Добірка наукової літератури з теми "Finite density QCD"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Finite density QCD".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Finite density QCD"

1

Barbour, I. M. "QCD at finite density." Nuclear Physics B - Proceedings Supplements 26 (January 1992): 22–30. http://dx.doi.org/10.1016/0920-5632(92)90226-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lombardo, Maria-Paola. "Lattice QCD at Finite Density." Progress of Theoretical Physics Supplement 153 (2004): 26–39. http://dx.doi.org/10.1143/ptps.153.26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Son, D. T., and M. A. Stephanov. "QCD at Finite Isospin Density." Physical Review Letters 86, no. 4 (January 22, 2001): 592–95. http://dx.doi.org/10.1103/physrevlett.86.592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kogut, J. B., M. P. Lombardo, and D. K. Sinclair. "Quenched QCD at finite density." Physical Review D 51, no. 3 (February 1, 1995): 1282–91. http://dx.doi.org/10.1103/physrevd.51.1282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante, and A. F. Grillo. "Frustration in finite density QCD." Physics Letters B 435, no. 1-2 (September 1998): 175–80. http://dx.doi.org/10.1016/s0370-2693(98)00762-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barbour, Ian M., Susan E. Morrison, Elyakum G. Klepfish, John B. Kogut, and Maria-Paola Lombardo. "Results on finite density QCD." Nuclear Physics B - Proceedings Supplements 60, no. 1-2 (January 1998): 220–33. http://dx.doi.org/10.1016/s0920-5632(97)00484-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barbour, I. M., C. T. H. Davies, and Z. Sabeur. "Lattice QCD at finite density." Physics Letters B 215, no. 3 (December 1988): 567–72. http://dx.doi.org/10.1016/0370-2693(88)91361-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vladikas, A. "QCD at finite baryon density." Nuclear Physics B - Proceedings Supplements 4 (April 1988): 322–26. http://dx.doi.org/10.1016/0920-5632(88)90122-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barbour, I. M. "Lattice QCD at finite density." Nuclear Physics B - Proceedings Supplements 17 (September 1990): 243–47. http://dx.doi.org/10.1016/0920-5632(90)90246-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Toussaint, D. "Simulating QCD at finite density." Nuclear Physics B - Proceedings Supplements 17 (September 1990): 248–51. http://dx.doi.org/10.1016/0920-5632(90)90247-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Finite density QCD"

1

Crompton, P. R. "Lee-Yang zeros analysis of finite density lattice QCD." Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hatta, Yoshitaka. "The QCD phase transition at finite temperature and density." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vuorinen, Aleksi. "The pressure of QCD at finite temperature and quark number density." Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/vuorinen/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Morrison, Susan Elizabeth. "Lattice QCD at finite baryon density with an implementation of dynamical fermions." Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bluhm, Marcus. "QCD equation of state of hot deconfined matter at finite baryon density : a quasiparticle perspective." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1232358506561-61975.

Повний текст джерела
Анотація:
The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are self-consistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. A comparison of quasiparticle model results with available lattice QCD data for, e. g., basic bulk thermodynamic quantities and various susceptibilities such as diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing ground, is found to be successful. Furthermore, different thermodynamic quantities and the phase diagram for imaginary chemical potential are faithfully described. Thus, the applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. These extrapolations demonstrate the predictive power of the model. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state whose members differ from each other in the specific interpolation prescription between large energy density region and a realistic hadron resonance gas equation of state at low energy densities. The obtained family of equations of state is applied in hydrodynamic simulations, and the implications of variations in the transition region are discussed by considering transverse momentum spectra and differential elliptic flow of directly emitted hadrons, in particular of strange baryons, for both, RHIC top energy and LHC conditions. Finally, with regard to FAIR physics, implications of the possible presence of a QCD critical point on the equation of state are outlined both, in an exemplary toy model and for an extended quasiparticle model.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bluhm, Marcus. "QCD equation of state of hot deconfined matter at finite baryon density : a quasiparticle perspective." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23996.

Повний текст джерела
Анотація:
The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are self-consistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. A comparison of quasiparticle model results with available lattice QCD data for, e. g., basic bulk thermodynamic quantities and various susceptibilities such as diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing ground, is found to be successful. Furthermore, different thermodynamic quantities and the phase diagram for imaginary chemical potential are faithfully described. Thus, the applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. These extrapolations demonstrate the predictive power of the model. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state whose members differ from each other in the specific interpolation prescription between large energy density region and a realistic hadron resonance gas equation of state at low energy densities. The obtained family of equations of state is applied in hydrodynamic simulations, and the implications of variations in the transition region are discussed by considering transverse momentum spectra and differential elliptic flow of directly emitted hadrons, in particular of strange baryons, for both, RHIC top energy and LHC conditions. Finally, with regard to FAIR physics, implications of the possible presence of a QCD critical point on the equation of state are outlined both, in an exemplary toy model and for an extended quasiparticle model.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mogliacci, Sylvain [Verfasser]. "Probing the finite density equation of state of QCD via resummed perturbation theory / Sylvain Mogliacci." Bielefeld : Universitätsbibliothek Bielefeld, 2014. http://d-nb.info/1053467508/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Müller, Daniel Verfasser], Jochen [Akademischer Betreuer] [Wambach, and Michael [Akademischer Betreuer] Buballa. "QCD at finite density with Dyson-Schwinger equations / Daniel Müller. Betreuer: Jochen Wambach ; Michael Buballa." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1106454871/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Müller, Daniel [Verfasser], Jochen [Akademischer Betreuer] Wambach, and Michael [Akademischer Betreuer] Buballa. "QCD at finite density with Dyson-Schwinger equations / Daniel Müller. Betreuer: Jochen Wambach ; Michael Buballa." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-34836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Anyi. "STUDY OF QCD CRITICAL POINT USING CANONICAL ENSEMBLE METHOD." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/756.

Повний текст джерела
Анотація:
QCD at non-zero baryon density is expected to have a critical point where the finite temperature crossover at zero density turns into a first order phase transition. To identify this point, we use the canonical ensemble approach to scan the temperaturedensity plane through lattice QCD simulations with Wilson-type fermions. In order to scan a wide range of the phase diagram, we develop an algorithm, the ”winding number expansion method” (WNEM) to fix the numerical instability problem due to the discrete Fourier transform for calculating the projected determinant. For a given temperature, we measure the chemical potential as a function of the baryon number and look for the signal of a first order phase transition. We carry out simulations using clover fermions with mπ ≈ 800MeV on 63 × 4 lattices. As a benchmark, we run simulations for the four degenerate flavor case where we observe a clear signal of the first order phase transition. In the two flavor case we do not see any signal for temperatures as low as 0.83 Tc. To gauge the discretization errors, we also run a set of simulations using Wilson fermions and compare the results to those from the clover fermion. The three flavor case is close to realistic QCD with two light u and d quarks and one heavier s quark. Any hint of the existence of the first order phase transition and, particularly, its critical end point will be valuable for the planned relativistic heavy-ion experiments to search for such a point. In the three flavor case we found a clear signal for the first order phase transition, the critical point is located at a temperature of 0.93(2) Tc and a baryon chemical potential of 3.25(7) Tc. Since the quark mass in our present simulation is relatively heavy, we would like to repeat it with lighter quark masses and larger volumes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Finite density QCD"

1

Barbour, I. M. "Lattice QCD at Finite Density." In NATO ASI Series, 1–9. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gürsoy, Umut. "Improved Holographic QCD at Finite Density." In SpringerBriefs in Physics, 65–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79599-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ding, H. T., W. J. Fu, F. Gao, M. Huang, X. G. Huang, F. Karsch, J. F. Liao, et al. "QCD Phase Structure at Finite Baryon Density." In Properties of QCD Matter at High Baryon Density, 1–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4441-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karsch, Frithjof. "QCD at Finite Temperature and Baryon Number Density." In NATO ASI Series, 1–14. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karsch, Frithjof. "The Monomer-Dimer Algorithm and QCD at Finite Density." In Probabilistic Methods in Quantum Field Theory and Quantum Gravity, 199–208. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3784-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xu, Nu. "Exploration of the QCD Phase Diagram at Finite Baryon Density Region: Recent Results from RHIC Beam Energy Scan-I." In XXII DAE High Energy Physics Symposium, 1–5. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mallik, S. "QCD sum rules at finite temperature and density." In Quark Confinement and the Hadron Spectrum IV, 349–52. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778567_0050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BITTNER, E., M. P. LOMBARDO, H. MARKUM, and R. PULLIRSCH. "EIGENVALUES OF THE QCD DIRAC OPERATOR AT FINITE TEMPERATURE AND DENSITY." In Quark Confinement and the Hadron Spectrum IV, 353–56. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778567_0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Finite density QCD"

1

LUO, XIANG-QIAN, ERIC B. GREGORY, SHUO-HONG GUO, and HELMUT KRÖGER. "QCD AT FINITE DENSITY." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811370_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gupta, Sourendu. "QCD at finite density." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schmidt, Christian. "Lattice QCD at finite density." In XXIVth International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.032.0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Forcrand, Philippe. "Simulating QCD at finite density." In The XXVII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.091.0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nakamura, Atsushi, Masatoshi Hamada, Shinji Motoki, Takayuki Saito, and Tetsuya Takaishi. "Finite Density QCD with Wilson Fermions." In The XXVI International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.066.0190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Conradi, Simone, Alessio D'Alessandro, Massimo D'Elia, Pietro Colangelo, Donato Creanza, Fulvia De Fazio, Rosa Anna Fini, Eugenio Nappi, and Giuseppe Nardulli. "Confining properties in finite density QCD." In QCD&WORK 2007: International Workshop on Quantum Chromodynamics: Theory and Experiment. AIP, 2007. http://dx.doi.org/10.1063/1.2823873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sexty, Denes. "New algorithms for finite density QCD." In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hanada, Masanori. "Relationship between QCD and QCD-Like Theories at Finite Density." In Proceedings of the KMI Inauguration Conference. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814412322_0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Anyi. "Reweighting method in finite density lattice QCD." In XXIVth International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.032.0030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kratochvila, Slavo, and Philippe de Forcrand. "The canonical approach to Finite Density QCD." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Finite density QCD"

1

Kogut, J. B., M. P. Lombardo, and D. K. Sinclair. Quenched QCD at finite density. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10150630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BLUM, T., M. CREUTZ, and P. PETRECZKY. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15006985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії