Добірка наукової літератури з теми "Fast mesoscopic model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fast mesoscopic model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fast mesoscopic model"
Sakout, Sofia, Daniel Weisz-Patrault, and Alain Ehrlacher. "Energetic upscaling strategy for grain growth. i: Fast mesoscopic model based on dissipation." Acta Materialia 196 (September 2020): 261–79. http://dx.doi.org/10.1016/j.actamat.2020.06.032.
Повний текст джерелаZhou, Xuesong, Jeffrey Taylor, and Filippo Pratico. "DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration." Cogent Engineering 1, no. 1 (October 1, 2014): 961345. http://dx.doi.org/10.1080/23311916.2014.961345.
Повний текст джерелаWang, Enjiang, José M. Carcione, and Jing Ba. "Wave simulation in double-porosity media based on the Biot-Rayleigh theory." GEOPHYSICS 84, no. 4 (July 1, 2019): WA11—WA21. http://dx.doi.org/10.1190/geo2018-0575.1.
Повний текст джерелаNeedell, Zachary A., and Jessika E. Trancik. "Efficiently Simulating Personal Vehicle Energy Consumption in Mesoscopic Transport Models." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 25 (November 20, 2018): 163–73. http://dx.doi.org/10.1177/0361198118798244.
Повний текст джерелаLi, Zilong, and Yang Tang. "Mesoscopic Simulation Method for Uniaxial Compression Test of RCC Dam Material Based on DEM." Mathematical Problems in Engineering 2020 (December 17, 2020): 1–13. http://dx.doi.org/10.1155/2020/6686609.
Повний текст джерелаBiscarini, Chiara, Silvia Di Francesco, Fernando Nardi, and Piergiorgio Manciola. "Detailed Simulation of Complex Hydraulic Problems with Macroscopic and Mesoscopic Mathematical Methods." Mathematical Problems in Engineering 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/928309.
Повний текст джерелаZhao, Liang, Chang-Hua Li, Fa-Ning Dang, Chu-Jun Li, and Zhong-Xing Duan. "Concrete CT Image Quick Three-Dimensional Reconstruction Research." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 10 (March 16, 2017): 1757005. http://dx.doi.org/10.1142/s0218001417570051.
Повний текст джерелаKoltcov, Sergei, Vera Ignatenko, and Sergei Pashakhin. "Fast Tuning of Topic Models: An Application of Rényi Entropy and Renormalization Theory." Proceedings 46, no. 1 (November 17, 2019): 5. http://dx.doi.org/10.3390/ecea-5-06674.
Повний текст джерелаGuo, Yutai, Jialong He, Hui Jiang, Yuande Zhou, Feng Jin, and Chongmin Song. "A Simple Approach for Generating Random Aggregate Model of Concrete Based on Laguerre Tessellation and Its Application Analyses." Materials 13, no. 17 (September 3, 2020): 3896. http://dx.doi.org/10.3390/ma13173896.
Повний текст джерелаKöksal Ersöz, Elif, Julien Modolo, Fabrice Bartolomei, and Fabrice Wendling. "Neural mass modeling of slow-fast dynamics of seizure initiation and abortion." PLOS Computational Biology 16, no. 11 (November 9, 2020): e1008430. http://dx.doi.org/10.1371/journal.pcbi.1008430.
Повний текст джерелаДисертації з теми "Fast mesoscopic model"
Echerradi, Insaf. "Modèle rapide de plasticité cristalline dans les polycristaux pour la fatigue à grand nombre de cycles." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0038.
Повний текст джерелаThis thesis concerns the study of the reliability of structures working in fatigue. One of the most important subjects is the understanding and modelling of fatigue phenomena in both normal and accidental situations. In polycrystals, these phenomena are of a probabilistic nature: for the same cyclic loading, two macroscopically identical specimens have different lifetimes. This is because the microstructures exhibit a certain variability. The traditional approach is to establish S-N curves experimentally. Due to the random nature of the fatigue phenomena, this experimental procedure must be repeated a large number of times to be statistically representative. It is generally considered that the safe prediction of service life for a given loading level is the average number of cycles to failure minus twice the standard deviation. This approach is extremely cumbersome in terms of experimental effort, but also inadequate from the point of view of risk analysis.The main objective of this work is to develop a polycrystalline evolution model integrating plasticity and fracture, sufficiently fast in calculation time to allow probabilistic analysis and applicable on the scale of an entire structure. The proposed model is based on the principle of minimising incremental energy and targets low-amplitude loading, for which plasticity is confined to a few critical grains that are assumed to be distant from one another and loaded according to a single sliding system. Initially, we assume isotropic and linear kinematic strain hardening, neglecting elastic interactions between critical grains. The plastic slip increment in each critical grain is then obtained as an explicit function of the material parameters, the loading, and a localization tensor determined entirely by the grain geometry and its elastic moduli. For ellipsoidal grains, this location tensor is identified with the Eshelby tensor. The validity of the model is studied by comparison with finite element calculations. The model is then extended to take into account the dominant effects of elastic interaction between grains. Based on an analysis of dislocations, a non-linear strain-hardening law is also proposed, showing the effect of grain size. An extension of the polycrystalline model to this type of law is presented.For cyclic loading, the proposed approach makes it possible to calculate the incremental evolution of a polycrystal using analytical recurrence formulae, without requiring any spatial discretisation. In the simplest situation, where elastic interactions are neglected, direct formulae are obtained giving the stabilized state reached after a large number of cycles. This polycrystalline model is used to analyse the sensitivity of fatigue life to microstructural parameters such as grain size, morphological and crystallographic textures. The influence of the stress gradient is also discussed. Finally, the applicability of the model to real structures is illustrated by the study of stents, small biomedical devices that are subjected to cyclic loading due to heartbeats and for which fatigue life is crucial
Частини книг з теми "Fast mesoscopic model"
Wendling, Fabrice, Pascal Benquet, and Fabrice Bartolomei. "SEEG Recordings: From Signal Processing to Models of Epileptogenic Networks." In Invasive Studies of the Human Epileptic Brain, edited by Samden D. Lhatoo, Philippe Kahane, and Hans O. Lüders, 520–34. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198714668.003.0039.
Повний текст джерелаТези доповідей конференцій з теми "Fast mesoscopic model"
Desmorat, Rodrigue, Fre´de´ric Pauget, and Jean-Philippe Sermage. "DAMAGE-2005: A Post-Processor for High Cycle Fatigue Under Complex Thermomechanical Loading." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93328.
Повний текст джерелаUehara, Yasushi, Noriyuki Shirakawa, Masanori Naitoh, Hidetoshi Okada, Hidemasa Yamano, Yoshiharu Tobita, Yuichi Yamamoto, and Seiichi Koshizuka. "Next Generation Safety Analysis Methods for SFRs—(6) SCARABEE BE+3 Analysis With SIMMER-III and COMPASS Codes Featuring Duct-Wall Failure." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75533.
Повний текст джерелаShirakawa, Noriyuki, Yasushi Uehara, Masanori Naitoh, Hidetoshi Okada, Yuichi Yamamoto, and Seiichi Koshizuka. "Next Generation Safety Analysis Methods for SFRs—(5) Structural Mechanics Models of COMPASS Code and Verification Analyses." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75532.
Повний текст джерелаAsinari, Pietro, Michele Cali` Quaglia, Michael R. von Spakovsky, and Bhavani V. Kasula. "Numerical Simulations of Reactive Mixture Flow in the Anode Layer of Solid Oxide Fuel Cells by the Lattice Boltzmann Method." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95738.
Повний текст джерела