Добірка наукової літератури з теми "Field-Coupled Nanocomputing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Field-Coupled Nanocomputing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Field-Coupled Nanocomputing"

1

Csaba, G., A. Imre, G. H. Bernstein, W. Porod, and V. Metlushko. "Nanocomputing by field-coupled nanomagnets." IEEE Transactions on Nanotechnology 1, no. 4 (December 2002): 209–13. http://dx.doi.org/10.1109/tnano.2002.807380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chaves, Jeferson F., Marco A. Ribeiro, Frank Sill Torres, and Omar P. Vilela Neto. "Designing Partially Reversible Field-Coupled Nanocomputing Circuits." IEEE Transactions on Nanotechnology 18 (2019): 589–97. http://dx.doi.org/10.1109/tnano.2019.2918057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Formigoni, Ruan Evangelista, Ricardo Santos Ferreira, and José Augusto M. Nacif. "A Survey on Placement and Routing for Field-Coupled Nanocomputing." Journal of Integrated Circuits and Systems 16, no. 1 (April 5, 2021): 1–9. http://dx.doi.org/10.29292/jics.v16i1.480.

Повний текст джерела
Анотація:
CMOS technology is reaching power, thermal, and physical limits at an alarming pace. As a response, post-silicon research investigates alternative technologies to perform computation. Field-Coupled Nanocomputing (FCN) presents low power dissipation, high frequencies, and room temperature operation. Nevertheless, FCN imposes several challenges in the development of efficient and scalable CAD tools. The placement and routing step is especially tricky in FCN compared to CMOS because of synchronization issues inherent to these technologies, such as path balancing and reconvergent paths. In this work, we survey the state-of-art of placement and routing algorithms for FCN. We describe the most recent FCN placement and routing algorithms, highlighting their limitations and, finally, presenting future work directions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ardesi, Yuri, Alessandro Gaeta, Giuliana Beretta, Gianluca Piccinini, and Mariagrazia Graziano. "Ab initio Molecular Dynamics Simulations of Field-Coupled Nanocomputing Molecules." Journal of Integrated Circuits and Systems 16, no. 1 (April 5, 2021): 1–8. http://dx.doi.org/10.29292/jics.v16i1.474.

Повний текст джерела
Анотація:
Molecular Field-Coupled Nanocomputing (FCN) represents one of the most promising solutions to overcome the issues introduced by CMOS scaling. It encodes the information in the molecule charge distribution and propagates it through electrostatic intermolecular interaction. The need for charge transport is overcome, hugely reducing power dissipation.At the current state-of-the-art, the analysis of molecular FCN is mostly based on quantum mechanics techniques, or ab initio evaluated transcharacteristics. In all the cases, studies mainly consider the position of charges/atoms to be fixed. In a realistic situation, the position of atoms, thus the geometry, is subjected to molecular vibrations. In this work, we analyse the impact of molecular vibrations on the charge distribution of the 1,4-diallyl butane. We employ Ab Initio Molecular Dynamics to provide qualitative and quantitative results which describe the effects of temperature and electric fields on molecule charge distribution, taking into account the effects of molecular vibrations. The molecules are studied at near-absolute zero, cryogenic and ambient temperature conditions, showing promising results which proceed towards the assessment of the molecular FCN technology as a possible candidate for future low-power digital electronics. From a modelling perspective, the diallyl butane demonstrates good robustness against molecular vibrations, further confirming the possibility to use static transcharacteristics to analyse molecular circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Beretta, Giuliana, Yuri Ardesi, Mariagrazia Graziano, and Gianluca Piccinini. "Multi-Molecule Field-Coupled Nanocomputing for the Implementation of a Neuron." IEEE Transactions on Nanotechnology 21 (2022): 52–59. http://dx.doi.org/10.1109/tnano.2022.3143720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Lei, and Guangjun Xie. "A Power-Efficient Single Layer Full Adder Design in Field-Coupled QCA Nanocomputing." International Journal of Theoretical Physics 58, no. 7 (April 29, 2019): 2303–19. http://dx.doi.org/10.1007/s10773-019-04121-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ardesi, Yuri, Giuliana Beretta, Marco Vacca, Gianluca Piccinini, and Mariagrazia Graziano. "Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits." Electronics 11, no. 2 (January 16, 2022): 276. http://dx.doi.org/10.3390/electronics11020276.

Повний текст джерела
Анотація:
The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics. Indeed, the electrostatic molecular characteristics play a relevant role in the interaction and consequently influence the functioning of the circuits. In this work, by considering three reference molecular species, namely neutral, oxidized, and zwitterionic, we analyze the fundamental devices, aiming to clarify how molecule physics impacts architectural behavior. We thus examine through energy analysis the fundamental cell-to-cell interactions involved in the layouts. Additionally, we simulate a set of circuits using two available simulators: SCERPA and QCADesigner. In fact, ignoring the molecular characteristics and assuming the molecules copying the QCA behavior lead to controversial molecular circuit proposals. This work demonstrates the importance of considering the molecular type during the design process, thus declaring the simulators working scope and facilitating the assessment of molecular FCN as a possible candidate for future digital electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Labrado, C., and H. Thapliyal. "Design of adder and subtractor circuits in majority logic‐based field‐coupled QCA nanocomputing." Electronics Letters 52, no. 6 (March 2016): 464–66. http://dx.doi.org/10.1049/el.2015.3834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ardesi, Yuri, Mariagrazia Graziano, and Gianluca Piccinini. "A Model for the Evaluation of Monostable Molecule Signal Energy in Molecular Field-Coupled Nanocomputing." Journal of Low Power Electronics and Applications 12, no. 1 (March 1, 2022): 13. http://dx.doi.org/10.3390/jlpea12010013.

Повний текст джерела
Анотація:
Molecular Field-Coupled Nanocomputing (FCN) is a computational paradigm promising high-frequency information elaboration at ambient temperature. This work proposes a model to evaluate the signal energy involved in propagating and elaborating the information. It splits the evaluation into several energy contributions calculated with closed-form expressions without computationally expensive calculation. The essential features of the 1,4-diallylbutane cation are evaluated with Density Functional Theory (DFT) and used in the model to evaluate circuit energy. This model enables understanding the information propagation mechanism in the FCN paradigm based on monostable molecules. We use the model to verify the bistable factor theory, describing the information propagation in molecular FCN based on monostable molecules, analyzed so far only from an electrostatic standpoint. Finally, the model is integrated into the SCERPA tool and used to quantify the information encoding stability and possible memory effects. The obtained results are consistent with state-of-the-art considerations and comparable with DFT calculation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Walter, Marcel, Robert Wille, Daniel Große, Frank Sill Torres, and Rolf Drechsler. "Placement and Routing for Tile-based Field-coupled Nanocomputing Circuits Is NP -complete (Research Note)." ACM Journal on Emerging Technologies in Computing Systems 15, no. 3 (June 29, 2019): 1–10. http://dx.doi.org/10.1145/3312661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Field-Coupled Nanocomputing"

1

Anderson, Neal G., and Sanjukta Bhanja, eds. Field-Coupled Nanocomputing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anderson, Neal G., and Sanjukta Bhanja, eds. Field-Coupled Nanocomputing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45908-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anderson, Neal G., and Sanjukta Bhanja. Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives. Springer London, Limited, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Field-Coupled Nanocomputing"

1

Lent, Craig S., and Gregory L. Snider. "The Development of Quantum-Dot Cellular Automata." In Field-Coupled Nanocomputing, 3–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vacca, Marco, Mariagrazia Graziano, Juanchi Wang, Fabrizio Cairo, Giovanni Causapruno, Gianvito Urgese, Andrea Biroli, and Maurizio Zamboni. "NanoMagnet Logic: An Architectural Level Overview." In Field-Coupled Nanocomputing, 223–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Karim, Faizal, and Konrad Walus. "Modelling Techniques for Simulating Large QCA Circuits." In Field-Coupled Nanocomputing, 259–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vacca, Marco, Stefano Frache, Mariagrazia Graziano, Fabrizio Riente, Giovanna Turvani, Massimo Ruo Roch, and Maurizio Zamboni. "ToPoliNano: NanoMagnet Logic Circuits Design and Simulation." In Field-Coupled Nanocomputing, 274–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pulimeno, Azzurra, Mariagrazia Graziano, Aleandro Antidormi, Ruiyu Wang, Ali Zahir, and Gianluca Piccinini. "Understanding a Bisferrocene Molecular QCA Wire." In Field-Coupled Nanocomputing, 307–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hänninen, Ismo, Hao Lu, Enrique P. Blair, Craig S. Lent, and Gregory L. Snider. "Reversible and Adiabatic Computing: Energy-Efficiency Maximized." In Field-Coupled Nanocomputing, 341–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ercan, İlke, and Neal G. Anderson. "Modular Dissipation Analysis for QCA." In Field-Coupled Nanocomputing, 357–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Anderson, Neal G., and İlke Ercan. "Opportunities, Challenges and the Road Ahead for Field-Coupled Nanocomputing: A Panel Discussion." In Field-Coupled Nanocomputing, 379–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Porod, Wolfgang, Gary H. Bernstein, György Csaba, Sharon X. Hu, Joseph Nahas, Michael T. Niemier, and Alexei Orlov. "Nanomagnet Logic (NML)." In Field-Coupled Nanocomputing, 21–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wolkow, Robert A., Lucian Livadaru, Jason Pitters, Marco Taucer, Paul Piva, Mark Salomons, Martin Cloutier, and Bruno V. C. Martins. "Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics." In Field-Coupled Nanocomputing, 33–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Field-Coupled Nanocomputing"

1

Walter, Marcel, Robert Wille, Frank Sill Torres, Daniel Grose, and Rolf Drechsler. "Verification for Field-coupled Nanocomputing Circuits." In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020. http://dx.doi.org/10.1109/dac18072.2020.9218641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Walter, Marcel, Robert Wille, Frank Sill Torres, Daniel Große, and Rolf Drechsler. "Scalable design for field-coupled nanocomputing circuits." In ASPDAC '19: 24th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287624.3287705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fiche, Joao N. C., Marco T. D. Sousa, Jeferson F. Chaves, Marco A. Ribeiro, Leandro M. Silva, Luiz F. M. Vieira, and Omar P. Vilela Neto. "Energy reduction opportunities in Field-Coupled Nanocomputing Adders." In 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2020. http://dx.doi.org/10.1109/sbcci50935.2020.9189895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Walter, Marcel, Winston Haaswijk, Robert Wille, Frank Sill Torres, and Rolf Drechsler. "One-pass Synthesis for Field-coupled Nanocomputing Technologies." In ASPDAC '21: 26th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3394885.3431607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Garlando, Umberto, Marcel Walter, Robert Wille, Fabrizio Riente, Frank Sill Torres, and Rolf Drechsler. "ToPoliNano and fiction: Design Tools for Field-coupled Nanocomputing." In 2020 23rd Euromicro Conference on Digital System Design (DSD). IEEE, 2020. http://dx.doi.org/10.1109/dsd51259.2020.00071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Ruiyu, Michele Chilla, Alessio Palucci, Mariagrazia Graziano, and Gianlucca Piccinini. "An effective algorithm for clocked field-coupled nanocomputing paradigm." In 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2016. http://dx.doi.org/10.1109/nmdc.2016.7777166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chaves, Jeferson F., Marco A. Ribeiro, Frank Sill Torres, and Omar P. Vilela Neto. "Enhancing Fundamental Energy Limits of Field-Coupled Nanocomputing Circuits." In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ardesi, Yuri, Luca Gnoli, Mariagrazia Graziano, and Gianluca Piccinini. "Bistable Propagation of Monostable Molecules in Molecular Field-Coupled Nanocomputing." In 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). IEEE, 2019. http://dx.doi.org/10.1109/prime.2019.8787751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ardesi, Yuri, Giuliana Beretta, Christian Fabiano, Mariagrazia Graziano, and Gianluca Piccinini. "A Reconfigurable Field-Coupled Nanocomputing Paradigm on Uniform Molecular Monolayers." In 2021 International Conference on Rebooting Computing (ICRC). IEEE, 2021. http://dx.doi.org/10.1109/icrc53822.2021.00028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ribeiro, Marco A., Iago A. Carvalho, Jeferson F. Chaves, Gisele L. Pappa, and Omar P. Vilela Neto. "Improving Energy Efficiency of Field-Coupled Nanocomputing Circuits by Evolutionary Synthesis." In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018. http://dx.doi.org/10.1109/cec.2018.8477723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії