Добірка наукової літератури з теми "Families of metrics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Families of metrics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Families of metrics"
Kiebusch, Sebastian, Bogdan Franczyk, and Andreas Speck. "Metrics for software system families." ACM SIGSOFT Software Engineering Notes 30, no. 4 (July 2005): 1–5. http://dx.doi.org/10.1145/1082983.1083098.
Повний текст джерелаGabidulin, E. M., and J. Simonis. "Metrics generated by families of subspaces." IEEE Transactions on Information Theory 44, no. 3 (May 1998): 1336–41. http://dx.doi.org/10.1109/18.669429.
Повний текст джерелаHall, Stuart James. "Quasi-Einstein metrics on hypersurface families." Journal of Geometry and Physics 64 (February 2013): 83–90. http://dx.doi.org/10.1016/j.geomphys.2012.10.013.
Повний текст джерелаGuenancia, Henri. "Families of conic Kähler–Einstein metrics." Mathematische Annalen 376, no. 1-2 (October 28, 2018): 1–37. http://dx.doi.org/10.1007/s00208-018-1769-6.
Повний текст джерелаCASE, JEFFREY S. "SMOOTH METRIC MEASURE SPACES AND QUASI-EINSTEIN METRICS." International Journal of Mathematics 23, no. 10 (October 2012): 1250110. http://dx.doi.org/10.1142/s0129167x12501108.
Повний текст джерелаdel Hoyo, Matias, and Rui Loja Fernandes. "Riemannian metrics on Lie groupoids." Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 735 (February 1, 2018): 143–73. http://dx.doi.org/10.1515/crelle-2015-0018.
Повний текст джерелаBēts, Raivis, and Alexander Šostak. "Some Remarks on Strong Fuzzy Metrics and Strong Fuzzy Approximating Metrics with Applications in Word Combinatorics." Mathematics 10, no. 5 (February 25, 2022): 738. http://dx.doi.org/10.3390/math10050738.
Повний текст джерелаBrooks, Robert, and Carolyn Gordon. "Isospectral families of conformally equivalent Riemannian metrics." Bulletin of the American Mathematical Society 23, no. 2 (October 1, 1990): 433–37. http://dx.doi.org/10.1090/s0273-0979-1990-15952-x.
Повний текст джерелаRhodes, Frank. "Digital metrics generated by families of paths." Discrete Mathematics 135, no. 1-3 (December 1994): 265–77. http://dx.doi.org/10.1016/0012-365x(93)e0102-a.
Повний текст джерелаGilinsky, Norman L., and Richard K. Bambach. "Asymmetrical patterns of origination and extinction in higher taxa." Paleobiology 13, no. 4 (1987): 427–45. http://dx.doi.org/10.1017/s0094837300009027.
Повний текст джерелаДисертації з теми "Families of metrics"
Tsui, Ho-yu, and 徐浩宇. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodairasurfaces." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37053760.
Повний текст джерелаTsui, Ho-yu. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37053760.
Повний текст джерелаRamírez, Cruz Yunior. "The simultaneous (strong) metric dimension of graph families." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/378036.
Повний текст джерелаEn esta tesis hemos introducido la noción de resolubilidad simultánea para familias de grafos definidas sobre un conjunto de vértices en común. Los principales resultados de la tesis han abordado los generadores y bases métricos simultáneos, así como la dimensión métrica simultánea de dichas familias. Adicionalmente, hemos tratado dos formas de resolubilidad simultánea relacionadas. Primeramente, abordamos la dimensión de adyacencia simultánea, la cual demostró su utilidad para caracterizar la dimensión métrica simultánea de familias compuestas por grafos-producto lexicográficos y corona. En segundo lugar, estudiamos las propiedades principales de la dimensión métrica fuerte simultánea. En todos los casos, el foco estuvo en determinar las cotas generales para estos parámetros, sus relaciones con los parámetros de resolubilidad estándar de los grafos individuales y, cuando fue posible, dar valores exactos o cotas ajustadas para ciertas familias específicas. Desde el punto de vista computacional, los problemas aún no se pueden considerar resueltos para el caso general, ya que logramos verificar que el requisito de simultaneidad aumenta la complejidad computacional de los cálculos relacionados con estos parámetros, los cuales ya se había demostrado que eran NP-difíciles. En particular, caracterizamos familias compuestas por grafos para los cuales algunos parámetros estándares de resolubilidad se pueden calcular eficientemente, mientras que calcular los parámetros simultáneos asociados es NP-difícil. Para paliar este problema, propusimos varios métodos para estimar aproximadamente estos parámetros y realizamos una evaluación experimental para estudiar su comportamiento en colecciones de familias de grafos generadas aleatoriamente.
In this thesis we have introduced the notion of simultaneous resolvability for graph families defined on a common vertex set. The main results of the thesis have dealt with simultaneous metric generators and bases, as well as the simultaneous metric dimension of such families. Additionally, we have covered two related forms of simultaneous resolvability. Firstly, we treated the simultaneous adjacency dimension, which proved useful for characterizing the simultaneous metric dimension of families composed by lexicographic and corona product graphs. Secondly, we studied the main properties of the simultaneous strong metric dimension. In all cases, our focus was on determining the general bounds for these parameters, their relations to the standard resolvability parameters of the individual graphs and, when possible, giving exact values or sharp bounds for a number of specific families. Computationally, these problems are far from solved for the general case, as we were able to verify that the requirement of simultaneity adds on the complexity of the calculations involving these resolvability parameters, which had already been proven to be NP-hard for their standard counterparts. In particular, we characterized families composed by graphs for which some standard resolvability parameters can be efficiently computed, while computing the associated simultaneous parameters is NP-hard. To alleviate this problem, we proposed several methods for approximately estimating these parameters and conducted an experimental evaluation to study their behaviour on randomly generated collections of graph families.
Thanwerdas, Yann. "Géométries riemanniennes et stratifiées des matrices de covariance et de corrélation." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4024.
Повний текст джерелаIn many applications, the data can be represented by covariance matrices or correlation matrices between several signals (EEG, MEG, fMRI), physical quantities (cells, genes), or within a time window (autocorrelation). The set of covariance matrices forms a convex cone that is not a Euclidean space but a stratified space: it has a boundary which is itself a stratified space of lower dimension. The strata are the manifolds of covariance matrices of fixed rank and the main stratum of Symmetric Positive Definite (SPD) matrices is dense in the total space. The set of correlation matrices can be described similarly.Geometric concepts such as geodesics, parallel transport, Fréchet mean were proposed for generalizing classical computations (interpolation, extrapolation, registration) and statistical analyses (mean, principal component analysis, classification, regression) to these non-linear spaces. However, these generalizations rely on the choice of a geometry, that is a basic operator such as a distance, an affine connection, a Riemannian metric, a divergence, which is assumed to be known beforehand. But in practice there is often not a unique natural geometry that satisfies the application constraints. Thus, one should explore more general families of geometries that exploit the data properties.First, the geometry must match the problem. For instance, degenerate matrices must be rejected to infinity whenever covariance matrices must be non-degenerate. Second, we should identify the invariance of the data under natural group transformations: if scaling each variable independently has no impact, then one needs a metric invariant under the positive diagonal group, for instance a product metric that decouples scales and correlations. Third, good numerical properties (closed-form formulae, efficient algorithms) are essential to use the geometry in practice.In my thesis, I study geometries on covariance and correlation matrices following these principles. In particular, I provide the associated geometric operations which are the building blocks for computing with such matrices.On SPD matrices, by analogy with the characterization of affine-invariant metrics, I characterize the continuous metrics invariant by O(n) by means of three multivariate continuous functions. Thus, I build a classification of metrics: the constraints imposed on these functions define nested classes satisfying stability properties. In particular, I reinterpret the class of kernel metrics, I introduce the family of mixed-Euclidean metrics for which I compute the curvature, and I survey and complete the knowledge on the classical metrics (log-Euclidean, Bures-Wasserstein, BKM, power-Euclidean).On full-rank correlation matrices, I compute the Riemannian operations of the quotient-affine metric. Despite its appealing construction and its invariance under permutations, I show that its curvature is of non-constant sign and unbounded from above, which makes this geometry practically very complex. I introduce computationally more convenient Hadamard or even log-Euclidean metrics, along with their geometric operations. To recover the lost invariance under permutations, I define two new permutation-invariant log-Euclidean metrics, one of them being invariant under a natural involution on full-rank correlation matrices. I also provide an efficient algorithm to compute the associated geometric operations based on the scaling of SPD matrices.Finally, I study the stratified Riemannian structure of the Bures-Wasserstein distance on covariance matrices. I compute the domain of definition of geodesics and the injection domain within each stratum and I characterize the length-minimizing curves between all the strata
Magnusson, Gunnar Thor. "Métriques naturelles associées aux familles de variétés Kahlériennes compactes." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM080/document.
Повний текст джерелаIn this thesis we consider families $pi : cc X to S$ of compact K"ahler manifolds with zero first Chern class over a smooth base $S$. We construct a relative complexified K"ahler cone $p : cc K to S$ over the base of deformations. Then we prove the existence of natural hermitian metrics on the total spaces $cc K$ and $cc X times_S cc K$ that generalize the classical Weil--Petersson metrics associated to polarized families of such manifolds. As a byproduct we obtain a Riemannian metric on the K"ahler cone of any compact K"ahler manifold. We obtain an expression of its curvature tensor via an embedding of the K"ahler cone into the space of hermitian metrics on the manifold. We also prove that if the manifolds in our family have trivial canonical bundle, then our generalized Weil--Petersson metric is the curvature form of a positive holomorphic line bundle. We then give some examples and applications
Bastos, Hugo Paulo da Silva. "Functional coherence and annotation agreement metrics for enzyme families." Doctoral thesis, 2015. http://hdl.handle.net/10451/19921.
Повний текст джерелаA range of methodologies is used to create sequence annotations, from manual curation by specialized curators to several automatic procedures. The multitude of existing annotation methods consequently generates an annotation heterogeneity in terms of coverage and specificity across the biological sequence space. When comparing groups of similar sequences (such as protein families) this heterogeneity can introduce issues regarding the interpretation of the actual functional similarity and the overall functional coherence. A direct path to mitigate these issues is the annotation extension within the protein families under analysis. This thesis postulates that the protein families can be used as knowledgebases for their own annotation extension with the assistance of a proper functional coherence analysis. Therefore, a modular framework for functional coherence analysis and annotation extension in protein families was proposed. The framework includes a proposed module for functional coherence analysis that relies on graph visualization, term enrichment and other statistics. In this work it was implemented and made available as a publicly accessible web application, GRYFUN which can be accessed at http://xldb.di.fc.ul.pt/gryfun/. In addition, four metrics were developed to assess distinct aspects of the coherence and completeness in protein families in conjunction with additional existing metrics. Therefore the use of the complete proposed framework by curators can be regarded as a semi-automatic approach to annotation able to assist with protein annotation extension.
Diversas metodologias são usadas para criar anotações em sequências, desde a curação manual por curadores especializados até vários procedimentos automáticos. A multitude de métodos de anotação existentes consequentemente gera heterogeneidade nas anotações em termos de cobertura e especificidade em espaços de sequências biológicas. Ao comparar grupos de sequências semelhantes (tais como famílias proteícas) esta heterogeneidade pode introduzir dificuldades quanto à interpretação da semelhança e coerência funcional nesses grupos. Uma maneira de mitigar essas dificuldades é a extensão da anotação dentro das famílias proteícas em análise. Esta tese postula que famílias proteícas podem ser usadas como bases de conhecimento para a sua própria extensão de anotação através do uso de análises de coerência funcional apropriadas. Portanto, uma framework modular para a análise de coerência funcional e extensão de anotação em famílias proteícas foi proposta. A framework incluí um módulo proposto para a análise de coerência funcional baseado em visualização de grafos, enriquecimento de termos e outras estatísticas. Neste trabalho o módulo foi implementado e disponibilizado como uma aplicação web, GRYFUN que pode ser acedida em http://xldb.di.fc.ul.pt/gryfun/. Adicionalmente, quatro métricas foram desenvolvidas para aferir aspectos distinctos da coerência e completude de anotação em famílias proteícas em conjunção com métricas já existentes. Portanto, o uso da framework completa por curadores, como uma estratégia de anotação semi-automática, é capaz de potenciar a extensão de anotação.
Fundação para a Ciência e a Tecnologia (FCT), SFRH/BD/48035/2008
Книги з теми "Families of metrics"
Poulin, Jean. Stratification for noetherian families of submodules of k̲[[y]] [superscript p] and metric properties of real analytic sets. Toronto: [s.n.], 1985.
Знайти повний текст джерелаScot, Walter. Metrical history of the honourable families of the name of Scot and Elliot, in the shires of Roxburgh and Selkirk: In two parts, gathered out of ancient chronicles, histories, and traditions of our fathers. Edinburgh: [s.n.], 1985.
Знайти повний текст джерелаRowland, Julia H. Cancer Survivorship. Edited by David A. Chambers, Wynne E. Norton, and Cynthia A. Vinson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190647421.003.0025.
Повний текст джерелаGolan, Amos. Info-Metrics and Statistical Inference. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199349524.003.0012.
Повний текст джерелаBoucher, Daniel. Translation. Edited by Wiebke Denecke, Wai-Yee Li, and Xiaofei Tian. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199356591.013.32.
Повний текст джерелаWoodhouse, Barbara Bennett. The Ecology of Childhood. NYU Press, 2020. http://dx.doi.org/10.18574/nyu/9780814794845.001.0001.
Повний текст джерелаPoulin, Jean. Stratification for noetherian families of modules of formal power series and metric properties of real analytic sets. 1986.
Знайти повний текст джерелаWittman, David M. Spacetime Geometry. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199658633.003.0011.
Повний текст джерелаDimas, Panos, Melissa Lane, and Susan Sauvé Meyer, eds. Plato's Statesman. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192898296.001.0001.
Повний текст джерелаRestrepo Zapata, Jaime. La biblioteca de Fray Cristóbal de Torres a partir de los libros que conserva la Biblioteca Antigua del Colegio Mayor de Nuestra Señora del Rosario. Editorial Universidad del Rosario, 2015. http://dx.doi.org/10.7476/9789587386523.
Повний текст джерелаЧастини книг з теми "Families of metrics"
Johnson, Michael D., and Randolph E. Kirchain. "Developing and Assessing Commonality Metrics for Product Families." In Advances in Product Family and Product Platform Design, 473–502. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7937-6_19.
Повний текст джерелаRaghunandan, Kavyta. "Young People in the Digital Age: Metrics of Friendship." In Families, Intergenerationality, and Peer Group Relations, 415–34. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-287-026-1_27.
Повний текст джерелаRaghunandan, Kavyta. "Young People in the Digital Age: Metrics of Friendship." In Families, Intergenerationality, and Peer Group Relations, 1–20. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-4585-92-7_27-1.
Повний текст джерелаFotso, Siméon, Romuald Thierry Dzati Kamga, and Louis Aimé Fono. "Metrics of Symmetric Difference on Fuzzy Sets Based on R-implicators of the Usual Families of t-norms." In Advances in Fuzzy Logic and Technology 2017, 79–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66824-6_8.
Повний текст джерелаShanmugalingam, Nageswari. "p-Hyperbolicity of Ends and Families of Paths in Metric Spaces." In Fractal Geometry and Stochastics VI, 191–205. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59649-1_8.
Повний текст джерелаRawat, B. S., and P. Pradhan. "Metric dimension of join of a path with other families of graphs." In Smart Computing, 412–16. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003167488-47.
Повний текст джерелаZingg, Sheila, Srđan Krstić, Martin Raszyk, Joshua Schneider, and Dmitriy Traytel. "Verified First-Order Monitoring with Recursive Rules." In Tools and Algorithms for the Construction and Analysis of Systems, 236–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99527-0_13.
Повний текст джерела"Deformations of hyperbolic metrics and the curvature tensor." In Families of Riemann Surfaces and Weil-Petersson Geometry, 65–73. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/cbms/113/07.
Повний текст джерелаKobayashi, Masaki. "Complex-Valued Boltzmann Manifold." In Complex-Valued Neural Networks, 1–26. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-214-5.ch001.
Повний текст джерелаKrishna, Ashwin, and Cheri Landers. "Quality Improvement in Pediatric Sedation." In The Pediatric Procedural Sedation Handbook, edited by Cheryl K. Gooden, Lia H. Lowrie, and Benjamin F. Jackson, 433–46. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190659110.003.0062.
Повний текст джерелаТези доповідей конференцій з теми "Families of metrics"
Kiebusch, Sebastian, Bogdan Franczyk, and Andreas Speck. "Metrics for software system families." In the seventh international workshop. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1083091.1083098.
Повний текст джерелаBlanc, William, Lina G. Hashem, Karim O. Elish, and M. J. Hussain Almohri. "Identifying Android Malware Families Using Android-Oriented Metrics." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9005669.
Повний текст джерелаGardner, Paul, Charles Lord, and Robert J. Barthorpe. "An Evaluation of Validation Metrics for Probabilistic Model Outputs." In ASME 2018 Verification and Validation Symposium. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/vvs2018-9327.
Повний текст джерелаFasano, Fausto, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. "Cascade Learning for Mobile Malware Families Detection through Quality and Android Metrics." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852268.
Повний текст джерелаShooter, Steven B., Shane Cohen, and Callida Williams. "Assessing Commonality and Differentiation for Packaging Family Planning With Application to Medication Labels." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49815.
Повний текст джерелаLee, Burton H., Seung Rhee, and Kosuke Ishii. "Robust Design for Recyclability Using Demanufacturing Complexity Metrics." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dfm-4345.
Повний текст джерелаKhajavirad, Aida, and Jeremy J. Michalek. "An Extension of the Commonality Index for Product Family Optimization." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35605.
Повний текст джерелаJung, Sangjin, and Timothy W. Simpson. "An Integrated Approach to Product Family Redesign Using Commonality and Variety Metrics." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46894.
Повний текст джерелаThevenot, Henri J., and Timothy W. Simpson. "A Comprehensive Metric for Evaluating Component Commonality in a Product Family." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99268.
Повний текст джерелаGonzalez-Zugasti, Javier P., Kevin N. Otto, and John D. Baker. "Assessing Value for Product Family Design and Selection." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8613.
Повний текст джерелаЗвіти організацій з теми "Families of metrics"
Paez, Kathryn, Rachel Shapiro, Lee Thompson, Erica Shelton, Lucy Savitz, Sarah Mossburg, Susan Baseman, and Amy Lin. Health System Panel To Inform and Encourage Use of Evidence Reports: Findings From the Implementation and Evaluation of Two Evidence-Based Tools. Agency for Healthcare Research and Quality (AHRQ), August 2022. http://dx.doi.org/10.23970/ahrqepchealthsystempanel.
Повний текст джерелаGómez Guerrero, Blanca Mercedes, Janer Eugenio Payares Guerrero, Alexander Salazar Montoya, and Flora Manuel Ariza Molina. Características agronómicas del pimentón (capsicum annuum L.) de 3 variedades en el municipio de Valledupar - Cesar. Universidad Nacional Abierta y a Distancia, June 2021. http://dx.doi.org/10.22490/ecapma.4234.
Повний текст джерела