Добірка наукової літератури з теми "Fibre à réseau de Bragg"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fibre à réseau de Bragg".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fibre à réseau de Bragg"
Yiou, S., G. Lucas-Leclin, F. Balembois, and P. Georges. "Laser Nd:YVO4à réseau de Bragg fibré intracavité." Journal de Physique IV (Proceedings) 12, no. 5 (June 2002): 347–50. http://dx.doi.org/10.1051/jp4:20020188.
Повний текст джерелаJáuregui, C., and J. M. López-Higuera. "Interrogation of fibre Bragg gratings with a tilted fibre Bragg grating." Measurement Science and Technology 15, no. 8 (July 20, 2004): 1596–600. http://dx.doi.org/10.1088/0957-0233/15/8/029.
Повний текст джерелаLiu, H. Y., H. B. Liu, G. D. Peng, and P. L. Chu. "Polymer optical fibre Bragg gratings based fibre laser." Optics Communications 266, no. 1 (October 2006): 132–35. http://dx.doi.org/10.1016/j.optcom.2006.04.026.
Повний текст джерелаRao, Yun-Jiang. "In-fibre Bragg grating sensors." Measurement Science and Technology 8, no. 4 (April 1, 1997): 355–75. http://dx.doi.org/10.1088/0957-0233/8/4/002.
Повний текст джерелаSchroeder, Kerstin, Wolfgang Ecke, Rudolf Mueller, Reinhardt Willsch, and Andrey Andreev. "A fibre Bragg grating refractometer." Measurement Science and Technology 12, no. 7 (June 8, 2001): 757–64. http://dx.doi.org/10.1088/0957-0233/12/7/301.
Повний текст джерелаLin, Zhang, and Yang Chang-Xi. "Sinusoidally Chirped Fibre Bragg Gratings." Chinese Physics Letters 20, no. 8 (July 30, 2003): 1293–95. http://dx.doi.org/10.1088/0256-307x/20/8/332.
Повний текст джерелаJin, S., R. P. Espindola, H. Mavoori, T. A. Strasser, and J. J. DeMarco. "Magnetically programmable fibre Bragg gratings." Electronics Letters 34, no. 22 (1998): 2158. http://dx.doi.org/10.1049/el:19981466.
Повний текст джерелаJacobsz, Schalk Willem, and Sebastian Ingo Jahnke. "Leak detection on water pipelines in unsaturated ground by discrete fibre optic sensing." Structural Health Monitoring 19, no. 4 (October 18, 2019): 1219–36. http://dx.doi.org/10.1177/1475921719881979.
Повний текст джерелаFerdinand, Pierre, Véronique Dewynter, Guillaume Laffont, Laurent Maurin, Sylvain Magne, Nicolas Roussel, Jonathan Boussoir, and Stéphane Rougeault. "La surveillance des structures composites par capteurs à fibres optiques à réseaux de Bragg." Revue des composites et des matériaux avancés 17, no. 2 (May 25, 2007): 217–26. http://dx.doi.org/10.3166/rcma.17.217-226.
Повний текст джерелаPoloso, Toni. "Fibre bragg gratings optical sensing technology." Smart Materials Bulletin 2001, no. 9 (September 2001): 7–10. http://dx.doi.org/10.1016/s1471-3918(01)80151-9.
Повний текст джерелаДисертації з теми "Fibre à réseau de Bragg"
Tsyier, Sergei. "Caractérisation des profils d'indice de réseaux de Bragg innovants en module et phase." Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0022/document.
Повний текст джерелаN the last decade new techniques were developed for fabrication of sophisticated Fiber Bragg Gratings (FGBs). This has been motivated by the emergence of many applications such as dispersion compensation for long-haul communication systems, DFB fiber lasers, optical add/drop multiplexers, and optical sensors. Post-fabrication diagnostics should provide relevant information to enhance the FBG fabrication process. It is well known that the FBG spectral properties are related to the index profile Δn. Direct measurement techniques, such as the side diffraction method reported by P. Krug, allow determining the index modulation amplitude along the FBG. Nevertheless, these techniques provide no information about phase fluctuations. An alternative method of indirect characterization, based on the Layer-Peeling (LP) algorithm, consists in Bragg grating profile reconstruction from its complex reflectivity. However, the LP method is unstable when applied to characterize long FBGs (>1mm) due to the error propagation effect. In this thesis we have shown the principle of a novel technique for the direct measurement of amplitude and phase variations of the index modulation along an FBG based on the blue luminescence (BL). Our experimental results are in a good agreement with the according Krug characterization. The proposed method of FBG characterization in amplitude and phase using the UV induced BL can be applied to long gratings (up to tens of centimeters) having complex index modulation profiles. It allows retrieving simultaneously the index profile modulation Δnac(z) and the chirp function, localizing phase shifts, and also detecting the mean index change Δndc(z)
Duval, Simon. "Lasers à fibre femtoseconde utilisant une paire de réseaux de Bragg à pas variable." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25831.
Повний текст джерелаIn this master’s thesis, we present a new type of femtosecond fiber ring laser that uses a pair of chirped fiber Bragg gratings with opposite dispersion. The presence of such elements in a ring cavity reveals a new mode locking regime where a femtosecond pulse evolving in one section of the cavity is locally transformed into a highly chirped picosecond pulse that propagates in the remaining part of the cavity. The section in which the highly chirped pulse propagates acts essentially as an all-fiber linear dispersive delay line. This portion can thus be modified in order to change the net cavity dispersion or the repetition rate of the laser without significantly increasing the nonlinear effects in the cavity. This erbium-doped fiber laser that generates sub-100 fs pulses in any dispersion regime can potentially produce highenergy ultrashort pulses (> 20 nJ; < 50 fs). This source appears to be a practical all-fiber alternative to femtosecond solid-state lasers.
Guyard, Romain. "Capteur à fibre optique pour la mesure de déformation au sein des matériaux." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=6e451d89-fed7-4980-a018-fbdae1b0090c.
Повний текст джерелаThe aim of this thesis is the design of a new fiber optic sensor for the strain measurement inside materials. Fiber Bragg grating strain sensors are usually glued on the surface of the monitored structure. Their use like embedded strain sensor may be unadapted. Indeed, in these circumstances, a mechanical coupling between the sensor and the host material changes the transverse strain of the fiber. The transverse strain becomes unknown. Consequently, the only measurement of the Bragg wavelength shift is not enough to estimate both axial and transverse strains. In order to decorrelate these strains, we propose a sensor architecture based on the juxtaposition of a Bragg grating (FBG) and of a long period grating (LPG). The thesis work consist in finding the optimal architecture so that the sensor response to strain is linear and the measurement resolution is identical to the resolution of usual fiber optic sensors. During the sensor design, some usual results on LPG have been studied again. Some original optical properties of cladding modes have been revealed. It has been shown that the shape of these modes changes significantly with the cladding radius of the fiber and that there are critical cladding radii for which some modes have the same transverse intensity distribution. A statistical study has been carried out on the strain sensitivities of LPG. General behaviors of LPG strain sensors have been highlighted. Especially, the crosssensitivities can be neglected and the sensitivities are mainly influenced by the period of grating and the cladding radius of the fiber. When the sensor is embedded inside the material, it may be bent. The bending effects on the gratings responses have been studied using the finite element as well as the semi analytical methods. It has been shown that the bending sensitivity of FBG depends on a balance mechanism between the effective refractive index change and the coupling coefficient change of the coupled modes and that the average index variation of the grating plays a key role in the amplitude and the sign of this sensitivity. A similar mechanism has been highlighted for LPG
Bernier, Martin. "Inscription de réseaux de bragg à fibre optique à l'aide d'impulsions brèves et applications aux lasers à fibre." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27475/27475.pdf.
Повний текст джерелаSimard, Alexandre D. "Étude de sauts de phase distribués sur un réseau de Bragg à pas linéairement variable." Master's thesis, Université Laval, 2009. http://hdl.handle.net/20.500.11794/21112.
Повний текст джерелаCarrier, Julien. "Écriture de réseaux de Bragg par laser femtoseconde à 400 NM." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29736/29736.pdf.
Повний текст джерелаMaran, Jean-Noël. "Lasers multi-longueurs d'onde à fibre dopée à l'erbium utilisant un décaleur de fréquence dans la boucle de contre-réaction." Rennes 1, 2004. https://tel.archives-ouvertes.fr/tel-00012177.
Повний текст джерелаBlanchet, Thomas. "Influence des radiations (X, gamma, protons et électrons) sur les mesures par réseaux de Bragg à fibres optiques en environnement haute température." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES045.
Повний текст джерелаOptical fiber temperature sensors have numerous advantages such as their small sizes, low weights and their immunity to a large band of the electromagnetic spectrum. The fiber Bragg gratings technology has the same advantages than the other optical sensors and is also characterized with an ultra-fast time response with a temperature accuracy better than 0.5°C. For nuclear environments such as near-Earth space or a nuclear reactor core the radiation – and the temperature – influence the performances of Bragg gratings. In this manuscript, we studied the behaviors of three gratings types: type I gratings are photo-inscribed with continuum or pulsed laser. They cannot resist to temperature higher than 400°C. Type R – Regenerated – gratings are done as type I with a further high-temperature treatment (> 600°C) to create a new grating resistant to temperatures exceeding 1000°C. Type II gratings are inscribed with femtosecond laser and are well-known to have a thermal stability as good as type R gratings. Regarding their responses to radiation and thermal constraints, type I gratings are unstable under radiations even with pre-thermal annealing (300°C). In addition, larger is the dose-rate or the accumulated dose larger the grating degradation is. Type R gratings are unstable under radiations at room temperature. However for the irradiation temperature above 150°C these gratings present an equivalent temperature error due to radiations of less than 1°C. After a thermal treatment at a temperature above 450°C, type II gratings are stable under radiations at room temperature (less than 1°C of radiation induced error)
Mirshafiei, Mehrdad. "UWB Pulse Shaping Using Fiber Bragg Gratings." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26074/26074.pdf.
Повний текст джерелаGuillaumond, Didier. "Étude théorique et expérimentale d'une source à fibre optique dopée erbium pour un gyromètre à fibre optique hautes performances." Saint-Etienne, 2000. http://www.theses.fr/2000STET4009.
Повний текст джерелаКниги з теми "Fibre à réseau de Bragg"
Daud, Suzairi, and Jalil Ali. Fibre Bragg Grating and No-Core Fibre Sensors. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90463-4.
Повний текст джерелаSugden, Kate. Fabrication and applications of fibre Bragg gratings. Birmingham: Aston University. Department of Electrical andElectronic Engineering and Applied Physics, 1996.
Знайти повний текст джерелаLee, Xavier. Development of a Bragg grating fabrication facility and demonstration of its capabilities in fibre based telecommunication, laser, and sensor applications. [Toronto, Ont.]: University of Toronto, Graduate Dept. of Aerospace Engineering, 1995.
Знайти повний текст джерелаLee, Xavier. Development of a bragg grating fabrication facility and demonstration of its capabilities in fibre based telecommunication, laser, and sensor applications. Ottawa: National Library of Canada, 1994.
Знайти повний текст джерелаCooper, David J. F. Time division multiplexing of a serial fibre optic Bragg grating sensor array. Ottawa: National Library of Canada, 1999.
Знайти повний текст джерелаMelle, Serge Michel. A wavelength demodulation system for use with fibre optic Bragg grating sensors. [Toronto, Ont.]: University of Toronto, 1992.
Знайти повний текст джерелаJoe, Leben, ed. Data communication technology. Englewood Cliffs, N.J: Prentice-Hall, 1988.
Знайти повний текст джерелаMulvihill, Paul. Manufacturing optical fibre Bragg grating strain sensors with an excimer laser for high-strain, multiplexed embedded applications. [Toronto]: University of Toronto institute for Aerospace Studies, 1997.
Знайти повний текст джерелаMulvihill, Paul. Manufacturing optical fibre Bragg grating strain sensors with an excimer laser for high-strain, multiplexed embedded applications. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Знайти повний текст джерелаZervas, Mikhail N. Fibre Bragg Gratings for Optical Fibre Communications. John Wiley & Sons, 2001.
Знайти повний текст джерелаЧастини книг з теми "Fibre à réseau de Bragg"
Limberger, Hans G. "Fibre Bragg Grating Components (WG4)." In Reliability of Optical Fibres and Components, 325–416. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0545-9_10.
Повний текст джерелаDaud, Suzairi, and Jalil Ali. "Operational Principles of Fibre Bragg Grating and No-Core Fibre." In SpringerBriefs in Physics, 5–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90463-4_2.
Повний текст джерелаRamos, C. A., R. de Oliveira, R. D. S. G. Campilho, and A. T. Marques. "Modelling of fibre Bragg grating sensor plates." In III European Conference on Computational Mechanics, 168. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-5370-3_168.
Повний текст джерелаVacher, S., J. Molimard, A. Vautrin, H. Gagnaire, and P. Henrat. "Monitoring of Lri Process by Optical Fibre Bragg Gratings." In Experimental Analysis of Nano and Engineering Materials and Structures, 641–42. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_318.
Повний текст джерелаBhowmik, Kishore, Gang-Ding Peng, Eliathamby Ambikairajah, and Ginu Rajan. "High Sensitivity Polymer Fibre Bragg Grating Sensors and Devices." In Photonic Materials for Sensing, Biosensing and Display Devices, 289–314. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24990-2_10.
Повний текст джерелаAbu Osman, N. A., E. A. Al-Fakih, and F. R. Mahamd Adikan. "Fibre Bragg Grating (FBG) Sensor for Socket Pressure Measurement." In Prosthetic Biomechanics in Engineering, 1–28. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003196730-1.
Повний текст джерелаHoehn, Karsten, and Andrew Olsson. "3D Shape Sensing of Elongated Objects Using Fibre Bragg Gratings." In Mechatronics and Machine Vision in Practice 3, 3–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76947-9_1.
Повний текст джерелаDe Waele, W., J. Degrieck, W. Moerman, L. Taerwe, and R. Baets. "In service monitoring of fibre reinforced composites with Bragg sensors." In Emerging Technologies in NDT, 215–22. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003078586-38.
Повний текст джерелаPereira, G., L. P. Mikkelsen, and M. McGugan. "Fibre Bragg Grating Sensor Signal Post-processing Algorithm: Crack Growth Monitoring in Fibre Reinforced Plastic Structures." In Springer Proceedings in Physics, 63–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30137-2_5.
Повний текст джерелаPereira, Gilmar Ferreira. "Fibre Bragg Grating as a Multi-Stage Structure Health Monitoring Sensor." In MARE-WINT, 53–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39095-6_4.
Повний текст джерелаТези доповідей конференцій з теми "Fibre à réseau de Bragg"
Bhowmik, Kishore, Gang-Ding Peng, Yanhua Luo, Eliathamby Ambikairajah, and Ginu Rajan. "Etched Polymer Fibre Bragg Gratings." In Australian Conference on Optical Fibre Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acoft.2016.jt4a.30.
Повний текст джерелаWebb, David J. "Polymer optical fibre Bragg gratings." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/bgpp.2012.btu3e.4.
Повний текст джерелаIbsen, Morten, Periklis Petropoulos, Michalis N. Zervas, and Ricardo Feced. "Dispersion-free fibre Bragg gratings." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/ofc.2001.mc1.
Повний текст джерелаBoersma, Arjen, Lun Cheng, and Rob Jansen. "Fibre Bragg Distributed Chemical Sensor." In Optical Sensors. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/sensors.2010.sthc4.
Повний текст джерелаFrazão, O., J. M. Baptista, J. L. Santos, P. Roy, R. Jamier, and S. Février. "Bragg fibre for sensing applications." In SPIE Photonics Europe, edited by Kyriacos Kalli and Waclaw Urbanczyk. SPIE, 2010. http://dx.doi.org/10.1117/12.854391.
Повний текст джерелаCook, K., C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov. "Regenerated femtosecond fibre Bragg gratings." In Asia Pacific Optical Sensors Conference, edited by John Canning and Gangding Peng. SPIE, 2012. http://dx.doi.org/10.1117/12.915937.
Повний текст джерелаXu, Wei, Paul Blazkiewicz, Simon Fleming, and Albert Canagasabey. "Fibre Poling." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/bgpp.2001.bfc1.
Повний текст джерелаWebb, David J., Helen Dobb, Karen E. Carroll, Kyriacos Kalli, M. Aressy, S. Kukureka, Alex Argyros, Maryanne C. Large, and Martjin A. van Eijkelenborg. "Fibre Bragg Gratings Recorded in Microstructured Polymer Optical Fibre." In Optical Fiber Sensors. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ofs.2006.the64.
Повний текст джерелаDobb, H., K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, et al. "Reliability of fibre Bragg gratings in polymer optical fibre." In Photonics Europe, edited by Hans G. Limberger and M. John Matthewson. SPIE, 2006. http://dx.doi.org/10.1117/12.662313.
Повний текст джерелаBhowmik, Kishore, Ginu Rajan, Eliathamby Ambikairajah, and Gang-Ding Peng. "Hydrostatic pressure sensitivity of standard polymer fibre Bragg gratings and etched polymer fibre Bragg gratings." In OFS2014 23rd International Conference on Optical Fiber Sensors, edited by José M. López-Higuera, Julian D. C. Jones, Manuel López-Amo, and José L. Santos. SPIE, 2014. http://dx.doi.org/10.1117/12.2058658.
Повний текст джерелаЗвіти організацій з теми "Fibre à réseau de Bragg"
Zhang, Lin. High Extinction Ratio In-Fibre Polarisers by Exploiting Tilted Fibre Bragg Grating Structures for Single-Polarisation High-Power Fibre Lasers and Amplifiers. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada524631.
Повний текст джерелаHuntley, D., P. Bobrowsky, Q. Zhang, X. Zhang, and Z. Lv. Fibre Bragg grating and Brillouin optical time domain reflectometry monitoring manual for the Ripley Landslide, near Ashcroft, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/304235.
Повний текст джерела