Добірка наукової літератури з теми "Fair combinatorial optimization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fair combinatorial optimization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fair combinatorial optimization"
Bourdache, Nadjet, and Patrice Perny. "Active Preference Learning Based on Generalized Gini Functions: Application to the Multiagent Knapsack Problem." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 7741–48. http://dx.doi.org/10.1609/aaai.v33i01.33017741.
Повний текст джерелаWang, Kai, Haoyu Liu, Zhipeng Hu, Xiaochuan Feng, Minghao Zhao, Shiwei Zhao, Runze Wu, Xudong Shen, Tangjie Lv, and Changjie Fan. "EnMatch: Matchmaking for Better Player Engagement via Neural Combinatorial Optimization." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (March 24, 2024): 9098–106. http://dx.doi.org/10.1609/aaai.v38i8.28760.
Повний текст джерелаMOULIN, HERVÉ. "COST SHARING IN NETWORKS: SOME OPEN QUESTIONS." International Game Theory Review 15, no. 02 (June 2013): 1340001. http://dx.doi.org/10.1142/s021919891340001x.
Повний текст джерелаAdubi, Stephen A., Olufunke O. Oladipupo, and Oludayo O. Olugbara. "Evolutionary Algorithm-Based Iterated Local Search Hyper-Heuristic for Combinatorial Optimization Problems." Algorithms 15, no. 11 (October 31, 2022): 405. http://dx.doi.org/10.3390/a15110405.
Повний текст джерелаMaleš, Uroš, Dušan Ramljak, Tatjana Jakšić Krüger, Tatjana Davidović, Dragutin Ostojić, and Abhay Haridas. "Controlling the Difficulty of Combinatorial Optimization Problems for Fair Proof-of-Useful-Work-Based Blockchain Consensus Protocol." Symmetry 15, no. 1 (January 3, 2023): 140. http://dx.doi.org/10.3390/sym15010140.
Повний текст джерелаWang, Zhenzhong, Qingyuan Zeng, Wanyu Lin, Min Jiang, and Kay Chen Tan. "Generating Diagnostic and Actionable Explanations for Fair Graph Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (March 24, 2024): 21690–98. http://dx.doi.org/10.1609/aaai.v38i19.30168.
Повний текст джерелаRokbani, Nizar, Pavel Kromer, Ikram Twir, and Adel M. Alimi. "A Hybrid Hierarchical Heuristic-ACO With Local Search Applied to Travelling Salesman Problem, AS-FA-Ls." International Journal of System Dynamics Applications 9, no. 3 (July 2020): 58–73. http://dx.doi.org/10.4018/ijsda.2020070104.
Повний текст джерелаLujak, Marin, Stefano Giordani, Andrea Omicini, and Sascha Ossowski. "Decentralizing Coordination in Open Vehicle Fleets for Scalable and Dynamic Task Allocation." Complexity 2020 (July 16, 2020): 1–21. http://dx.doi.org/10.1155/2020/1047369.
Повний текст джерелаLi, Xia, and Buhong Wang. "Thinned Virtual Array for Cramer Rao Bound Optimization in MIMO Radar." International Journal of Antennas and Propagation 2021 (January 15, 2021): 1–13. http://dx.doi.org/10.1155/2021/1408498.
Повний текст джерелаKhaled, Smail, and Djebbar Bachir. "Electromagnetism-like mechanism algorithm for hybrid flow-shop scheduling problems." Indonesian Journal of Electrical Engineering and Computer Science 32, no. 3 (December 1, 2023): 1614. http://dx.doi.org/10.11591/ijeecs.v32.i3.pp1614-1620.
Повний текст джерелаДисертації з теми "Fair combinatorial optimization"
Vo, Thi Quynh Trang. "Algorithms and Machine Learning for fair and classical combinatorial optimization." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0035.
Повний текст джерелаCombinatorial optimization is a field of mathematics that searches for an optimal solution in a finite set of objects. It has crucial applications in many fields, including applied mathematics, software engineering, theoretical computer science, and machine learning. extit{Branch-and-cut} is one of the most widely-used algorithms for solving combinatorial optimization problems exactly. In this thesis, we focus on the computational aspects of branch-and-cut when studying two critical dimensions of combinatorial optimization: extit{the fairness of solutions} and extit{the integration of machine learning}.In Partef{part:1} (Chaptersef{chap:bnc-btsp} andef{chap:owa}), we study two common approaches to deal with the issue of fairness in combinatorial optimization, which has gained significant attention in the past decades. The first approach is extit{balanced combinatorial optimization}, which finds a fair solution by minimizing the difference between the largest and smallest components used. Due to the difficulties in bounding these components, to the best of our knowledge, no general exact framework based on mixed-integer linear programming (MILP) has been proposed for balanced combinatorial optimization. To address this gap, in Chapteref{chap:bnc-btsp}, we present a branch-and-cut algorithm and a novel class of local cutting planes tailored for balanced combinatorial optimization problems. We demonstrate the effectiveness of the proposed framework in the Balanced Traveling Salesman Problem. Additionally, we introduce bounding algorithms and mechanisms to fix variables to accelerate performance further.The second approach to handling the issue of fairness is extit{Ordered Weighted Average (OWA) combinatorial optimization}, which integrates the OWA operator into the objective function. Due to the ordering operator, OWA combinatorial optimization is nonlinear, even if its original constraints are linear. Two MILP formulations of different sizes have been introduced in the literature to linearize the OWA operator. However, which formulation performs best for OWA combinatorial optimization remains uncertain, as integrating the linearization methods may introduce additional difficulties. In Chapteref{chap:owa}, we provide theoretical and empirical comparisons of the two MILP formulations for OWA combinatorial optimization. In particular, we prove that the formulations are equivalent in terms of the linear programming relaxation. We empirically show that for OWA combinatorial optimization problems, the formulation with more variables can be solved faster with branch-and-cut.In Partef{part:2} (Chapteref{chap:mlbnc}), we develop methods for applying machine learning to enhance fundamental decision problems in branch-and-cut, with a focus on cut generation. Cut generation refers to the decision of whether to generate cuts or to branch at each node of the search tree. We empirically demonstrate that this decision significantly impacts branch-and-cut performance, especially for combinatorial cuts that exploit the facial structure of the convex hull of feasible solutions. We then propose a general framework combining supervised and reinforcement learning to learn effective strategies for generating combinatorial cuts in branch-and-cut. Our framework has two components: a cut detector to predict cut existence and a cut evaluator to choose between generating cuts and branching. Finally, we provide experimental results showing that the proposed method outperforms commonly used strategies for cut generation, even on instances larger than those used for training
Gliesch, Alex Zoch. "A genetic algorithm for fair land allocation." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/174950.
Повний текст джерелаThe goal of agrarian reform projects is the redistribution of farmland from large latifundia to smaller, often family farmers. One of the main problems the Brazilian National Institute of Colonization and Agrarian Reform (INCRA) has to solve is to subdivide a large parcel of land into smaller lots that are balanced with respect to certain attributes. This problem is difficult since it considers several constraints originating from legislation as well as ethical considerations. Current solutions are computer-assisted, but manual, time-consuming and error-prone, leading to rectangular lots of similar areas which are unfair with respect to soil aptitude and access to hydric resources. In this thesis, we propose a genetic algorithm to produce fair land subdivisions automatically. We present a greedy randomized constructive heuristic based on location-allocation to generate initial solutions, as well as mutation and recombination operators that consider specifics of the problem. Experiments on 5 real-world and 25 artificial instances confirm the effectiveness of the different components of our method, and show that it leads to fairer solutions than those currently applied in practice.
Частини книг з теми "Fair combinatorial optimization"
Armaselu, Bogdan, and Ovidiu Daescu. "Algorithms for Fair Partitioning of Convex Polygons." In Combinatorial Optimization and Applications, 53–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12691-3_5.
Повний текст джерелаJia, Xinrui, Kshiteej Sheth, and Ola Svensson. "Fair Colorful k-Center Clustering." In Integer Programming and Combinatorial Optimization, 209–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45771-6_17.
Повний текст джерелаNguyen, Viet Hung, and Paul Weng. "An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization Problems." In Combinatorial Optimization and Applications, 324–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71150-8_28.
Повний текст джерелаHansen, Thomas Dueholm, and Orestis A. Telelis. "Improved Bounds for Facility Location Games with Fair Cost Allocation." In Combinatorial Optimization and Applications, 174–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02026-1_16.
Повний текст джерелаBlum, Christian, and Pedro Pinacho-Davidson. "Application of Negative Learning Ant Colony Optimization to the Far from Most String Problem." In Evolutionary Computation in Combinatorial Optimization, 82–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30035-6_6.
Повний текст джерелаBlum, Christian, and Paola Festa. "A Hybrid Ant Colony Optimization Algorithm for the Far From Most String Problem." In Evolutionary Computation in Combinatorial Optimisation, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44320-0_1.
Повний текст джерела"Combinatorial Materials and Catalysts Development: Where Are We and How Far Can We Go?" In Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials, 23–36. CRC Press, 2006. http://dx.doi.org/10.1201/9781420005387-7.
Повний текст джерелаLi, Chu Min, and Felip Manyà. "Chapter 23. MaxSAT, Hard and Soft Constraints." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia201007.
Повний текст джерелаKaiwartya, Omprakash, Pawan Kumar Tiwari, Sushil Kumar, and Mukesh Prasad. "Dynamic Vehicle Routing Solution in the Framework of Nature-Inspired Algorithms." In Designing and Implementing Global Supply Chain Management, 36–50. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9720-1.ch003.
Повний текст джерелаТези доповідей конференцій з теми "Fair combinatorial optimization"
Golrezaei, Negin, Rad Niazadeh, Kumar Kshitij Patel, and Fransisca Susan. "Online Combinatorial Optimization with Group Fairness Constraints." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/44.
Повний текст джерелаMartin, Hugo, and Patrice Perny. "BiOWA for Preference Aggregation with Bipolar Scales: Application to Fair Optimization in Combinatorial Domains." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/252.
Повний текст джерелаXu, Huanle, Yang Liu, Wing Cheong Lau, and Rui Li. "Combinatorial Multi-Armed Bandits with Concave Rewards and Fairness Constraints." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/354.
Повний текст джерелаComlek, Yigitcan, Liwei Wang, and Wei Chen. "Mixed-Variable Global Sensitivity Analysis With Applications to Data-Driven Combinatorial Materials Design." In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-110756.
Повний текст джерелаDai, Zuo, and Jianzhong Cha. "A Hybrid Approach of Heuristic and Neural Network for Packing Problems." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0119.
Повний текст джерелаPetkov, Hristo, Colin Hanley, and Feng Dong. "DAG-WGAN: Causal Structure Learning with Wasserstein Generative Adversarial Networks." In 11th International Conference on Embedded Systems and Applications (EMSA 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120611.
Повний текст джерелаHuang, Mingyu, and Ke Li. "Exploring Structural Similarity in Fitness Landscapes via Graph Data Mining: A Case Study on Number Partitioning Problems." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/621.
Повний текст джерелаJiang, Chunheng, Jianxi Gao, and Malik Magdon-Ismail. "Inferring Degrees from Incomplete Networks and Nonlinear Dynamics." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/457.
Повний текст джерелаLiao, Yanfen, Jiejin Cai, and Xiaoqian Ma. "Study and Application on Real Time Optimum Operation for Plant Units." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50311.
Повний текст джерелаBarros, E. G. D., S. P. Szklarz, J. Hopman, K. Hopstaken, J. P. Gonçalves da Silva, O. P. Bjørlykke, V. Rios, J. Videla, R. Oliveira, and R. G. Hanea. "Well Swapping and Conversion Optimization Under Uncertainty Based on Extended Well Priority Parametrization." In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32960-ms.
Повний текст джерела