Добірка наукової літератури з теми "FEATURE SELECTION TECHNIQUE"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "FEATURE SELECTION TECHNIQUE".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "FEATURE SELECTION TECHNIQUE"
Sharaff, Aakanksha, Naresh Kumar Nagwani, and Kunal Swami. "Impact of Feature Selection Technique on Email Classification." International Journal of Knowledge Engineering-IACSIT 1, no. 1 (2015): 59–63. http://dx.doi.org/10.7763/ijke.2015.v1.10.
Повний текст джерелаSalama, Mostafa A., and Ghada Hassan. "A Novel Feature Selection Measure Partnership-Gain." International Journal of Online and Biomedical Engineering (iJOE) 15, no. 04 (February 27, 2019): 4. http://dx.doi.org/10.3991/ijoe.v15i04.9831.
Повний текст джерелаSikri, Alisha, N. P. Singh, and Surjeet Dalal. "Analysis of Rank Aggregation Techniques for Rank Based on the Feature Selection Technique." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 3s (March 11, 2023): 95–108. http://dx.doi.org/10.17762/ijritcc.v11i3s.6160.
Повний текст джерелаGoswami, Saptarsi, Amit Kumar Das, Amlan Chakrabarti, and Basabi Chakraborty. "A feature cluster taxonomy based feature selection technique." Expert Systems with Applications 79 (August 2017): 76–89. http://dx.doi.org/10.1016/j.eswa.2017.01.044.
Повний текст джерелаJain, Rahi, and Wei Xu. "HDSI: High dimensional selection with interactions algorithm on feature selection and testing." PLOS ONE 16, no. 2 (February 16, 2021): e0246159. http://dx.doi.org/10.1371/journal.pone.0246159.
Повний текст джерелаRamineni, Vyshnavi, and Goo-Rak Kwon. "Diagnosis of Alzheimer’s Disease using Wrapper Feature Selection Method." Korean Institute of Smart Media 12, no. 3 (April 30, 2023): 30–37. http://dx.doi.org/10.30693/smj.2023.12.3.30.
Повний текст джерелаZabidi, A., W. Mansor, and Khuan Y. Lee. "Optimal Feature Selection Technique for Mel Frequency Cepstral Coefficient Feature Extraction in Classifying Infant Cry with Asphyxia." Indonesian Journal of Electrical Engineering and Computer Science 6, no. 3 (June 1, 2017): 646. http://dx.doi.org/10.11591/ijeecs.v6.i3.pp646-655.
Повний текст джерелаMiftahushudur, Tajul, Chaeriah Bin Ali Wael, and Teguh Praludi. "Infinite Latent Feature Selection Technique for Hyperspectral Image Classification." Jurnal Elektronika dan Telekomunikasi 19, no. 1 (August 31, 2019): 32. http://dx.doi.org/10.14203/jet.v19.32-37.
Повний текст джерелаSaifan, Ahmad A., and Lina Abu-wardih. "Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification." ECTI Transactions on Computer and Information Technology (ECTI-CIT) 14, no. 2 (October 9, 2020): 213–28. http://dx.doi.org/10.37936/ecti-cit.2020142.224489.
Повний текст джерелаAli, Tariq, Asif Nawaz, and Hafiza Ayesha Sadia. "Genetic Algorithm Based Feature Selection Technique for Electroencephalography Data." Applied Computer Systems 24, no. 2 (December 1, 2019): 119–27. http://dx.doi.org/10.2478/acss-2019-0015.
Повний текст джерелаДисертації з теми "FEATURE SELECTION TECHNIQUE"
Tan, Feng. "Improving Feature Selection Techniques for Machine Learning." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/cs_diss/27.
Повний текст джерелаLoscalzo, Steven. "Group based techniques for stable feature selection." Diss., Online access via UMI:, 2009.
Знайти повний текст джерелаVege, Sri Harsha. "Ensemble of Feature Selection Techniques for High Dimensional Data." TopSCHOLAR®, 2012. http://digitalcommons.wku.edu/theses/1164.
Повний текст джерелаGustafsson, Robin. "Ordering Classifier Chains using filter model feature selection techniques." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14817.
Повний текст джерелаZhang, Fu. "Intelligent feature selection for neural regression : techniques and applications." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/49639/.
Повний текст джерелаMuteba, Ben Ilunga. "Data Science techniques for predicting plant genes involved in secondary metabolites production." University of the Western Cape, 2018. http://hdl.handle.net/11394/7039.
Повний текст джерелаPlant genome analysis is currently experiencing a boost due to reduced costs associated with the development of next generation sequencing technologies. Knowledge on genetic background can be applied to guide targeted plant selection and breeding, and to facilitate natural product discovery and biological engineering. In medicinal plants, secondary metabolites are of particular interest because they often represent the main active ingredients associated with health-promoting qualities. Plant polyphenols are a highly diverse family of aromatic secondary metabolites that act as antimicrobial agents, UV protectants, and insect or herbivore repellents. Most of the genome mining tools developed to understand genetic materials have very seldom addressed secondary metabolite genes and biosynthesis pathways. Little significant research has been conducted to study key enzyme factors that can predict a class of secondary metabolite genes from polyketide synthases. The objectives of this study were twofold: Primarily, it aimed to identify the biological properties of secondary metabolite genes and the selection of a specific gene, naringenin-chalcone synthase or chalcone synthase (CHS). The study hypothesized that data science approaches in mining biological data, particularly secondary metabolite genes, would enable the compulsory disclosure of some aspects of secondary metabolite (SM). Secondarily, the aim was to propose a proof of concept for classifying or predicting plant genes involved in polyphenol biosynthesis from data science techniques and convey these techniques in computational analysis through machine learning algorithms and mathematical and statistical approaches. Three specific challenges experienced while analysing secondary metabolite datasets were: 1) class imbalance, which refers to lack of proportionality among protein sequence classes; 2) high dimensionality, which alludes to a phenomenon feature space that arises when analysing bioinformatics datasets; and 3) the difference in protein sequences lengths, which alludes to a phenomenon that protein sequences have different lengths. Considering these inherent issues, developing precise classification models and statistical models proves a challenge. Therefore, the prerequisite for effective SM plant gene mining is dedicated data science techniques that can collect, prepare and analyse SM genes.
Strand, Lars Helge. "Feature selection in Medline using text and data mining techniques." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9249.
Повний текст джерелаIn this thesis we propose a new method for searching for gene products gene products and give annotations associating genes with Gene Ontology codes. Many solutions already exists, using different techniques, however few are capable of addressing the whole GO hierarchy. We propose a method for exploring this hierarchy by dividing it into subtrees, trying to find terms that are characteristics for the subtrees involved. Using a feature selection based on chi-square analysis and naive Bayes classification to find the correct GO nodes.
Ni, Weizeng. "A Review and Comparative Study on Univariate Feature Selection Techniques." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353156184.
Повний текст джерелаDang, Vinh Q. "Evolutionary approaches for feature selection in biological data." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2014. https://ro.ecu.edu.au/theses/1276.
Повний текст джерелаMiller, Corey Alexander. "Intelligent Feature Selection Techniques for Pattern Classification of Time-Domain Signals." W&M ScholarWorks, 2013. https://scholarworks.wm.edu/etd/1539623620.
Повний текст джерелаКниги з теми "FEATURE SELECTION TECHNIQUE"
K, Kokula Krishna Hari, and K. Saravanan, eds. Exploratory Analysis of Feature Selection Techniques in Medical Image Processing. Tiruppur, Tamil Nadu, India: Association of Scientists, Developers and Faculties, 2016.
Знайти повний текст джерелаRaza, Muhammad Summair, and Usman Qamar. Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4965-1.
Повний текст джерелаRaza, Muhammad Summair, and Usman Qamar. Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9166-9.
Повний текст джерелаRaza, Muhammad Summair, and Usman Qamar. Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications. Springer, 2017.
Знайти повний текст джерелаRaza, Muhammad Summair, and Usman Qamar. Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications. Springer, 2019.
Знайти повний текст джерелаRaza, Muhammad Summair, and Usman Qamar. Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications. Springer Singapore Pte. Limited, 2020.
Знайти повний текст джерелаRaza, Muhammad Summair, and Usman Qamar. Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications. Springer Singapore Pte. Limited, 2018.
Знайти повний текст джерелаGrant, Stuart A., and David B. Auyong. Basic Principles of Ultrasound Guided Nerve Block. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190231804.003.0001.
Повний текст джерелаThrumurthy, Sri G., Tania S. De Silva, Zia M. Moinuddin, and Stuart Enoch. EMQs for the MRCS Part A. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199645640.001.0001.
Повний текст джерелаThrumurthy, Sri G., Tania Samantha De Silva, Zia Moinuddin, and Stuart Enoch. SBA MCQs for the MRCS Part A. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199645633.001.0001.
Повний текст джерелаЧастини книг з теми "FEATURE SELECTION TECHNIQUE"
Singh, Upendra, and Sudhakar Tripathi. "Protein Classification Using Hybrid Feature Selection Technique." In Communications in Computer and Information Science, 813–21. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3433-6_97.
Повний текст джерелаNaveen, Nekuri, and Mandala Sookshma. "Adaptive Feature Selection and Classification Using Optimization Technique." In Frontiers in Intelligent Computing: Theory and Applications, 146–55. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9186-7_17.
Повний текст джерелаGuru, D. S., Mostafa Ali, and Mahamad Suhil. "A Novel Feature Selection Technique for Text Classification." In Advances in Intelligent Systems and Computing, 721–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1498-8_63.
Повний текст джерелаNagaraj, Naik, B. M. Vikranth, and N. Yogesh. "Recursive Feature Elimination Technique for Technical Indicators Selection." In Communications in Computer and Information Science, 139–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08277-1_12.
Повний текст джерелаZheng, Hai-Tao, and Haiyang Zhang. "Online Streaming Feature Selection Using Sampling Technique and Correlations Between Features." In Web Technologies and Applications, 43–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45817-5_4.
Повний текст джерелаChristy, A., and G. Meera Gandhi. "Feature Selection and Clustering of Documents Using Random Feature Set Generation Technique." In Advances in Data Science and Management, 67–79. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0978-0_6.
Повний текст джерелаLee, Kee-Cheol. "A Technique of Dynamic Feature Selection Using the Feature Group Mutual Information." In Methodologies for Knowledge Discovery and Data Mining, 138–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48912-6_19.
Повний текст джерелаLeKhac, NhienAn, Bo Wu, ChongCheng Chen, and M.-Tahar Kechadi. "Feature Selection Parallel Technique for Remotely Sensed Imagery Classification." In Lecture Notes in Computer Science, 623–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39643-4_45.
Повний текст джерелаSeeja, K. R. "A Novel Feature Selection Technique for SAGE Data Classification." In Communications in Computer and Information Science, 49–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39678-6_9.
Повний текст джерелаAlharbi, Abdullah Semran, Yuefeng Li, and Yue Xu. "Integrating LDA with Clustering Technique for Relevance Feature Selection." In AI 2017: Advances in Artificial Intelligence, 274–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63004-5_22.
Повний текст джерелаТези доповідей конференцій з теми "FEATURE SELECTION TECHNIQUE"
Battisti, Felipe de Melo, and Tiago Buarque Assunção de Carvalho. "Threshold Feature Selection PCA." In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/kdmile.2022.227718.
Повний текст джерелаBibi, K. Fathima, and M. Nazreen Banu. "Feature subset selection based on Filter technique." In 2015 International Conference on Computing and Communications Technologies (ICCCT). IEEE, 2015. http://dx.doi.org/10.1109/iccct2.2015.7292710.
Повний текст джерелаWiratsin, In-On, and Lalita Narupiyakul. "Feature Selection Technique for Autism Spectrum Disorder." In CCEAI 2021: 5th International Conference on Control Engineering and Artificial Intelligence. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448218.3448241.
Повний текст джерелаTayal, Devendra K., Neha Srivastava, and Neha. "Feature Selection using Enhanced Nature Optimization Technique." In 2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS). IEEE, 2023. http://dx.doi.org/10.1109/aicaps57044.2023.10074104.
Повний текст джерелаS, Abdul Razak M., Nirmala C. R, Chetan B. B, Mohammed Rafi, and Sreenivasa B. R. "Online feature Selection using Pearson Correlation Technique." In 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE). IEEE, 2022. http://dx.doi.org/10.1109/icraie56454.2022.10054267.
Повний текст джерелаLópez Jaimes, Antonio, Carlos A. Coello Coello, and Debrup Chakraborty. "Objective reduction using a feature selection technique." In the 10th annual conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1389095.1389228.
Повний текст джерелаWang, Yong, Adam J. Brzezinski, Xianli Qiao, and Jun Ni. "Heuristic Feature Selection for Shaving Tool Wear Classification." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8547.
Повний текст джерелаMeng Wang, Shudong Sun, Ganggang Niu, Yuanzhi Tu, and Shihui Guo. "A feature selection technique based on equivalent relation." In 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). IEEE, 2011. http://dx.doi.org/10.1109/aimsec.2011.6010707.
Повний текст джерелаLiogiene, Tatjana, and Gintautas Tamulevicius. "SFS feature selection technique for multistage emotion recognition." In 2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE). IEEE, 2015. http://dx.doi.org/10.1109/aieee.2015.7367299.
Повний текст джерелаMary, I. Thusnavis Bella, A. Vasuki, and M. A. P. Manimekalai. "An optimized feature selection CBIR technique using ANN." In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017. http://dx.doi.org/10.1109/iceeccot.2017.8284550.
Повний текст джерелаЗвіти організацій з теми "FEATURE SELECTION TECHNIQUE"
Zhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan, and Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0012049.
Повний текст джерелаSearcy, Stephen W., and Kalman Peleg. Adaptive Sorting of Fresh Produce. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568747.bard.
Повний текст джерелаTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Повний текст джерелаRobert Nourgaliev, Nam Dinh, and Robert Youngblood. Development, Selection, Implementation and Testing of Architectural Features and Solution Techniques for Next Generation of System Simulation Codes to Support the Safety Case if the LWR Life Extension. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1004227.
Повний текст джерелаLylo, Taras. Російсько-українська війна в інтерпретаціях іранського видання «The Tehran Times»: основні ідеологеми та маніпулятивні прийоми. Ivan Franko National University of Lviv, березень 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11730.
Повний текст джерелаRiccardella, Scott. PR-335-143705-R01 Study on Reliability of In-ditch NDE for SCC Anomalies. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2018. http://dx.doi.org/10.55274/r0011529.
Повний текст джерела