Computational approaches for diffusive light transport finite-elements, grid adaption, and error estimation /." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1154705561.
Повний текст джерелаDong, Hao. "Adaptive moving grid method to two-phase flow problesm." HKBU Institutional Repository, 2011. http://repository.hkbu.edu.hk/etd_ra/1275.
Повний текст джерелаMeagher, Timothy P. "A New Finite Difference Time Domain Method to Solve Maxwell's Equations." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4389.
Повний текст джерелаStephan, Andrew Jon Eugene. "Convection Driven Dynamos in Rotating Spheres." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14763.
Повний текст джерелаBencharif, Nasr-Eddine. "Linear and nonlinear deflection analysis of thick rectangular plates using finite differences." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/10984.
Повний текст джерелаVasyliv, Yaroslav V. "Development of general finite differences for complex geometries using immersed boundary method." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54425.
Повний текст джерелаMettot, Clément. "Linear stability, sensitivity, and passive control of turbulent flows using finite differences." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/92/19/08/PDF/Manuscript_Clement_Mettot.pdf.
Повний текст джерелаThe contribution of this Ph. D consists in a formalism and a methodology to perform linear stability analysis of turbulent flows. The flow dynamics is modelled using the RANS equations closed with a turbulence model, and we focus on the instabilities associated with the large scale structures of turbulence. A global formulation is adopted so as to allow complex geometries analysis. A discrete framework is considered, where the equations are first discretized and then linearized. In particular, the linearization is performed using finite differences. This procedure ensures the generic character of the method regarding the system of equations such as the turbulence model for example, and avoids tedious analytical linearization. Furthermore, it allows to use a numerical code in a black-box manner in order to perform linear stability analysis. Finally, we demonstrate that the sensitivity gradients can be computed within this framework for both laminar and turbulent flows. Sensitivity analysis carries valuable information regarding the location where steady control means can affect the flow unsteadiness, enabling the design of robust strategies for open loop control. The method is first tested on two laminar cases, reproducing former studies concerned with the oscillators dynamics of the wake behind a two dimensional cylinder, and the characterization of a laminar boundary layer as a noise amplifier. The robustness and validity of our procedure is then extensively studied on a compressible turbulent flow over a deep cavity. Numerical validations are performed, ensuring the correctness of our sensitivity gradients up to 3\%, and the flow physics, including unstable mode analysis, acoustics, impact of turbulence modeling, is analysed. In order to enhance the portability and the valuable information carried out by our method, we present several preliminary studies that were performed using our formalism. First, we revisit the transonic buffet over an airfoil, the noise amplifier dynamics of a turbulent shock-boundary layer interaction is then characterized and we conclude with an analysis of the screech phenomenon in under-expanded jets. Finally, we conclude this work by studying the turbulent wake behind a D-shaped cylinder, and show the potential of our method for industrial applications
Kung, Christopher W. "Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic media." Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1238024768.
Повний текст джерелаTan, Zhijun. "Moving mesh finite volume method and its applications." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/592.
Повний текст джерелаHe, Jianqing. "Finite difference time domain simulation of subpicosecond semiconductor optical devices." Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-05042006-164534/.
Повний текст джерелаTeramoto, Elias Hideo [UNESP]. "Caracterização hidrogeológica e simulação numérica de fluxo em uma região situada no distrito industrial de Paulínia (SP)." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/92749.
Повний текст джерелаConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Em área contaminada por hidrocarbonetos, situada no município de Paulínia, a migração dos contaminantes e a eficiência do sistema de bombeamento são governadas pela heterogeneidade litológica do aqüífero local, constituído por rochas do Subgrupo Itararé, rochas intrusivas básicas da Formação Serra Geral e por sedimentos cenozóicos correlatos à Formação Rio Claro. Desta forma, o entendimento da heterogeneidade que caracteriza este aqüífero e suas propriedades hidráulicas é essencial para a otimização e o aprimoramento do processo de remediação. Visando delinear o entendimento e a caracterização hidrogeológica local, foi elaborado modelo hidrogeológico conceitual, por meio da integração de dados provenientes de técnicas tradicionais de investigação, tais como métodos geofísicos, monitoramento dos níveis piezométricos de poços de monitoramento, descrições geológicas e análises granulométricas, para entendimento da dinâmica de fluxo local, distribuição litológica do substrato aqüífero e seus valores de condutividade hidráulica. Foram ainda realizadas simulações numéricas de fluxo em regime permanente, utilizando o software Visual Modflow, que emprega o método de diferenças finitas para testar o modelo conceitual concebido. A simulação numérica apresentou excelentes correlações entre os valores de cargas hidráulicas medidas e simuladas e os resultados obtidos permitiram verificar a consistência do modelo conceitual.
In an hydrocarbon contaminated area locate in Paulínia city, lithological heterogeneity of local aquifer controls the migration of contaminant and the efficiency of pump system. The aquifer is composed by sedimentary rocks of Itararé Sub-group, basic intrusive of Serra Geral Formation and cenozoic sediments correlated to Rio Claro Formation. Therefore, understanding heterogeinity that characterize the aquifer and its hydraulic properties is vital to optimization and improvement of remediation process. For hydrogeological characterization of the local aquifer, a conceptual hydrogeological model was elaborated by integrating traditional investigations tools, such as geophysical methods, piezometric level monitoring, and geological descriptions in drillings and granulometric analysis to understanding of local dynamic flow, lithological distributions and hydraulic conductivity. Numerical simulation under steady-state condition using Visual Modflow, which utilizes the finite differences method were performed to test the conceived conceptual model. The measured and calculated hydraulic heads are in excellent agreement, showing the consistency of the conceptual model.
Sousa, Nadson de. "Metodos de diferenças finitas : conceitos e interpretações." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306426.
Повний текст джерелаDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T04:58:29Z (GMT). No. of bitstreams: 1 Sousa_Nadsonde_M.pdf: 846587 bytes, checksum: 2e5832c38e969f5279654b4c89da83e3 (MD5) Previous issue date: 2009
Resumo: O presente trabalho aborda os métodos de diferenças finitas com suas propriedades e aplicações. Iniciamos com uma revisão histórica, destacando alguns matemáticos que participaram do desenvolvimento da teoria de métodos de diferenças. Em seguida, apresentamos alguns modelos matemáticos compostos por equações diferenciais. Através da equação de advecção, estudamos métodos de diferenças explícitos, com especial enfoque para as propriedades de erro de truncamento, consistência, estabilidade e convergência dando ênfase ao Teorema de Lax. Estudamos a análise de Fourier e a condição de von Neumann para interpretar a amplitude, a dissipação e a dispersão das soluções numéricas. Abordamos os métodos Upwind, de Lax-Friedrichs e de Lax-Wendroff. Por fim, exemplificamos numericamente os conceitos e propriedades estudados com comparações entre os métodos, aplicados em um problema teste.
Abstract: The present work approaches finite-difference methods, their properties, and their applications. We present a historical review, including some mathematieians who participated in the development of the theory of differences. Furthermore, we present some mathematical models consisting of differential equatiolls. Through the advection equationl, we study explicit finite-difference methods, detailing their truncation error, consistency, stability and conlvergence properties. We employ Fourier analysis and the von Neumann condition to study the amplitude, dissipation and dispersion of numerical solutions. We compare three methods: Upwind, Lax-Friedrichs and Lax-Wendroff. Finally, we perform numerical tests to illustrate the concepts and properties studied in this work.
Mestrado
Analise Numerica
Mestre em Matemática
Bouwer, Abraham. "The Du Fort and Frankel finite difference scheme applied to and adapted for a class of finance problems." Diss., Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-10122009-193152.
Повний текст джерелаKress, Wendy. "High Order Finite Difference Methods in Space and Time." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3559.
Повний текст джерелаPezant, Joannes Charles. "High temperature thickness monitoring using ultrasonic waves." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26577.
Повний текст джерелаCommittee Chair: Michaels, Jennifer; Committee Member: Jacobs, Laurence; Committee Member: Michaels, Thomas. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Maloney, James G. "Analysis and synthesis of transient antennas using the Finite-Difference Time-Domain (FDTD)." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/15052.
Повний текст джерелаLiow, J. (Jeih-San). "A two dimensional finite-difference simulation of seismic wave propagation in elastic media." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/25781.
Повний текст джерелаKıran, Güçoğlu Arzu Tanoğlu Gamze. "The solution of some differential equations by nonstandard finite difference method/." [S.l.] : [s.n.], 2005. http://library.iyte.edu.tr/tezler/master/matematik/T000332.pdf.
Повний текст джерелаKeywords: Nonlinear differential equations, finite difference method, numeric simulation. Includes bibliographical references (leaves. 55-57).
Wang, Bohe. "The application of finite difference method and MATLAB in engineering plates." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1037.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains iv, 87 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 86-87).
Chavannes, Nicolas Pierre. "Local mesh refinement algorithms for enhanced modeling capabilities in the FDTD method /." Konstanz : Hartung-Gorre, 2002. http://www.loc.gov/catdir/toc/fy0801/2006483066.html.
Повний текст джерелаTyler, Jonathan. "Analysis and implementation of high-order compact finite difference schemes /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2177.pdf.
Повний текст джерелаJahnke, Gunnar. "Methods for Seismic Wave Propagation on Local and Global Scales with Finite Differences." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-112352.
Повний текст джерелаCiydem, Mehmet. "Ray Based Finite Difference Method For Time Domain Electromagnetics." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606633/index.pdf.
Повний текст джерелаs hyperbolic partial differential equations directly, Geometrical Optics tools (wavefronts, rays) and Taylor series have been utilized. Discontinuities of electromagnetic fields lie on wavefronts and propagate along rays. They are transported in the computational domain by transport equations which are ordinary differential equations. Then time dependent field solutions at a point are constructed by using Taylor series expansion in time whose coefficients are these transported distincontinuties. RBTD utilizes grid structure conforming to wave fronts and rays and treats all electromagnetic problems, regardless of their dimensions, as one dimensional problem along the rays. Hence CFL stability condition is implemented always at one dimensional eqaulity case on the ray. Accuracy of RBTD depends on the accuracy of grid generation and numerical solution of transport equations. Simulations for isotropic medium (homogeneous/inhomogeneous) have been conducted. Basic electromagnetic phenomena such as propagation, reflection and refraction have been implemented. Simulation results prove that RBTD eliminates numerical dispersion inherent to FDTD and is promising to be a novel method for computational electromagnetics.
Lee, Hwa Ok. "Cylindrical FDTD analysis of LWD tools through anisotropic dipping layered earth media." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1146148166.
Повний текст джерелаWagner, Christopher Lincoln. "Theoretical basis for numerically exact three-dimensional time-domain algorithms." Online access for everyone, 2004. http://www.dissertations.wsu.edu/Dissertations/Spring2004/c%5Fwagner%5F050404.pdf.
Повний текст джерела