Добірка наукової літератури з теми "FEM discretization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "FEM discretization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "FEM discretization"
Dryja, M., and M. Sarkis. "Additive Average Schwarz Methods for Discretization of Elliptic Problems with Highly Discontinuous Coefficients." Computational Methods in Applied Mathematics 10, no. 2 (2010): 164–76. http://dx.doi.org/10.2478/cmam-2010-0009.
Повний текст джерелаMartello, Giulia. "Discretization Analysis in FEM Models." MATEC Web of Conferences 53 (2016): 01063. http://dx.doi.org/10.1051/matecconf/20165301063.
Повний текст джерелаLahtinen, Valtteri, and Antti Stenvall. "A category theoretical interpretation of discretization in Galerkin finite element method." Mathematische Zeitschrift 296, no. 3-4 (January 29, 2020): 1271–85. http://dx.doi.org/10.1007/s00209-020-02456-1.
Повний текст джерелаMARAZZINA, DANIELE, OLEG REICHMANN, and CHRISTOPH SCHWAB. "hp-DGFEM FOR KOLMOGOROV–FOKKER–PLANCK EQUATIONS OF MULTIVARIATE LÉVY PROCESSES." Mathematical Models and Methods in Applied Sciences 22, no. 01 (January 2012): 1150005. http://dx.doi.org/10.1142/s0218202512005897.
Повний текст джерелаOvchinnikov, George V., Denis Zorin, and Ivan V. Oseledets. "Robust regularization of topology optimization problems with a posteriori error estimators." Russian Journal of Numerical Analysis and Mathematical Modelling 34, no. 1 (February 25, 2019): 57–69. http://dx.doi.org/10.1515/rnam-2019-0005.
Повний текст джерелаSchedensack, Mira. "A New Generalization of the P1 Non-Conforming FEM to Higher Polynomial Degrees." Computational Methods in Applied Mathematics 17, no. 1 (January 1, 2017): 161–85. http://dx.doi.org/10.1515/cmam-2016-0031.
Повний текст джерелаDevaud, Denis. "Petrov–Galerkin space-time hp-approximation of parabolic equations in H1/2." IMA Journal of Numerical Analysis 40, no. 4 (October 16, 2019): 2717–45. http://dx.doi.org/10.1093/imanum/drz036.
Повний текст джерелаYao, Lingyun, Wanyi Tian, and Fei Wu. "An Optimized Generalized Integration Rules for Error Reduction of Acoustic Finite Element Model." International Journal of Computational Methods 15, no. 07 (October 12, 2018): 1850062. http://dx.doi.org/10.1142/s0219876218500627.
Повний текст джерелаZhao, Jingjun, Jingyu Xiao, and Yang Xu. "Stability and Convergence of an Effective Finite Element Method for Multiterm Fractional Partial Differential Equations." Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/857205.
Повний текст джерелаXu, Haochen. "Analyzing heat transfer in Axial Flux Permanent Magnet electrical machines: A literature review on the discretization methods-FVM and FDM." Theoretical and Natural Science 11, no. 1 (November 17, 2023): 223–30. http://dx.doi.org/10.54254/2753-8818/11/20230412.
Повний текст джерелаДисертації з теми "FEM discretization"
Rücker, Carsten. "Advanced Electrical Resistivity Modelling and Inversion using Unstructured Discretization." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-69066.
Повний текст джерелаRückert, Jens. "Kirchhoff Plates and Large Deformations - Modelling and C^1-continuous Discretization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-121275.
Повний текст джерелаPonce, Cristobal. "Port-Hamiltonian modeling, discretization and shape control of multidimensional flexible mechanical systems." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD061.
Повний текст джерелаThis thesis addresses the modeling, discretization, and shape control of flexible mechanical systems within the Port-Hamiltonian Systems (PHS) framework. The contributions are threefold. First, we propose generalized methodologies for modeling both linear and nonlinear multidimensional mechanical systems using the generalized extended Hamilton's principle, providing explicit and implicit PHS representations. Second, we develop structure-preserving discretization techniques via mixed Finite Element Methods (FEM), including two, three, and four-field approaches tailored to linear and nonlinear PHS and PH-DAE systems. Finally, we introduce a finite-dimensional controller based on low-order approximations of large-scale discretized linear PHS. This controller ensures convergence to the optimal shapes, offering the best approximation to the desired configurations, while guaranteeing asymptotic stability of the large-scale discretized system
He, Bo. "Compatible discretizations for Maxwell equations." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299.
Повний текст джерелаPalionytė, Agnė. "Kontinualių struktūrų diskretizavimas vaizdų algebros metodais." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110616_163839-19284.
Повний текст джерелаIn the master thesis the problems of structure modeling, discretization-optimization and their solution methods and algorithms are analyzed. The original technique for optimization and discretization of beam structures has been suggested; The packages of image algebra methods and of the finite element methods were employed for that. Several packages of finite element method have been reviewed and the most suitable packages for the current problems were identified. The methods for obtaining skeletons of digital images were explored. The algorithms for optimization and discretization of beam structures has been suggested and coded. The program created consents of the part for image processing and input data preparing, and the part for image the finite element via method. The results obtained are represented and verified by STAAD.Pro package. During the discretization, the positions of structure nodes are obtained in the intersection of skeleton segments. The segments' cross-section areas are obtained in the middle-points between two adjacent nodes. The positions of nodes may be corrected if the nodes close to each other. The test-calculation, analysis of results and verification are presented and conclusions are drawn.
Bachini, Elena. "Numerical methods for Shallow Water Equations on regular surfaces." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422699.
Повний текст джерелаGibert, Gaël. "Propagation de fissures en fatigue par une approche X-FEM avec raffinement automatique de maillage." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI088.
Повний текст джерелаTo guarantee the high level of safety of industrial components under fatigue cycles it is essential to be able to predict the initiation and growth of cracks during their entire lifetime. However the numerical cost of a propagation simulation on engineer-sized problems with non-linear behavior may be prohibitive, with the classical techniques. Here, a new approach combining the eXtended Finite Element Method (X-FEM) and automatic Adaptive Mesh Refinement (AMR) is presented taking advantage of both methods. The X-FEM, developed over the past two decades by a large community, have proven its efficiency to handle evolving discontinuities in a variety of fracture analysis. Since this method enables to describe the crack and its propagation independently of the mesh of the structure, a simple hierarchical mesh refinement procedure can be applied. Automatic adaptive re-meshing is a valuable method for elastic-plastic crack propagation analysis since it permits a locally fine mesh and then an accurate description of physical quantities in a limited area around the crack front. This is particularly important when local fracture criteria are concerned. Moreover local refinement saves computational effort, particularly when the propagation path is not a priori known. In the present work, it is shown that both methods combine with minimal effort: the kinematic continuity relations and the field transfer process, needed for history-dependent material, must include in a proper way the enrichment of the model. If this requirement is not fulfilled, numerical error may be introduced. Implementation of this combined X-FEM/AMR approach in the finit elements code Cast3M is presented in detail. In particular, an innovative field transfer strategy is proposed in 2D and 3D. Numerical applications of crack propagation in elastic-plastic media demonstrate accuracy, robustness and efficiency of the technique. Moreover, an experimental study has been conducted on a example propagation with notable impact of confined plasticity. This study provides experimental data to compare with the numerical results obtained with the developed method. This validates our modelization choices. It also is the opportunity to test the developed method robustness on a realistic case of utilization. This study showed the interest of the proposed modelization taking into account plasticity induced crack closure during the fatigue propagation
Moreno, Navarro Pablo. "Multiphysics formulation and multiscale finite element discretizations of thermo-electro-magneto-mechanic coupling for smart materials design." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2525.
Повний текст джерелаNumerical algorithms based on the Finite Element Method will be specialized for Analysis, Design, and Optimization of Sensors and Actuators (S-A) and their Application to Smart Structures. The S-A based on tangible assets can couple several fields, such as mechanical, electrical, magnetic, and thermal. They are used in many applications, particularly in smart structures, damage monitoring, or aerodynamics. Despite the considerable experience in these studies, the steps addressed are first to develop a thermodynamically consistent formulation for macro-scale to introduce plasticity models; second, to provide the tools to take into account the heterogeneities of multi-scale models for smart materials. The main objective is the development of a research computer code to simulate and study the performance, not only of the S-A themselves but also of the smart structures in which these S-A will be mounted
Lang, Rostislav. "Návrh a výpočet membránové konstrukce zastřešení stadionu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226463.
Повний текст джерелаBeckstein, Pascal. "Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.
Повний текст джерелаЧастини книг з теми "FEM discretization"
Schnack, E., I. Becker, and N. Karaosmanoglu. "Three-dimensional Coupling of FEM and BEM in Elasticity." In Discretization Methods in Structural Mechanics, 415–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-49373-7_39.
Повний текст джерелаYagawa, G., T. Yamada, and T. Furukawa. "Parallel Computing with Free Mesh Method: Virtually Meshless FEM." In IUTAM Symposium on Discretization Methods in Structural Mechanics, 165–72. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_19.
Повний текст джерелаCombescure, A., A. Gravouil, H. Maigre, J. Réthore, and D. Grégoire. "2D X-FEM Simulation of Dynamic Brittle Crack Propagation." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 185–98. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_11.
Повний текст джерелаPavlatos, G. D., and D. E. Beskos. "Dynamic Inelastic Soil-Structure Interaction using a Hybrid BEM/FEM Scheme." In IUTAM Symposium on Discretization Methods in Structural Mechanics, 233–40. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_27.
Повний текст джерелаMenouillard, T., N. Moës, and A. Combescure. "An optimal explicit time stepping scheme for cracks modeled with X-FEM." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 267–81. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_16.
Повний текст джерелаBanichuk, N. V., and V. V. Saurin. "Some Aspects of Fem Application for Sensitivity Analysis of Quasi-Brittle Fracture Conditions." In IUTAM Symposium on Discretization Methods in Structural Mechanics, 217–24. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_25.
Повний текст джерелаGravouil, A., A. Combescure, T. Elguedj, E. Ferrié, J. Y. Buffière, and W. Ludwig. "Application of X-FEM to 3D Real Cracks and Elastic-Plastic Fatigue Crack Growth." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 213–31. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_13.
Повний текст джерелаVentura, Giulio. "Single Domain Quadrature Techniques for Discontinuous and Non-Linear Enrichments in Local Partion of Unity FEM." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 343–61. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_20.
Повний текст джерелаDedner, Andreas, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. "Dune-Fem: A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing." In Advances in DUNE, 17–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28589-9_2.
Повний текст джерелаDing, Jianxin, and Qingzhou Yang. "Superposed Element Method for the Temperature Field Simulation in Mass Concrete Structures Containing Cooling Pipes." In Lecture Notes in Civil Engineering, 129–39. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4090-1_12.
Повний текст джерелаТези доповідей конференцій з теми "FEM discretization"
Aravinda Priyadrashini, K., and B. N. Rao. "Coupled Finite Element-Moving Least Squares Technique for Stochastic Structural Response of Cracked Structures." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93756.
Повний текст джерелаShivanna, Kiran H., Srinivas C. Tadepalli, Vincent A. Magnotta, and Nicole M. Grosland. "A Framework for Finite Element Mesh Quality Improvement and Visualization in Orthopaedic Biomechanics." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205622.
Повний текст джерелаChen, Chang-New. "Extended GDQ and Related Discrete Element Analysis Methods for Transient Analyses of Continuum Mechanics Problems." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1286.
Повний текст джерелаChen, Chang-New. "Extended GDQ and Related Discrete Element Analysis Methods for Transient Offshore Mechanics and Engineering Problems." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28484.
Повний текст джерелаKondratyev, Nikolay V., Yuri G. Soloveichik, Denis V. Vagin, and Ilya I. Patrushev. "GPU implementation of iterative solver for linear systems obtained by FEM discretization." In 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7806466.
Повний текст джерелаKondratyev, Nikolay V., Yuri G. Soloveichik, Denis V. Vagin, and Ilya I. Patrushev. "GPU implementation of iterative solver for linear systems obtained by FEM discretization." In 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7806929.
Повний текст джерелаDennis, Brian H., and George S. Dulikravich. "Simultaneous Determination of Steady Temperatures and Heat Fluxes on Surfaces of Three Dimensional Objects Using FEM." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24310.
Повний текст джерелаDennis, Brian H., and George S. Dulikravich. "Simultaneous Determination of Temperatures, Heat Fluxes, Deformations, and Tractions on Inaccessible Boundaries." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0215.
Повний текст джерелаKondratyev, Nikolay v., Marina G. Persova, Yuri G. Soloveichik, and Dmitry S. Kiselev. "Using HYB Sparse Matrix Storage Format for Solving Linear Systems Obtained by FEM Discretization on GPU." In 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8546266.
Повний текст джерелаFatu, Aurelian, Mohamed Hajjam, and Dominique Bonneau. "A New Model of Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal Bearings." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63291.
Повний текст джерела