Добірка наукової літератури з теми "Fermion masse"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fermion masse".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fermion masse"

1

GUENDELMAN, E. I., and A. B. KAGANOVICH. "NEW PHYSICS AT LOW ENERGIES AND DARK MATTER-DARK ENERGY TRANSMUTATION." International Journal of Modern Physics A 20, no. 06 (March 10, 2005): 1140–47. http://dx.doi.org/10.1142/s0217751x05024018.

Повний текст джерела
Анотація:
A field theory is proposed where the regular fermionic matter and the dark fermionic matter can be different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, the primordial fermions split into three families identified with regular fermions. When fermion energy density becomes comparable with dark energy density, the theory allows transition to new type of states. The possibility of such Cosmo-Low Energy Physics (CLEP) states is demonstrated by means of solutions of the field theory equations describing FRW universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos. Neutrinos in CLEP state are drawn into cosmological expansion by means of dynamically changing their own parameters. One of the features of the fermions in CLEP state is that in the late time universe their masses increase as a3/2 (a=a(t) is the scale factor). The energy density of the cold dark matter consisting of neutrinos in CLEP state scales as a sort of dark energy; this cold dark matter possesses negative pressure and for the late time universe its equation of state approaches that of the cosmological constant. The total energy density of such universe is less than it would be in the universe free of fermionic matter at all.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MACHADO, A. A., and F. PISANO. "CHARGED RIGHT-HANDED CURRENTS IN THE LEPTOQUARK–BILEPTON FLAVOR DYNAMICS." Modern Physics Letters A 14, no. 32 (October 20, 1999): 2223–28. http://dx.doi.org/10.1142/s0217732399002303.

Повний текст джерела
Анотація:
Flavor dynamics chiral models of leptoquark fermions and bilepton gauge bosons with masses up to a few TeV, although coincident with physics of the Fermi scale standard model, address the fermion mass hierarchy and explain the flavor question. The presence of charged right-handed weak currents coupled to bileptons, which we point out here, is another feature of these chiral semisimple gauge theories.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

ABE, HIROYUKI, HIRONORI MIGUCHI, and TAIZO MUTA. "DYNAMICAL FERMION MASSES UNDER THE INFLUENCE OF KALUZA–KLEIN FERMIONS IN EXTRA DIMENSIONS." Modern Physics Letters A 15, no. 06 (February 28, 2000): 445–54. http://dx.doi.org/10.1142/s0217732300000438.

Повний текст джерела
Анотація:
The dynamical fermion mass generation in the four-dimensional brane is discussed in a model with five-dimensional Kaluza–Klein fermions in interaction with four-dimensional fermions. It is found that the dynamical fermion masses are generated beyond the critical radius of the compactified extra dimensional space and may be made small compared with the masses of the Kaluza–Klein modes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

EBERT, D., V. CH ZHUKOVSKY, and A. V. TYUKOV. "DYNAMICAL FERMION MASSES UNDER THE INFLUENCE OF KALUZA–KLEIN FERMIONS AND A BULK ABELIAN GAUGE FIELD." Modern Physics Letters A 25, no. 35 (November 20, 2010): 2933–45. http://dx.doi.org/10.1142/s0217732310034249.

Повний текст джерела
Анотація:
The dynamical fermion mass generation on the 3-brane in the 5D spacetime is discussed in a model with bulk fermions in interaction with fermions on the branes assuming the presence of a constant Abelian gauge field A5 in the bulk. We calculate the effective potential as a function of the fermion masses and the gauge field A5. The masses can be found from the stationarity condition for the effective potential (the gap equation). We formulate the equation for the mass spectrum of the 4D-fermions. The phases with finite and vanishing fermion masses are studied and the dependence of the masses on the radius of the fifth dimension is analyzed. The influence of the A5-gauge field on the symmetry breaking is considered both when this field is a background parameter and a dynamical variable. The critical values of the A5 field, the coupling constant and the radius are examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SESHAVATHARAM, U. V. S., and S. LAKSHMINARAYANA. "SUPER SYMMETRY IN STRONG AND WEAK INTERACTIONS." International Journal of Modern Physics E 19, no. 02 (February 2010): 263–80. http://dx.doi.org/10.1142/s021830131001473x.

Повний текст джерела
Анотація:
For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is Xs · 105.32 = 938.8 MeV and corresponding charged boson is Xs(105.32/x) = 415.0 where Xs = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, ….
Стилі APA, Harvard, Vancouver, ISO та ін.
6

PILAFTSIS, APOSTOLOS. "ANOMALOUS FERMION MASS GENERATION AT THREE LOOPS." Modern Physics Letters A 28, no. 22 (July 18, 2013): 1350083. http://dx.doi.org/10.1142/s0217732313500831.

Повний текст джерела
Анотація:
We present a novel mechanism for generating fermion masses through global anomalies at the three-loop level. In a gauge theory, global anomalies are triggered by the possible existence of scalar or pseudoscalar states and heavy fermions, whose masses may not necessarily result from spontaneous symmetry breaking. The implications of this mass-generating mechanism for model building are discussed, including the possibility of creating low-scale fermion masses by quantum gravity effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GUENDELMAN, E. I., and A. B. KAGANOVICH. "GEOMETRICAL ORIGIN OF FERMION FAMILIES IN SU(2) × U(1) GAUGE THEORY." Modern Physics Letters A 17, no. 19 (June 21, 2002): 1227–37. http://dx.doi.org/10.1142/s0217732302007351.

Повний текст джерела
Анотація:
A spontaneously broken SU (2) × U (1) gauge theory with just one "primordial" generation of fermions is formulated in the context of generally covariant theory which contains two measures of integration in the action: the standard [Formula: see text] and a new Φd4x, where Φ is a density built out of degrees of freedom independent of the metric. Such type of models are known to produce a satisfactory answer to the cosmological constant problem. Global scale invariance is implemented. After SSB of scale invariance and gauge symmetry it is found that with the conditions appropriate to laboratory particle physics experiments, to each primordial fermion field corresponds three physical fermionic states. Two of them correspond to particles with different constant masses and they are identified with the first two generations of the electroweak theory. The third fermionic states at the classical level get nonpolynomial interactions which indicate the existence of fermionic condensate and fermionic mass generation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MIZRACHI, LEAH. "FERMIONIC CONDENSATES IN SUPERSYMMETRIC COMPOSITE MODELS." Modern Physics Letters A 01, no. 05 (August 1986): 355–63. http://dx.doi.org/10.1142/s0217732386000440.

Повний текст джерела
Анотація:
Fermionic condensates are calculated in a background of instantons in a supersymmetric composite model based upon SU(2) hypercolor symmetry. Due to the effective 4-fermi interaction of the composites, the quasi-Goldstone fermion acquires a mass which is much smaller than ΛHC provided the gauge symmetry breaking scale, υ, is large enough for the approximation to be valid. (Typically υ≃eΛHC.) This provides a dynamical mechanism for generating the masses of quarks and leptons in this class of models.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SARIRIAN, KAMRAN. "ON FERMION ZERO MODES IN INSTANTON V - A MODELS WITH SPONTANEOUS SYMMETRY BREAKING." Modern Physics Letters A 09, no. 08 (March 14, 1994): 715–23. http://dx.doi.org/10.1142/s0217732394000526.

Повний текст джерела
Анотація:
The left- and right-handed fermion zero modes are examined. Their behavior under the variation of the size of the instanton, ρ I , and the size of the Higgs core, ρ H , for a range of Yukawa couplings corresponding to the fermion masses in the electroweak theory are studied. It is shown that the characteristic radii of the zero modes, in particular those of the left-handed fermions, are locked to the instanton size, and are not affected by the variation of ρ H , except for fermion masses much larger than those in the standard electroweak theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

KIKUKAWA, YOSHIO. "CHIRAL SYMMETRY AND OPERATOR MIXING IN LATTICE SU(N) THIRRING MODEL WITH SHIFT SYMMETRY." Modern Physics Letters A 07, no. 10 (March 28, 1992): 871–80. http://dx.doi.org/10.1142/s0217732392003517.

Повний текст джерела
Анотація:
We formulate lattice SU (N) Thirring model in which two Wilson fermions describe the respective left- and right-handed components of the Dirac fermion in the continuum model. Only chirally projected half components of the Wilson fermions have four-fermion interaction. As to their non-interacting components, there exist shift symmetries discussed by Golterman and Petcher. Axial U (1) Ward-Takahashi identity is examined by weak coupling expansion. It is shown in all orders of the weak coupling expansion that the chiral limit is achieved by simply setting fermion bare mass equal to zero, and that a lattice operator has no mixing due to the Wilson masses with the operators of wrong chiral representation and of lower dimensionality.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Fermion masse"

1

BELFATTO, BENEDETTA. "Flavour problems and new physics at TeV scale." Doctoral thesis, Gran Sasso Science Institute, 2020. http://hdl.handle.net/20.500.12571/10042.

Повний текст джерела
Анотація:
There is no explanation in the Standard Model for the replication of fermion families, neither for the mass hierarchy between them nor for the structure of the Yukawa coupling matrices, which remain arbitrary. The key towards under- standing the fermion masses and mixing pattern can be in symmetry principles. Masses of fermions can actually have a dynamical origin, following the spon- taneous symmetry breaking of gauge “horizontal" symmetries unifying families, differently acting on left and right species. U(3) or SU(3) “horizontal" family symmetries seem an intuitive hypothesis to be considered. Fermion masses should be induced by higher order operators containing flavon scalars emerging from renormalizable interactions via ‘universal seesaw’ mechanism after integrat- ing out some heavy fields, scalars or verctor-like fermions. Then in this case the fermion mass hierarchy and mixing among families can be related to the pat- tern of spontaneous breaking of the gauge SU(3) symmetry. The corresponding gauge bosons have flavor-nondiagonal couplings to fermions which in principle can induce flavour changing phenomena. In this case strong lower limits on the flavor symmetry breaking scales are expected. However, for special choices of horizontal symmetries there is a natural suppression of flavour changing effects due to a custodial symmetry. So gauge bosons can have mass in the TeV range, without contradicting the existing experimental limits. However an unexpected anomaly shows up in quark mixing. After the recent high precision determinations of Vus and Vud, the first row of the CKM matrix is about 4σ deviated from unitarity. The existence of the gauge symmetry SU(3)l acting between lepton families can recover unitarity if the symmetry is broken at a scale of about 6 TeV. In fact the gauge bosons of this symmetry contribute to muon decay in interference with the Standard Model, so that the Fermi constant is slightly smaller than the muon decay constant and unitarity is restored. Alternatively, extra vector-like quarks can be thought as a solution to the CKM unitarity problem. The extra species should exhibit a large mixing with the first family in order to recover unitarity, then their mass should be no more than 6 TeV or so. The implications of the existence of so large mixing must be examined, in order to understand if it can actually exist without contradiction with experimental results on flavour changing neutral current processes and Standard Model observables. In principle an extra weak isodoublet can solve all the discrepancies between independent determinations of the CKM elements in the first row. However not all the discrepancies can be entirely recovered with- out contradicting experimental constraints. Then the existence of two or more vector-like doublets or a vector-like isodoublet with a down-type or up-type isos- inglet can be considered. In these scenarios unitarity can be resettled and flavour changing can be avoided by setting to zero some couplings of extra species with Standard Model families. If the anomalies in the determination of CKM mixing angles are confirmed by future experiments with greater precision, there might be strong indication towards the existence of physics beyond the Standard Model at the TeV scale, such as flavour changing gauge bosons and vector-like fermions with masses of few TeV. This new physics can be testable at next runs of high luminosity LHC or, more effectively, in future accelerators.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lucente, Michele. "Implication of Sterile Fermions in Particle Physics and Cosmology." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112210/document.

Повний текст джерела
Анотація:
Le mécanisme de génération de masses des neutrinos, la nature de la matière noire et l’origine de l’asymétrie baryonique de l’Univers sont les trois questions les plus pressantes dans la physique moderne des astroparticules, qui exigent l’introduction d’une nouvelle physique au-delà du Modèle Standard. Dans cette thèse, nous nous concentrons sur ces trois questions en fournissant une solution possible en termes d'une extension minimale du Modèle Standard, constituée par l’ajout d'un ensemble de fermions stériles au contenu des champs de la théorie. Les fermions stériles sont des champs qui sont singlets de jauge et qui peuvent interagir avec les neutrinos actifs à travers des termes de mélange. Nous nous concentrons sur le mécanisme dit de l’Inverse Seesaw (ISS), qui est caractérisé par une faible échelle de la nouvelle physique (de l’ordre TeV ou inférieure) et qui peut être testé dans les installations expérimentales actuelles et futures. Nous présentons l'analyse qui permet d’identifier les réalisations minimales de ce mécanisme et l'étude phénoménologique pour prendre en compte la masses des neutrinos légers et pour imposer toutes les contraintes expérimentales pertinentes au modèle, ainsi que les signatures expérimentales attendues. Nous montrons la viabilité de l’hypothèse que les neutrinos stériles constituent la matière noire, et les caractéristiques de cette solution dans le mécanisme minimale de l’ISS. La possibilité d’expliquer avec succès l'asymétrie baryonique à travers un processus de leptogenèse dans une réalisation testable du mécanisme est aussi adressée. Il est important de chercher des manifestations des fermions stériles dans les expériences de laboratoire. Nous abordons ce point en faisant des prévisions sur les rapports des branchement attendus pour les désintégrations des bosons vectoriels qui violent le saveur leptonique, qui peuvent être véhiculés par les fermions stériles. Nous étudions aussi l'impact des fermions stériles sur les fits globaux des données de précision électrofaible
The neutrino mass generation mechanism, the nature of dark matter and the origin of the baryon asymmetry of the Universe are three compelling questions that cannot be accounted for in the Standard Model of particle physics. In this thesis we focus on all these issues by providing a possible solution in terms of a minimal extension of the Standard Model, consisting in the addition of a set of sterile fermions to the field content of the theory. Sterile fermions are gauge singlet fields, that can interact via mixing with the active neutrinos. We focus on the Inverse Seesaw mechanism, which is characterised by a low (TeV or lower) new physics scale and that can be tested in current and future experimental facilities. We present the model building analysis that points towards the minimal realisations of the mechanism, and the phenomenological study in order to accommodate light neutrino masses and to impose all the relevant experimental constraints in the model, as well as the expected experimental signatures. We show the viability of the sterile neutrino hypothesis as dark matter component, together with the characteristic features of this scenario in the minimal Inverse Seesaw mechanism. The possibility of successfully accounting for the baryon asymmetry in a testable realisation of the leptogenesis mechanism is also addressed.On the other side it is important to look for manifestations of sterile fermions in laboratory experiments. We address this point by making predictions for the expected rates of rare lepton number violating decays of vector bosons, that can be mediated by sterile fermions, as well as by studying the impact of sterile fermions on global fit of electroweak precision data
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Özer, Alp Deniz. "SO(10)-Grand Unification and Fermion Masses." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-46957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bloch, Jacques Christophe Rodolphe. "Numerical investigation of fermion mass generation in QED." Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5173/.

Повний текст джерела
Анотація:
We investigate the dynamical generation of fermion mass in quantum electrodynamics (QED). This non-perturbative study is performed using a truncated set of Schwinger-Dyson equations for the fermion and the photon propagator. First, we study dynamical fermion mass generation in quenched QED with the Curtis-Pennington vertex, which satisfies the Ward-Takahashi identity and moreover ensures the multiplicative renormalizability of the fermion propagator. We apply bifurcation analysis to determine the critical point for a general covariant gauge. In the second part of this work we investigate the dynamical generation of fermion mass in full, unquenched QED. We develop a numerical method to solve the system of three coupled non-linear equations for the dynamical fermion mass, the fermion wavefunction renormalization and the photon renormalization function. Much care is taken to ensure the high accuracy of the solutions. Moreover, we discuss in detail the proper numerical cancellation of the quadratic divergence in the vacuum polarization integral and the requirement of using smooth approximations to the solutions. To achieve this, we improve the numerical method by introducing the Chebyshev expansion method. We apply this method to the bare vertex approximation to unquenched QED to determine the critical coupling for a variety of approximations. This culminates in the detailed, highly accurate, solution of the Schwinger-Dyson equations for dynamical fermion mass generation in QED including both, the photon renormalization function and the fermion wavefunction renormalization in a consistent way, in the bare vertex approximation and, for the first time, using improved vertices. We introduce new improvements to the numerical method, to achieve the accuracy necessary to avoid unphysical quadratic divergences in the vacuum polarization with the Ball-Chiu vertex.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhatti, Abdul Aziz. "Fermion masses and Higgs Physics in Grand Unified Theories." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-114132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Therrien, Eric. "Fermion masses and mixing in a simple composite model." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guillaume, Alexandre. "Transitions de phases dans les fermions lourds sous contrainte uniaxiale." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10060.

Повний текст джерела
Анотація:
Nous presentons les premiers resultats obtenus avec un dispositif experimental permettant de changer la contrainte uniaxiale continument a tres basse temperature. Le principe de l'appareil consiste a controler la pression d'helium appliquee sur un soufflet metallique connecte thermiquement a la boite de melange d'un refrigerateur a dilution. Nous etudions l'effet de la contrainte uniaxiale, appliquee selon l'axe c du compose tetragonal uru#2si#2. Nous trouvons que la temperature de transition supraconductrice t#c varie de facon parabolique en fonction de la contrainte #c avec une pente de 76 mk/kbar a #c = 0 kbar et une pente nulle a 6. 5 kbar. La temperature de transition antiferromagnetique t#n varie lineairement en fonction de la contrainte avec une pente egale a 32 mk/kbar. Nous rapportons les premieres mesures de l'evolution du gap des excitations de la phase antiferromagnetique en fonction de la contrainte uniaxiale selon l'axe c. Il decroit lineairement avec une pente de 0. 63 k/kbar. Grace aux mesures de champ critique, nous donnons la premiere estimation de la croissance de la masse effective avec la contrainte selon l'axe c, m*(6. 5 kbar) = 1. 07 m*(0 kbar). Pour le compose hexagonal upt#3, nous confirmons que la temperature de transition supraconductrice t#+#c decroit, d'abord avec une pente de 14. 71. 5 mk/kbar, pour une contrainte appliquee suivant l'axe c inferieure a 2 kbar puis decroit, avec une pente de 5. 20. 7 mk/kbar, pour des contraintes superieures. En variant de 0 a 8. 4 kbar la contrainte #a appliquee selon l'axe a, nous trouvons que la temperature t#+#c decroit regulierement avec une pente de 2. 00. 7 mk/kbar. A partir de l'evaluation du coefficient a de la loi = #0+at#2 et de la pente du second champ critique a bas champ, nous trouvons que la masse effective augmente avec la contrainte suivant l'axe c et diminue avec la contrainte suivant l'axe a:m*(#c = 6. 5 kbar) = 1. 26 m*(#c = 0 kbar) ; m*(#a = 6. 5 kbar) = 0. 86 m*(#a = 0 kbar).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de, Medeiros Varzielas Ivo. "Family symmetries and the origin of fermion masses and mixings." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Allanach, Benjamin Christopher. "Supersymmetric extensions of the standard model and the fermion mass problem." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Jackson M. S. "Improvement of Wilson fermions and twisted mass lattice QCD /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Fermion masse"

1

Bordes, J. CKM matrix and fermion masses in the dualized standard model. Chilton: Rutherford Appleton Laboratory, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pierre, Ramond, ed. Yukawa couplings and the origins of mass. Cambridge, MA: International Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

(Fernando), Ferroni F., Vissani F. (Francesco), Brofferio C. (Chiara), and Società italiana di fisica, eds. Measurements of neutrino mass: Proceedings of the International School of Physics "Enrico Fermi", Varenna on Lake Como, Villa Monastero, 17-27 June 2008. Amsterdam, Netherlands: IOS Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ahluwalia, Dharam. Mass Dimension One Fermions. Cambridge University Press, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahluwalia, Dharam. Mass Dimension One Fermions. Cambridge University Press, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ahluwalia, Dharam. Mass Dimension One Fermions. Cambridge University Press, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stuewer, Roger H. Beta Decay Redux, Slow Neutrons, Bohr and his Realm. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198827870.003.0012.

Повний текст джерела
Анотація:
A large conference on nuclear physics was held in London and Cambridge from October 1–6, 1934. Six German refugee physicists were present, but Werner Heisenberg was not. Czech theoretical physicists Guido Beck and Kurt Sitte had proposed a theory of beta decay that challenged Fermi’s, which Beck presented but apparently gained no support for. On October 22, Fermi serendipitously discovered the efficaciousness of slow neutrons in producing nuclear reactions. Niels Bohr would be the greatest beneficiary of Fermi’s discovery. In 1935 Bohr, with the assistance of refugee Otto Robert Frisch, began to develop experimental nuclear physics at his institute, which after its inauguration in 1920 became a mecca for young physicists. On September 29, 1943, Bohr and his family were among the 7220 Danish and other Jews who were transported to Sweden in the greatest mass rescue operation of the war.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kachelriess, Michael. GSW model of electroweak interactions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0014.

Повний текст джерела
Анотація:
The electroweak sector of the SM described by an SUL(2)UY(1) gauge symmetry which is broken spontaneously to Uem(1) is introduced. The generation of boson and fermion masses by the Higgs effect is discussed. The properties of the Higgs sector are examined. The conditions for decoupling and the hierarchy problem are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baulieu, Laurent, John Iliopoulos, and Roland Sénéor. Supersymmetry, or the Defence of Scalars. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0027.

Повний текст джерела
Анотація:
The only fields of the Standard Model whose masses are not protected by a symmetry are the scalar fields. Supersymmetry is a symmetry between fermions and bosons which provides precisely such a protection mechanism. This chapter presents a comprehensive study of supersymmetric field theories. In particular, it is shown that they do not suffer from the phenomenon of gauge hierarchy. They have remarkable renormalisation properties and offer the most attractive framework to build a unified theory. The breaking of supersymmetry, both explicit and spontaneous, is studied in detail. The generalisation of electric-magnetic duality in supersymmetric theories yields non-perturbative results and the concept of twist makes possible the study of topological field theories. The supersymmetric extension of the Standard Model is shown to predict the existence of new elementary particles, whose phenomenological properties are analysed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Solymar, L., D. Walsh, and R. R. A. Syms. The band theory of solids. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0007.

Повний текст джерела
Анотація:
The solution of Schrodinger’s equation is discussed for a model in which atoms are represented by potential wells, from which the band structure follows. Three further models are discussed, the Ziman model (which is based on the effect of Bragg reflection upon the wave functions), and the Feynman model (based on coupled equations), and the tight binding model (based on a more realistic solution of the Schrödinger equation). The concept of effective mass is introduced, followed by the effective number of electrons. The difference between metals and insulators based on their band structure is discussed. The concept of holes is introduced. The band structure of divalent metals is explained. For finite temperatures the Fermi–Dirac function is combined with band theory whence the distinction between insulators and semiconductors is derived.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fermion masse"

1

Khalil, Shaaban, and Stefano Moretti. "Fermion Masses and Mixing." In Standard Model Phenomenology, 109–20. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429443015-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feruglio, Ferruccio. "Automorphic Forms and Fermion Masses." In Springer Proceedings in Mathematics & Statistics, 449–55. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4751-3_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Suekane, Fumihiko. "Fermion Mass and Chirality Oscillation." In Quantum Oscillations, 73–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70527-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Raby, Stuart. "Fermion Masses and Mixing in SUSY GUTs: Predictive Theories." In Supersymmetric Grand Unified Theories, 71–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55255-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ne’eman, Yuval. "Universal SU(2/1) and the Higgs and Fermion Masses." In Symmetries in Science VI, 515–22. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1219-0_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oinonen, M. "Coulomb effects in Fermi β decay of 74Rb." In Exotic Nuclei and Atomic Masses, 407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55560-2_151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fenton, E. W. "Effects of Mass Enhancement on Cooper Pairing in Heavy-Fermion Superconductors." In Novel Superconductivity, 279–85. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1937-5_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jackson Kimball, Derek F., Leanne D. Duffy, and David J. E. Marsh. "Ultralight Bosonic Dark Matter Theory." In The Search for Ultralight Bosonic Dark Matter, 31–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_2.

Повний текст джерела
Анотація:
AbstractThe basic theoretical concepts motivating the hypothesis that dark matter may consist of ultralight spin-0 or spin-1 bosons are explored. The origin of bosons with masses ≪ 1 eV from spontaneous and explicit symmetry breaking is illustrated with examples. The origins and characteristics of nongravitational couplings or “portals” between ultralight bosons and Standard Model particles and fields are considered, with particular attention paid to the cases of the axion-photon and axion-fermion interactions. Theoretical motivations for the existence of ultralight bosons, besides as an explanation of dark matter, are examined, with particular focus on the Peccei-Quinn solution to the strong CP problem (resulting in the QCD axion) and a dynamical solution to the hierarchy problem (the “relaxion” hypothesis, based on a particular axion-Higgs coupling in the early universe). Mechanisms for non-thermal production of ultralight bosonic dark matter are examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gocksch, A. "The QCD Glueball Mass in the Presence of Dynamical Fermions." In NATO ASI Series, 135–42. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abbas, Gauhar. "A Nonstandard Solution of the Fermionic Mass Hierarchy." In Springer Proceedings in Physics, 449–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29622-3_61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fermion masse"

1

Alexandrou, Constantia. "Baryon masses with dynamical twisted mass fermions." In The XXV International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rebelo, M. "Fermion Masses and Mixing resulting from Unimodular Complex Mass Matrices." In Corfu Summer Institute on Elementary Particle Physics. Trieste, Italy: Sissa Medialab, 1999. http://dx.doi.org/10.22323/1.001.0061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ross, Graham G. "Models of fermion masses." In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811509_0020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pickavance, Jenny, F. Farchioni, K. Jansen, Craig McNeile, Chris Michael, I. Montvay, Kei-ichi Nagai, et al. "Twisted mass fermions: neutral pion masses from disconnected contributions." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsieh, Tung-Han, and Ting-Wai Chiu. "Mass Spectra of Pentaquarks -- Overlap Fermion versus Wilson Fermion." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

RABY, STUART. "TESTING THEORIES OF FERMION MASSES." In Proceedings of the IX International Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778192_0023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bajc, Borut. "Fermion Masses and SO(10)." In SUSY06: THE 14TH INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND THE UNIFICATION OF FUNDAMENTAL INTERACTIONS. AIP, 2007. http://dx.doi.org/10.1063/1.2735203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chandrasekharan, Shailesh. "Fermion-bags and a new origin for a fermion mass." In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Raby, Stuart. "A predictive ansatz for fermion masses." In Proceedings of the XXVI International Conference on High Energy Physics. Vol. II. AIP, 1992. http://dx.doi.org/10.1063/1.43436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Raby, Stuart. "Lepton flavor violation and fermion masses." In The workshop on physics at the first muon collide r and at the front end of a muon collider. ASCE, 1998. http://dx.doi.org/10.1063/1.56251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Fermion masse"

1

Rasin, Andrija. Flavor symmetries and fermion masses. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10179336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McKellar, B. J. H., and D. D. Wu. Quantum electrodynamics with complex fermion mass. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5072930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kaplan, David Elazzar. New Tools for Fermion Masses from Extra Dimensions. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/798892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Faraggi, A. E. Calculating fermion masses in superstring derived standard-like models. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/212704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dutta, B., and S. Nandi. Texture of fermion mass matrices in partially unified theories. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/466853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ne`eman, Y. Universal SU(2/1) and the Higgs and fermion masses. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10137640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Froggatt, C. D., R. G. Moorhouse, and I. G. Knowles. Supersymmetric renormalisation group fixed points and third generation fermion mass predictions. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10141928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chou, Chih-Lung. Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/839825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pati, Jogesh C. Confronting the Conventional Ideas of Grand Unification with Fermion Masses, Neutrino Oscillations and Proton Decay. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/799045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Myers, W. D., and W. J. Swiatecki. Table of nuclear masses according to the 1994 Thomas-Fermi model. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10124592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії