Добірка наукової літератури з теми "Ferromagnetic charge core"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ferromagnetic charge core".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ferromagnetic charge core"

1

Tang, Huang, Deshuai Yang, Mengfei Lu, Shaoxi Kong, Yanghui Hou, Duanduan Liu, Depei Liu, et al. "Spin unlocking oxygen evolution reaction on antiperovskite nitrides." Journal of Materials Chemistry A 9, no. 45 (2021): 25435–44. http://dx.doi.org/10.1039/d1ta07561f.

Повний текст джерела
Анотація:
The spin state change of Fe3+ ions induced the paramagnetic Fe0.5Ni0.5OOH shell on the ferromagnetic Cu0.5NFe3Ni0.5 core via superexchange interaction, facilitating charge transfer and oxygen species ad(de)sorption for boosted OER performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Das, Kalipada, R. Rawat, B. Satpati, and I. Das. "Giant enhancement of magnetoresistance in core-shell ferromagnetic-charge ordered nanostructures." Applied Physics Letters 103, no. 20 (November 11, 2013): 202406. http://dx.doi.org/10.1063/1.4830376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Das, Kalipada, and I. Das. "Magnetocaloric effect study of ferromagnetic-charge ordered core-shell type manganite nanostructures." Journal of Magnetism and Magnetic Materials 436 (August 2017): 97–100. http://dx.doi.org/10.1016/j.jmmm.2017.04.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Levshin, G. E. "Magnetization of ferromagnetic charge at induction heating." Izvestiya. Ferrous Metallurgy 65, no. 2 (March 16, 2022): 85–91. http://dx.doi.org/10.17073/0368-0797-2022-2-85-91.

Повний текст джерела
Анотація:
The article presents analysis of magnetization and heating of ferromagnetic charge in crucibles of induction furnaces of two types. In inductor furnaces, the charge is magnetized by a vertical electromagnetic flow, and in electromagnetic furnaces with a curved U-, C-, or O-shaped magnetic circuit (MPr) – by a horizontal flow. Knowledge of these largely general magnetization processes is insufficient. Bi magnetic induction in charge material is rather important. There are difficulties in determining this parameter during magnetization of a single piece of charge and other magnetic quantities associated with it: Bm induction and Nm strength of the demagnetizing field, N demagnetization coefficient, M magnetization, magnetic permeabilities of μi substance and μt body, km susceptibility, etc. Difficulties increase at magnetization, if it is a porous body with crucible volume of ~V t and a factor of filling with ferromagnetic pieces of this volume of Kv ≤ 0.5. It also creates a demagnetizing field with Bmt induction and Hmt strength. Beyond that, pores have an additional demagnetizing effect. Therefore, the induction Вiт in a porous body is less than the induction Вi in a solid one. To compare magnetization of ferromagnetic charge with horizontal and vertical flows with frequency of 50 Hz, modeling experiments were carried out with the samples of DSL08 unconsolidated shot from high-carbon steel (GOST 11964 – 83) with Kv ≈ 0.53. The samples were placed in the inductor and between the poles of a U-shaped core piece. Induction was measured by a cylindrical and flat probe unit of Sh1-15 militeslameter in air and in the sample. An advantage of electromagnetic furnace over an inductor one is more uniform distribution of Bi induction in charge and its significant excess (1.7 times) over the Be induction in a furnace working cavity, which indicates more efficient use of electromagnetic energy in this furnace during heating. The author proposed to control Вi induction when heating the charge by the ammeter-voltmeter method using measuring coil made of heat-resistant wire.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lien, Le Thi Hong, Vu Ngoc Tuoc, Nguyen Viet Minh, and Tran Doan Huan. "A First Principles Study on Electronic and Magnetic Properties of Defects in ZnO/GaN Core-shell Nanowire Heterostructures." Communications in Physics 24, no. 3S1 (November 13, 2014): 127–35. http://dx.doi.org/10.15625/0868-3166/24/3s1/5463.

Повний текст джерела
Анотація:
To date semiconductor nanowire (NW) heterostructures (HS) have attracted extensive attention as important components of electronic and optoelectronic nanodevices. Further NWs also show promising potency to enhance the solar energy harvesting, e.g. improving both light trapping, photo-carrier collection, and contacting surface area. In this work we show theoretically that the \(d^{0}\)-ferromagnetism and NW HS bandgap can be turned by engineering the HS interfaces in non-magnetic ZnO/GaN core/shell NW HS. In that NW HS the incorporation of one compound into the other leads to the bandgap narrowing in the nonisovalent alloy because of the type II band alignment betwwen ZnO and GaN. The \(d^{0}\)-ferromagnetic interface can be developed by creating \(p\)-type defect with \(N\) and/or \(n\)-type defect with Zn in Ga--O interface bonds due to the defect-induced polar discontinuity. It's noted that the GaN/ZnO NW HS itself without defect or with same number defects of both types are not ferromagnetic. So that the induced magnetic moment is suggested to be related to the missing charge introduced at these defects. In our study we focused on the effects of GaN/ZnO interfaces on the electronic and magnetic properties, e.g. interface states within the bandgap and interface-induced ferromagnetism and impact of surface reconstruction and quantum confinement. The origin of this \(d^{0}\)-FM is revealed by analyses of spin-polarized bandstructure indicated by the asymmetrical spin-up and spin-down states near the Fermi level, the projected densities of states (PDOSs) and the spin-polarized mulliken charge differences, indicated that most spin-polarized states are dominated by the interface defect site N$p$ electrons. The calculated GaN/ZnO interface magnetism, have been compared with FM at the LaAlO\(-SrTiO\(_{3}\) interface which are theoretically predicted [30] and experimentally confirmed [31], where the magnetic moments also arise from the polar discontinuity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Das, Kalipada. "Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures." Journal of Applied Physics 122, no. 13 (October 7, 2017): 134301. http://dx.doi.org/10.1063/1.4993095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Wei, Mahboobeh Shahbazi, Kaijian Xing, Tuquabo Tesfamichael, Nunzio Motta, and Dong-Chen Qi. "Highly Sensitive NO2 Gas Sensors Based on MoS2@MoO3 Magnetic Heterostructure." Nanomaterials 12, no. 8 (April 11, 2022): 1303. http://dx.doi.org/10.3390/nano12081303.

Повний текст джерела
Анотація:
Recently, two-dimensional (2D) materials and their heterostructures have attracted considerable attention in gas sensing applications. In this work, we synthesized 2D MoS2@MoO3 heterostructures through post-sulfurization of α-MoO3 nanoribbons grown via vapor phase transport (VPT) and demonstrated highly sensitive NO2 gas sensors based on the hybrid heterostructures. The morphological, structural, and compositional properties of the MoS2@MoO3 hybrids were studied by a combination of advanced characterization techniques revealing a core-shell structure with the coexistence of 2H-MoS2 multilayers and intermediate molybdenum oxysulfides on the surface of α-MoO3. The MoS2@MoO3 hybrids also exhibit room-temperature ferromagnetism, revealed by vibrating sample magnetometry (VSM), as a result of the sulfurization process. The MoS2@MoO3 gas sensors display a p-type-like response towards NO2 with a detection limit of 0.15 ppm at a working temperature of 125 °C, as well as superb selectivity and reversibility. This p-type-like sensing behavior is attributed to the heterointerface of MoS2-MoO3 where interfacial charge transfer leads to a p-type inversion layer in MoS2, and is enhanced by magnetic dipole interactions between the paramagnetic NO2 and the ferromagnetic sensing layer. Our study demonstrates the promising application of 2D molybdenum hybrid compounds in gas sensing applications with a unique combination of electronic and magnetic properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zou, Liang-Jian, and H. Q. Lin. "Phase Separation and Phase Diagram in Lightly Doped Manganites: Temperature and Magnetic Field Effects." Australian Journal of Physics 52, no. 2 (1999): 247. http://dx.doi.org/10.1071/p98057.

Повний текст джерела
Анотація:
The effects of magnetic field and temperature on the phase separation and phase diagram of lightly doped manganites are studied. Based on the double exchange model with on-site Coulomb interaction, we show that in the case of a homogeneous charge distribution, the canting angle of localised core spins and the critical doping concentration of the system from canted phase to ferromagnetic (FM) phase become large because the effective FM coupling between localised core spins is weakened when the temperature increases. The boundary of the canted phase and FM phase shifts to a high doping concentration regime at high temperatures. In comparison with with the zero-temperature result, the phase separation can take place more easily in lightly doped manganites at finite temperatures. The application of a magnetic field decreases the energy of the FM cluster in the system, favours the separation of the hole-rich FM phase from the antiferromagnetic (AFM) background, and shifts the cant-FM border to the low doping regime. The effect of the Jahn-Teller electron-phonon coupling on the phase diagram and phase separation is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hossain, M. D., S. Dey, R. A. Mayanovic та M. Benamara. "Structural and Magnetic Properties of Well-Ordered Inverted Core-Shell α-Cr2O3/ α-MxCr2-xO3 (M=Co, Ni, Mn, Fe) Nanoparticles". MRS Advances 1, № 34 (2016): 2387–92. http://dx.doi.org/10.1557/adv.2016.324.

Повний текст джерела
Анотація:
ABSTRACTMagnetic core shell nanoparticles (NPs) have potential for applications in magnetic random access memory, spintronic devices, and drug delivery systems. Our investigations are focused on the synthesis of inverted core shell nanoparticles and characterization of their structural and magnetic properties. By using our hydrothermal nanophase epitaxy technique, we are able to synthesize well-ordered α-Cr2O3@α-MxCr2-xO3 (M = Co, Ni, Mn, Fe) inverted core-shell nanoparticles. This typically results in the formation of novel phases of MxCr2-xO3 shells having ferromagnetic/ferrimagnetic (FM/FiM) spin ordering and an antiferromagnetic (AFM) Cr2O3 core structure. The combined results from XRD and high-resolution TEM (HRTEM) provide evidence of the presence of corundum phase both in the shell and in the core regions. HRTEM results also show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms whereas TEM-EDX analyses show that the M atoms reside predominantly in the shell regions. The XPS analyses of the NPs indicate the M transition metals incorporated in the shell are in the +2 oxidation state. Magnetic measurements show well developed hysteresis loops: The field cooled hysteresis loops reveal horizontal shifts in the applied field axis and vertical shifts in the magnetization axis, relative to the zero-field cooled hysteresis loops. This provides direct evidence for the exchange bias effect between the AFM α-Cr2O3 core and the FM/FiM α-MxCr2-xO3 shell. The XPS data are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the M2+ ion for the Cr3+ ion in the α-MxCr2-xO3 shell. The FM/FiM ordering in the shell may at least partially result from the F-center exchange coupling between the oxygen-vacancy induced bound magnetic polaron and nearby cations.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sauceda-Oloño, Perla Yazmin, Hector Cardenas-Sanchez, Anya Isabel Argüelles-Pesqueira, Cindy Gutierrez-Valenzuela, Mario Enrique Alvarez-Ramos, Armando Lucero-Acuña, and Paul Zavala-Rivera. "Micelle Encapsulation of Ferromagnetic Nanoparticles of Iron Carbide@Iron Oxide in Chitosan as Possible Nanomedicine Agent." Colloids and Interfaces 4, no. 2 (May 22, 2020): 22. http://dx.doi.org/10.3390/colloids4020022.

Повний текст джерела
Анотація:
In this work, the synthesis and characterization of core/shell nanoparticles of iron carbide@iron oxide (Fe3C/γ-Fe2O3) encapsulated into micelles of sodium dodecylsulfate and oleic acid and stabilized with chitosan was developed. The materials were sonosynthesized at low intensities using standard ultrasonic baths with iron pentacarbonyl (Fe(CO)5) and oleic acid as iron source and hydrophobic stabilizer, respectively; obtaining nanoparticles with a hydrodynamic diameter of 19.71 nm and polydispersive index (PDI) of 0.13. The iron carbide@iron oxide nanoparticles (ICIONPs) in oleic acid were used as the organic phase during the self-assemble of nanoemulsion with sodium dodecylsulfate in water to obtain the metastable micelles. The final step involved the stabilization of the micelles using low molecular weight chitosan solution at 2% in acetic acid by ultrasonication bath. The nanosystem showed a hydrodynamic diameter of 185.30 nm, a PDI of 0.15 with a superficial charge ζ of 36.70 mV. Due to the magnetic, physical and chemical properties previously measured of the ICIONPs, it is believed that this type of nanoparticles can be used as a possible nanomedicine agent.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ferromagnetic charge core"

1

Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48184.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 «Прилади і методи контролю та визначення складу речовин» – Національний технічний університет «Харківський політехнічний інститут». Дисертація присвячена розробці нових ультразвукових електромагнітно-акустичних перетворювачів з джерелом імпульсного поляризуючого магнітного поля, методів підвищення чутливості контролю та діагностики металовиробів з використанням перетворювачів такого типу. Виконано аналітичний огляд та аналіз сучасних засобів і методів контролю та діагностики електромагнітно-акустичним методом [1–3] феромагнітних і електропровідних або тільки електропровідних виробів в умовах дії постійних та імпульсних поляризуючих магнітних полів з урахуванням наявності когерентних завад різного типу, технічного рівня сучасних електромагнітно – акустичних перетворювачів, схемотехнічних рішень засобів їх живлення, прийому з виробів ультразвукових імпульсів та їх обробки, визначення відомих переваг, недоліків та можливостей використання в дослідженнях і розробках. Визначені та обґрунтовані напрямки дисертаційного дослідження: розробка електромагнітно-акустичного перетворювача у вигляді спрощеної одновиткової моделі [4] джерела магнітного поляризуючого поля з феромагнітним осердям та високочастотною котушкою, яка розміщена між осердям та металовиробом; шляхом моделювання [5] розподілення індукції поляризуючого магнітного поля на торці осердя джерела магнітного поля та в поверхневому шарі як феромагнітного так і неферомагнітного металовиробу визначено особливості розташування високочастотної котушки індуктивності під джерелом магнітного поля для ефективного збудження зсувних ультразвукових імпульсів (в центральній частині торця феромагнітного осердя) або поздовжніх ультразвукових імпульсів (біля периферійної частини торця феромагнітного осердя) [6]. Збільшення кількості витків котушки намагнічування при наявності феромагнітного осердя призводить до значного збільшення часу перехідних процесів при включенні живлення імпульсного джерела поляризуючого магнітного поля і при його виключенні. В результаті час дії імпульсу живлення збільшується до 1 мс і більше, що призводить до збільшення сили притягування ЕМАП до феромагнітного виробу, додаткових втрат електроенергії, погіршенню температурного режиму перетворювача. Для зменшення часу дії імпульсу живлення джерела магнітного поля необхідно зменшувати кількість витків котушки намагнічування, але це призводить до зменшення величини магнітної індукції навіть при наявності феромагнітного осердя. В результаті раціонального вибору конструкції джерела магнітного поля встановлена необхідність виконання його котушки намагнічування плоскою двовіконною трьохвитковою і виготовляти з високоелектропровідного високотеплопровідного матеріалу [7-9]. Осердя повинно бути розміщено в вікнах котушки намагнічування тільки торцями. В результаті час дії імпульсу намагнічування зменшено до 200 мкс, що достатньо для контролю виробів товщиною до 300 мм. Високочастотна котушка індуктивності виконана з двома лінійними робочими ділянками, які розташовуються під вікнами котушки намагнічування [9]. При протилежних напрямках високочастотного струму в цих робочих ділянках в поверхневому шарі виробу збуджуються синфазні потужні імпульси зсувних ультразвукових хвиль. При цьому відношення збуджуваних амплітуд зсувних та поздовжніх імпульсів перевищує 30 дБ. Тобто когерентні імпульси поздовжніх хвиль при контролі луна методом практично не будуть впливати на результати діагностики феромагнітних виробів. Розроблені варіанти конструкцій електромагнітно-акустичних перетворювачів з одновитковими [7], двовитковими [8] та трьохвитковими [9] котушками намагнічування джерела імпульсного поляризуючого магнітного поля. При одновитковій котушці [7] перехідні процеси при включенні імпульсу живлення мінімальні. Проте необхідно збуджувати в котушці струм з силою в кілька кА, що ускладнює температурний режим перетворювача та апаратуру живлення. При трьохвитковій котушці [9] намагнічування амплітуда донних імпульсів по відношенню до амплітуди завад перевищує 24 дБ, що дозволяє проводити контроль та діагностику значної кількості металовиробів. При використанні шихтованого осердя [9] відношення амплітуд корисного сигналу і шуму збільшилося до 38 дБ, що дає можливість проводити ультразвуковий контроль лунаметодом. Розроблено метод [10 ] ультразвукового електромагнітно- акустичного контролю феромагнітних виробів, суть якого заключається в збудженні ультразвукових імпульсів шляхом формування в поверхневому шарі феромагнітного виробу двох рядом розташованих короткочасно намагнічених ділянок з протилежним напрямком векторів магнітної індукції поляризуючого поля, збудженні в намагнічених ділянках пакетних імпульсів електромагнітного поля з протилежно направленими векторами напруженості тривалістю в кілька періодів високої частоти заповнення, при цьому збудження імпульсів електромагнітного поля виконують в момент часу, який дорівнює часу перехідних процесів з встановлення робочої величини індукції поляризуючого магнітного поля, а прийом ультразвукових імпульсів відбитих з виробу виконується в період часу tпр, який визначається за виразом T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, де Т – тривалість імпульсу намагнічування; t1 – час перехідних процесів з встановлення робочої величини індукції поляризуючого магнітного поля; t2 – час дії пакетного імпульсу електромагнітного поля; t3 – час затухаючих коливань в плоскій високочастотній котушці індуктивності; Н – товщина виробу або відстань в об’ємі виробу, які підлягають ультразвуковому контролю; С – швидкість поширення зсувних ультразвукових хвиль в матеріалі виробу. Встановлено [9] [9], що завади в феромагнітному осерді, обумовлені ефектом Баркгаузена та магнітострикційним перетворенням електромагнітної енергії в ультразвукову при збудженні ультразвукових імпульсів, практично виключаються за рахунок виготовлення осердя шихтованим, матеріал пластин осердя повинен мати низький коефіцієнт магнітострикційного перетворення, пластини осердя повинні бути орієнтовані перпендикулярно провідникам робочих ділянок плоскої високочастотної котушки індуктивності, а також заповненням щілин між пластинами осердя рідиною із значною густиною, наприклад гліцерином. Показано, що чутливість прямих ЕМА перетворювачів з імпульсним намагнічуванням при живленні розробленим генератором пакетних зондуючих високочастотних імпульсів [11 ] та прийомі малошумлячим підсилювачем [12 ] забезпечують виявлення плоскодонних відбивачів діаметром 3 мм і більше при частоті зондування 40 Гц, піковому високочастотному струмі 120 А, частоті зсувних лінійно поляризованих ультразвукових коливань 2,3 МГц, тривалості високочастотного пакетного імпульсу 6…7 періодів частоти заповнення, тривалості імпульсу намагнічування 200 мкс, густині струму намагнічування 600 А/мм2 та при зазорі між ЕМАП і виробом 0,2 мм [9] [9]. При цьому амплітуда луна імпульсу відбитого від дефекту по відношенню до амплітуди завад досягає 20 дБ. Розроблені ЕМАП захищені 2 патентами на корисну модель.
Thesis for a Candidate Degree in Engineering (Doctor of Philosophy), specialty 05.11.13 "Devices and methods of testing and determination of composition of substances" - National Technical University "Kharkiv Polytechnic Institute". The dissertation is devoted to development of new ultrasonic electromagnetic-acoustic transducers with a source of pulsed polarizing magnetic field, methods of sensitive testing and diagnostics of metalware with the use of transducers of this type. Analytical review and analysis of modern means and methods of testing and diagnostics via electromagnetic-acoustic method [1-3] of ferromagnetic and electrically conductive or strictly electrically conductive products under conditions of impact of constant and pulse polarizing magnetic fields taking into account the presence of coherent interferences of different types, technical level of modern electromagnetic circuits, means of their power supply, reception of ultrasonic pulses from metalware and their processing, determination of known advantages and disadvantages, and opportunities of their use in research and development. The direction of the research is defined and justified: development of electromagnetic-acoustic transducer in the form of a simplified single-wind coil model [4] of a source of a magnetic polarizing field with a ferromagnetic core and a high-frequency coil, which is located between the core and the sample; by modeling [5] the distribution of induction of polarizing magnetic field at the end face of the core of the magnetic field source and in the surface layer of both ferromagnetic and non-ferromagnetic metallurgy the features of the location of the high frequency coil of inductance under the magnetic field source are effectively determined for the effective excitation of shear ultrasonic pulses (near the peripheral end of the ferromagnetic core) [6]. The increase in number of winds of magnetization coil in presence of a ferromagnetic core leads to a significant increase in time of transients during the process of powering of a pulsed source of a polarizing magnetic field and during its switching off. As a result, the duration of the power pulse increases to 1 ms or more, which leads to an increase in the force of attraction of EMAP to the ferromagnetic product, additional losses of electricity, deterioration of temperature conditions of the transducer. To reduce the duration of powering pulse of magnetic field it is necessary to reduce the number of winds of the magnetizing coil, but this leads to a decrease in magnetic induction magnitude, even in presence of a ferromagnetic core. As a result of rational choice of the design of the magnetic field source, the flat coil of magnetization must be made with a two-window three-wind and made of high-conductive high-heat-conducting material [7-9]. The core should be placed in the windows of the magnet coil only by the ends. As a result, the action time of the magnetization pulse is reduced to 200 μs, which is sufficient for testing of samples up to 300 mm thick. The high-frequency inductor coil is made of two linear working sections that are located under the windows of the coil [9]. In opposite directions of high-frequency current in these working areas, in-phase powerful pulses of shear ultrasonic waves are excited in the surface layer of the product. The ratio of the excited amplitudes of the shear and longitudinal pulses exceeds 30 dB. That is, the coherent pulses of longitudinal waves in the testing of the moon by the method will practically not affect the results of the diagnosis of ferromagnetic products. Design variants of electromagnetic-acoustic transducers with one-wind [7], two-wind [8] and three-wind magnetization coils [9] of a source of a pulsed polarizing magnetic field are developed. With a single-coil [7], the transients are minimal when the power pulse is winded on. However, it is necessary to excite in the coil a current of several kA, which complicates the temperature conditions of the transducer and power equipment. With a three-coil [9] magnetization, the amplitude of the bottom pulses in relation to the amplitude of the interference exceeds 24 dB, which allows for testing and diagnostics of large variety of samples. When using the charge core [9], the ratio of amplitudes increased to 38 dB, which makes it possible to monitor the echo by the method. The method [10] of ultrasonic electromagnetic - acoustic testing of ferromagnetic products is developed. vectors of intensity with duration of several periods of high filling frequency, n and this excitation of the pulses of the electromagnetic field is performed at a time equal to the time of transients to establish the operating value of the induction of the polarizing magnetic field, and the reception of ultrasonic pulses reflected from the product is performed in the time period tпр, which is determined by the expression T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, where T is the duration of the magnetization pulse; t1 is the time of transients to establish the working value of the induction of a polarizing magnetic field; t2 - time of packet pulse of electromagnetic field; t3 is the time of damping oscillations in the flat high frequency inductor; H is the thickness of the product or the distance in volume of the product to be ultrasound; C is the velocity of propagation of shear ultrasonic waves in the material of the product. It is established [9] that the interferences in the ferromagnetic core caused by the Barkhausen effect and magnetostrictive transformation of electromagnetic energy into ultrasound are practically excluded by production of the core blended, usage of the material of the core plates which has a low coefficient of magnetostrictive conversion, perpendicular core plates orientation in relation to the conductors of the working areas of the flat high-frequency inductor, as well as filling of the gaps between the plates with a high density fluid, such as glycerol. It is shown that the sensitivity of direct EMA transducers with pulse magnetization when powered by a batch high frequency probe pulse generator [11] and when receiving via a low noise amplifier [12] provide detection of flat-bottomed reflectors with a diameter of 3 mm or more, probe frequency of 40 Hz, peak high-frequency current of 120A, shear linearly polarized ultrasonic oscillations of 2.3 MHz, high frequency packet pulse duration 6…7 filling frequency periods, magnetization pulse duration 200 μs, magnetization current density of 600 A / mm2 and at the gap between the EMAP and the product of 0.2 mm [9]. The amplitude of the echo momentum reflected from the flaw in relation to the noise amplitude reaches 20 dB. The EMATs developed are protected with 2 utility model patents.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48181.

Повний текст джерела
Анотація:
Дисертація на здобуття вченого ступеня кандидата технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет «Харківський політехнічний інститут», Харків, 2020. В дисертаційній роботі вирішено актуальну науково-практичну задачу з розробки нових типів ЕМАП для ефективного ультразвукового контролю металовиробів. В роботі виконано комп’ютерне моделювання розподілу магнітних полів ЕМАП при імпульсному намагнічуванні феромагнітних та немагнітних виробів. Встановлені шляхи побудови перетворювачів з максимальною чутливістю. Розроблено метод збудження імпульсних пакетних ультразвукових імпульсів за рахунок послідовного в часі формування імпульсного магнітного та електромагнітного полів. Розроблено технічні рішення пригнічення когерентних завад в осерді та у виробі. Визначені геометричні та конструктивні параметри джерела імпульсного магнітного поля, що дало можливість збуджувати потужні синфазні пакетні імпульси високочастотних зсувних коливань в ОК. Показано, що чутливість прямих ЕМА перетворювачів з імпульсним намагнічуванням забезпечують виявлення плоскодонних відбивачів діаметром 3 мм і більше при частоті зондування 40 Гц, частоті зсувних лінійно поляризованих ультразвукових коливань 2,3 МГц, піковому струмі високочастотних пакетних імпульсів 120 А, тривалості пакетних високочастотних імпульсів струму в 6 періодів частоти заповнення, тривалості імпульсу намагнічування 200 мкс, щільності струму намагнічування 600 А/мм2 та при зазорі між ЕМАП і виробом 0,2 мм. При цьому амплітуда луна-імпульсу від дефекту по відношенню до амплітуди завад досягає 20 дБ, що дає можливість забезпечити якісну дефектоскопію металовиробів.
Thesis for a Candidate Degree in Engineering, specialty 05.11.13 – Devices and methods of testing and determination of composition of substances. National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, 2020. A relevant scientific – practical problem on development of new types of EMAP for effective ultrasonic control of metal products is solved in the dissertation. Computer simulation of EMAT magnetic fields distribution in pulse magnetization of ferromagnetic and non-magnetic products is performed. Ways to build transducers with maximum sensitivity are established. The method of excitation of pulsed batch ultrasonic pulses due to the sequential formation of pulsed magnetic and electromagnetic fields is developed. Technical solutions for suppression of coherent interference in the core and in the product have been developed. The geometrical and structural parameters of pulsed magnetic field source were determined, which made it possible to excite powerful in-phase packet pulses of high-frequency shear oscillations in a sample. It is shown that the sensitivity of direct EMA transducers with pulse magnetization provide detection of flat-bottom reflectors with a diameter of 3 mm and more at a probing frequency of 40 Hz, a frequency of shear linearly polarized ultrasonic oscillations of 2.3 MHz, a peak current of high-frequency packet pulses of 120 A, duration of batch high frequency current pulses in 6 periods of filling frequency, magnetization pulse duration of 200 μs, magnetization current of 600 A and at the gap between EMAP and product of 0.2 mm.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ferromagnetic charge core"

1

Yahya, Mondher, Faouzi Hosni, and Ahmed Hichem Hamzaoui. "Synthesis and ESR Study of Transition from Ferromagnetism to Superparamagnetism in La0.8Sr0.2MnO3 Nanomanganite." In Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89951.

Повний текст джерела
Анотація:
Electron spin resonance (ESR) spectroscopy was used to determine the magnetic state transitions of nanocrystalline La0.8Sr0.2MnO3 at room temperature, as a function of crystallite size. Ferromagnetic nanoparticles having an average crystallite size ranging from 9 to 57 nm are prepared by adopting the autocombustion method with two-step synthesis process. Significant changes of the ESR spectra parameters, such as the line shape, resonance field (Hr), g-factor, linewidth (∆Hpp), and the low-field microwave absorption (LFMA) signal, are indicative of the change in magnetic domain structures from superparamagnetism to single-domain and multi-domain ferromagnetism by increase in the crystallite size. Samples with crystallite sizes less than 24.5 nm are in a superparamagnetic state. Between 24.5 and 32 nm, they are formed by a single-domain ferromagnetic. The multi-domain state arises for higher sizes. In superparamagnetic region, the value of g-factor is practically constant suggesting that the magnetic core size is invariant with decreasing crystallite size. This contradictory observation with the core-shell model was explained by the phenomenon of phase separation that leads to the formation of a new magnetic state that we called multicore superparamagnetic state.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ferromagnetic charge core"

1

Yang, Y., J. G. Zhu, R. M. White, and M. Asheghi. "Field-Dependent Electrical and Thermal Characterization of Cu/CoFe Multilayer for Giant Magnetoresistive (GMR) Head Applications." In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87055.

Повний текст джерела
Анотація:
Giant Magnetoresistance (GMR) head technology is one of the latest advancement in hard disk drive (HDD) storage industry. The GMR head superlattice structure consists of alternating layers of extremely thin metallic ferromagnet and paramagnet films. A large decrease in the resistivity from antiparallel to parallel alignment of the film magnetizations can be observed, known as giant magnetoresistance (GMR) effect (Baibich et al., 1988; Binasch et al., 1989). The GMR effect is generally due to the spin dependent electron bulk and interfacial scattering in the GMR multilayer structures (Zhang et al., 1992). However, in order to understand the nature of the spin-dependent electron scattering mechanism responsible for the GMR effect, both electrical and thermal transport properties of such multilayer structures must be measured and understood. It is suggested that the thermal transport property measurements in GMR can be used to judge whether the scattering processes responsible for the GMR have elastic and/or inelastic components (Shi et al., 1996). Moreover, the GMR effect is anticipated to have a thermal counterpart, known as giant magnetothermal resistance (GMTR) effect in which the thermal conductivity shows a ‘giant’ change under magnetic field.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Modaresahmadi, Sina, Javad Khalesi, Joshua Kadel, and Wesley Williams. "Thermal Analysis of a Subscale Flux Focusing Magnetic Gearbox." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86876.

Повний текст джерела
Анотація:
Magnetic gears are non-contact means of torque transmission which utilize the interaction of magnetic fields in place of the meshing teeth of mechanical gears to achieve a change in rotational speed and scale up/down the torque. A subscale magnetic gearbox featured a radial flux focusing arrangement consisting of three main rotors in the active region called inner, cage and outer rotors. In this arrangement, ferromagnetic cage rotor poles modulate flux between the inner rotor and outer rotor permanent magnets to achieve the gear reduction. Replacing the solid metal bars with laminated stacks for the cage modulating pieces as well as retaining pieces of the inner and outer rotor magnets reduces eddy current losses in the axial direction, a main source of losses in magnetic gears, while preserving the magnetic flux directed in the radial direction. Both of these features are key for overall system performance. Given the potential of demagnetization of the permanent magnets and damage to the components at high temperature, multiphysics thermal analysis is conducted on a subscale flux focusing magnetic gearbox to predict temperature distribution and thermal stresses. A conjugate heat transfer (CHT) method is used in a 3D academic code, FLUENT, to predict heat flux and the coupled non-adiabatic external flow field and temperature field on the inner, cage and outer rotor with a Finite Volume Method (FVM). Thermo-elastic behavior of the laminated components are assigned through anisotropic materialistic characters in a finite element method (FEM), where the thermal and centrifugal stresses are calculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії