Зміст
Добірка наукової літератури з теми "Fenêtres glissantes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fenêtres glissantes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fenêtres glissantes"
Grandvallet, Bertrand, Sébastien Changey, Ali Zemouche, and Mohamed Boutayeb. "Filtre à fenêtre glissante." Journal Européen des Systèmes Automatisés 45, no. 4-6 (August 30, 2011): 399–414. http://dx.doi.org/10.3166/jesa.45.399-414.
Повний текст джерелаДисертації з теми "Fenêtres glissantes"
Suzanne, Aurélie. "Decision Support Query Processing of Spanning Event Streams." Thesis, Nantes Université, 2022. http://www.theses.fr/2022NANU4022.
Повний текст джерелаThe Big Data era requires new processing architectures, among which streaming systems which have become very popular. Those systems are able to summarize infinite data streams with aggregates on the most recent data. However, up to now, only point events have been considered and spanning events, which come with a duration, have been let aside, restricted to the persistent databases world only. In this thesis, a unified framework to deal with such stream mechanisms on spanning events is defined. Then, we develop an engine for Aggregate Continuous Query (ACQ), which is able to incorporate event lifespan to provide exact aggregate computation, and provides adapted structures for an efficient computation of sliding windows. This engine is further extended to handle shared computation of simultaneously running ACQs, while properly managing out-oforder events. In order to elaborate at runtime the most efficient query execution plan, a costbased policy is followed. Throughout this thesis, many experiments have been carried out to show the pertinence and the efficiency of our approaches in a lar
Dragoni, Laurent. "Tri de potentiels d'action sur des données neurophysiologiques massives : stratégie d’ensemble actif par fenêtre glissante pour l’estimation de modèles convolutionnels en grande dimension." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4016.
Повний текст джерелаIn the nervous system, cells called neurons are specialized in the communication of information. Through the generation and propagation of electrical currents named action potentials, neurons are able to transmit information in the body. Given the importance of the neurons, in order to better understand the functioning of the nervous system, a wide range of methods have been proposed for studying those cells. In this thesis, we focus on the analysis of signals which have been recorded by electrodes, and more specifically, tetrodes and multi-electrode arrays (MEA). Since those devices usually record the activity of a set of neurons, the recorded signals are often a mixture of the activity of several neurons. In order to gain more knowledge from this type of data, a crucial pre-processing step called spike sorting is required to separate the activity of each neuron. Nowadays, the general procedure for spike sorting consists in a three steps procedure: thresholding, feature extraction and clustering. Unfortunately this methodology requires a large number of manual operations. Moreover, it becomes even more difficult when treating massive volumes of data, especially MEA recordings which also tend to feature more neuronal synchronizations. In this thesis, we present a spike sorting strategy allowing the analysis of large volumes of data and which requires few manual operations. This strategy makes use of a convolutional model which aims at breaking down the recorded signals as temporal convolutions between two factors: neuron activations and action potential shapes. The estimation of these two factors is usually treated through alternative optimization. Being the most difficult task, we only focus here on the estimation of the activations, assuming that the action potential shapes are known. Estimating the activations is traditionally referred to convolutional sparse coding. The well-known Lasso estimator features interesting mathematical properties for the resolution of such problem. However its computation remains challenging on high dimensional problems. We propose an algorithm based of the working set strategy in order to compute efficiently the Lasso. This algorithm takes advantage of the particular structure of the problem, derived from biological properties, by using temporal sliding windows, allowing it to scale in high dimension. Furthermore, we adapt theoretical results about the Lasso to show that, under reasonable assumptions, our estimator recovers the support of the true activation vector with high probability. We also propose models for both the spatial distribution and activation times of the neurons which allow us to quantify the size of our problem and deduce the theoretical complexity of our algorithm. In particular, we obtain a quasi-linear complexity with respect to the size of the recorded signal. Finally we present numerical results illustrating both the theoretical results and the performances of our approach
Gajny, Laurent. "Approximation de fonctions et de données discrètes au sens de la norme L1 par splines polynomiales." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0006/document.
Повний текст джерелаData and function approximation is fundamental in application domains like path planning or signal processing (sensor data). In such domains, it is important to obtain curves that preserve the shape of the data. Considering the results obtained for the problem of data interpolation, L1 splines appear to be a good solution. Contrary to classical L2 splines, these splines enable to preserve linearities in the data and to not introduce extraneous oscillations when applied on data sets with abrupt changes. We propose in this dissertation a study of the problem of best L1 approximation. This study includes developments on best L1 approximation of functions with a jump discontinuity in general spaces called Chebyshev and weak-Chebyshev spaces. Polynomial splines fit in this framework. Approximation algorithms by smoothing splines and spline fits based on a sliding window process are introduced. The methods previously proposed in the littérature can be relatively time consuming when applied on large datasets. Sliding window algorithm enables to obtain algorithms with linear complexity. Moreover, these algorithms can be parallelized. Finally, a new approximation approach with prescribed error is introduced. A pure algebraic algorithm with linear complexity is introduced. This algorithm is then applicable to real-time application
Ben, Zakour Asma. "Extraction des utilisations typiques à partir de données hétérogènes en vue d'optimiser la maintenance d'une flotte de véhicules." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14539/document.
Повний текст джерелаThe present work is part of an industrial project driven by 2MoRO Solutions company.It aims to develop a high value service enabling aircraft operators to optimize their maintenance actions.Given the large amount of data available around aircraft exploitation, we aim to analyse the historical events recorded with each aircraft in order to extract maintenance forecasting. Theresults are used to integrate and consolidate maintenance tasks in order to minimize aircraft downtime and risk of failure. The proposed method involves three steps : (i) streamlining information in order to combinethem, (ii) organizing this data for easy analysis and (iii) an extraction step of useful knowledgein the form of interesting sequences. [...]
Mendes, Filho José. "Online Distributed Motion Planning for Mobile Multi-robot Systems." Thesis, Institut polytechnique de Paris, 2019. http://www.theses.fr/2019IPPAE007.
Повний текст джерелаTwo main objectives for this thesis can be identified: - Develop a multi-robot system composed by autonomous mobile robots capable of performing complex tasks in a dynamic, partially known environment; - Ensure the safety of goods and a proper interaction human-robot in their shared work environment. To that purpose a 3 layer solution is proposed containing : - Control law - Motion planner - Task planner Each layer is validated firstly in simulation and secondly in a real experiment using mobile platforms such as TurtleBots. The found results will be analysed with respect to requirements derived from the objectives stated at the beginning
Hamdi, Seif Eddine. "Contribution au traitement du signal pour le contrôle de santé in situ de structures composites : application au suivi de température et à l'analyse des signaux d'émission acoustique." Phd thesis, Université du Maine, 2012. http://tel.archives-ouvertes.fr/tel-00770664.
Повний текст джерелаHamdi, Seif Eddine. "Contribution au traitement du signal pour le contrôle de santé in situ de structures composites : application au suivi de température et à l’analyse des signaux d’émission acoustique." Thesis, Le Mans, 2012. http://www.theses.fr/2012LEMA1017/document.
Повний текст джерелаStructural health monitoring (SHM) of materials is a fundamental measure to master thedurability and the reliability of structures in service. Beyond the industrial and human issuesever increasing in terms of safety and reliability, health monitoring must cope with demandsincreasingly sophisticated. New health monitoring strategies must not only detect and identifydamage but also quantify the various phenomena involved in it. To achieve this objective, itis necessary to reach a better understanding of the damage process. Moreover, they frequentlyoccur as a result of mechanical and environmental stresses. Thus, it is essential, first, to developsignal processing methods for estimating the effects of environmental and operational conditions,in the context of the analysis of precursor events of damage mechanisms, and on theother hand, to define the damage descriptors that are the most suitable to this analysis. Thisstudy proposes signal processing methods to achieve this goal. At first, to the estimation ofexternal effects on the scattered waves in an active health control context, in a second step, tothe extraction of a damage indicator from the signals analysis of acoustic emission in a passivehealth monitoring context.In the first part of this work, four signal processing methods are proposed. These allow takinginto account the variation of environmental conditions in the structure, which in this thesis,were limited to the particular case of temperature change. Indeed, temperature changes have theeffect of altering the mechanical properties of the material and therefore the propagation velocityof ultrasonic waves. This phenomenon then causes a dilation of the acoustic signals that shouldbe estimated in order to monitor changes in temperature. Four estimators of dilation coefficientsare then studied: the intercorrelation sliding window, used as reference method, the stretchingmethod, the minimum variance estimator and the exponential transform. The first two methodshave already been validated in the literature while the latter two were developed specificallyin the context of this study. Thereafter, a statistical evaluation of the quality of estimates isconducted through Monte Carlo simulations using synthetic signals. These signals are basedon a scattered signal model taking into account the influence of temperature. A raw estimateof the computational complexity of signal processing methods also completes this evaluationphase. Finally, the experimental validation of estimation methods is performed on two types ofmaterial: First, in an aluminum plate, homogeneous medium whose characteristics are known,then, in a second step in a highly heterogeneous environment in the form of a compositeglass/epoxy plate. In these experiments, the plates are subjected to different temperatures in acontrolled thermal environment. The temperature estimates are then faced with an analyticalmodel describing the material behavior.The second part of this work concerns in situ characterization of damage mechanisms byacoustic emission in heterogeneous materials. Acoustic emission sources generate non-stationarysignals. The Hilbert-Huang transform is thus proposed for the discrimination of signals representativeof four typical sources of acoustic emission in composites: matrix cracking, debondingfiber/matrix, fiber breakage and delamination. A new time-frequency descriptor is then definedfrom the Hilbert-Huang transform and is introduced into an online classification algorithm. Amethod of unsupervised classification, based on the k-means method, is then used to discriminatethe sources of acoustic emission and the data segmentation quality is evaluated. Thesignals are recorded from blank samples, using piezoelectric sensors stuck to the surface of thematerial and sensitive samples (sensors integrated within the material)
Gasmi, Noussaiba. "Observation et commande d'une classe de systèmes non linéaires temps discret." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0177/document.
Повний текст джерелаThe analysis and synthesis of dynamic systems has undergone significant development in recent decades, as illustrated by the considerable number of published works in this field, and continue to be a research theme regularly explored. While most of the existing work concerns linear and nonlinear continuous-time systems, few results have been established in the discrete-time case. This thesis deals with the observation and control of a class of nonlinear discrete-time systems. First, the problem of state observer synthesis using a sliding window of measurements is discussed. Non-restrictive stability and robustness conditions are deduced. Two classes of discrete time nonlinear systems are studied: Lipschitz systems and one-side Lipschitz systems. Then, a dual approach was explored to derive a stabilizing control law based on observer-based state feedback. The conditions for the existence of an observer and a controller stabilizing the studied classes of nonlinear systems are expressed in term of LMI. The effectiveness and validity of the proposed approaches are shown through numerical examples