Добірка наукової літератури з теми "Face presentation attack detection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Face presentation attack detection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Face presentation attack detection"
Abdullakutty, Faseela, Pamela Johnston, and Eyad Elyan. "Fusion Methods for Face Presentation Attack Detection." Sensors 22, no. 14 (July 12, 2022): 5196. http://dx.doi.org/10.3390/s22145196.
Повний текст джерелаZhu, Shuaishuai, Xiaobo Lv, Xiaohua Feng, Jie Lin, Peng Jin, and Liang Gao. "Plenoptic Face Presentation Attack Detection." IEEE Access 8 (2020): 59007–14. http://dx.doi.org/10.1109/access.2020.2980755.
Повний текст джерелаKowalski, Marcin. "A Study on Presentation Attack Detection in Thermal Infrared." Sensors 20, no. 14 (July 17, 2020): 3988. http://dx.doi.org/10.3390/s20143988.
Повний текст джерелаWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. "Multi-Modal Face Presentation Attack Detection." Synthesis Lectures on Computer Vision 9, no. 1 (July 27, 2020): 1–88. http://dx.doi.org/10.2200/s01032ed1v01y202007cov017.
Повний текст джерелаAlshareef, Norah, Xiaohong Yuan, Kaushik Roy, and Mustafa Atay. "A Study of Gender Bias in Face Presentation Attack and Its Mitigation." Future Internet 13, no. 9 (September 14, 2021): 234. http://dx.doi.org/10.3390/fi13090234.
Повний текст джерелаBenlamoudi, Azeddine, Salah Eddine Bekhouche, Maarouf Korichi, Khaled Bensid, Abdeldjalil Ouahabi, Abdenour Hadid, and Abdelmalik Taleb-Ahmed. "Face Presentation Attack Detection Using Deep Background Subtraction." Sensors 22, no. 10 (May 15, 2022): 3760. http://dx.doi.org/10.3390/s22103760.
Повний текст джерелаWan, Jun, Sergio Escalera, Hugo Jair Escalante, Guodong Guo, and Stan Z. Li. "Special Issue on Face Presentation Attack Detection." IEEE Transactions on Biometrics, Behavior, and Identity Science 3, no. 3 (July 2021): 282–84. http://dx.doi.org/10.1109/tbiom.2021.3089903.
Повний текст джерелаNguyen, Dat, Tuyen Pham, Min Lee, and Kang Park. "Visible-Light Camera Sensor-Based Presentation Attack Detection for Face Recognition by Combining Spatial and Temporal Information." Sensors 19, no. 2 (January 20, 2019): 410. http://dx.doi.org/10.3390/s19020410.
Повний текст джерелаRamachandra, Raghavendra, and Christoph Busch. "Presentation Attack Detection Methods for Face Recognition Systems." ACM Computing Surveys 50, no. 1 (April 13, 2017): 1–37. http://dx.doi.org/10.1145/3038924.
Повний текст джерелаPeng, Fei, Le Qin, and Min Long. "Face presentation attack detection using guided scale texture." Multimedia Tools and Applications 77, no. 7 (May 13, 2017): 8883–909. http://dx.doi.org/10.1007/s11042-017-4780-0.
Повний текст джерелаДисертації з теми "Face presentation attack detection"
Boulkenafet, Z. (Zinelabidine). "Face presentation attack detection using texture analysis." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219257.
Повний текст джерелаTiivistelmä Kasvontunnistusjärjestelmien suorituskyky on parantunut huomattavasti viime vuosina. Tästä syystä tätä teknologiaa pidetään nykyisin riittävän kypsänä ja käytetään jo useissa käytännön sovelluksissa kuten rajatarkastuksissa, rahansiirroissa ja tietoturvasovelluksissa. Monissa tutkimuksissa on kuitenkin havaittu, että nämä järjestelmät ovat myös haavoittuvia huijausyrityksille, joissa joku yrittää esiintyä jonakin toisena henkilönä esittämällä kameralle jäljennöksen kohdehenkilön kasvoista. Tämä haavoittuvuus rajoittaa kasvontunnistuksen laajempaa käyttöä monissa sovelluksissa. Tunnistusjärjestelmien turvaamiseksi on kehitetty lukuisia menetelmiä tällaisten hyökkäysten torjumiseksi. Nämä menetelmät ovat toimineet hyvin tätä tarkoitusta varten kehitetyillä kasvotietokannoilla, mutta niiden suorituskyky huononee dramaattisesti todellisissa käytännön olosuhteissa, esim. valaistuksen ja käytetyn kuvantamistekniikan variaatioista johtuen. Tässä työssä yritämme parantaa kasvontunnistuksen huijauksen estomenetelmien yleistämiskykyä keskittyen erityisesti tekstuuripohjaisiin menetelmiin. Toisin kuin useimmat olemassa olevat tekstuuripohjaiset menetelmät, joissa tekstuuripiirteitä irrotetaan harmaasävykuvista, ehdotamme väritekstuurianalyysiin pohjautuvaa ratkaisua. Ensin kasvokuvat muutetaan erilaisiin väriavaruuksiin. Sen jälkeen kuvan jokaiselta kanavalta erikseen lasketut piirrehistogrammit yhdistetään ja käytetään erottamaan aidot ja väärät kasvokuvat toisistaan. Kolmeen eri väriavaruuteen, RGB, HSV ja YCbCr, perustuvat testimme osoittavat, että tekstuuri-informaation irrottaminen HSV- ja YCbCr-väriavaruuksien erillisistä luminanssi- ja krominanssikuvista parantaa suorituskykyä kuvien harmaasävy- ja RGB-esitystapoihin verrattuna. Valaistuksen ja kuvaresoluution variaation takia ehdotamme myös tämän tekstuuri-informaation irrottamista eri tavoin skaalatuista kuvista. Sen lisäksi, että itse kasvot esitetään eri skaaloissa, useaan skaalaan perustuvat suodatusmenetelmät toimivat myös esikäsittelynä sellaisia suorituskykyä heikentäviä tekijöitä vastaan kuten kohina ja valaistus. Vaikka tässä tutkimuksessa saavutetut tulokset ovat parempia kuin uusinta tekniikkaa edustavat tulokset, ne ovat kuitenkin vielä riittämättömiä reaalimaailman sovelluksissa tarvittavaan suorituskykyyn. Sen takia edistääksemme uusien robustien kasvontunnistuksen huijaamisen ilmaisumenetelmien kehittämistä kokosimme uuden, haasteellisen huijauksenestotietokannan käyttäen kuutta kameraa kolmessa erilaisessa valaistus- ja ympäristöolosuhteessa. Järjestimme keräämällämme tietokannalla myös kansainvälisen kilpailun, jossa arvioitiin ja verrattiin neljäätoista kasvontunnistuksen huijaamisen ilmaisumenetelmää
DOMECH, GUILLERMO ESTRADA. "AN ASSESSMENT OF PRESENTATION ATTACK DETECTION METHODS FOR FACE RECOGNITION SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35526@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
As vulnerabilidades dos Sistemas de Reconhecimento Facial (FRS) aos Ataques de Apresentação (PA) foram recentemente reconhecidas pela comunidade biométrica, mas ainda existe a falta de técnicas faciais de Detecção de Ataque de Apresentação (PAD) baseadas em software que apresentam desempenho robusto em cenários de autenticação realistas. O objetivo principal desta dissertação é analisar, avaliar e comparar alguns dos métodos baseados em atributos do estado-da-arte para PAD facial em uma variedade de condições, considerando três dos bancos de dados de fraude facial publicamente disponíveis 3DMAD, REPLAY-MOBILE e OULU-NPU. No presente trabalho, os métodos de PAD baseados em descritores de texturas LBP-RGB, BSIF-RGB e IQM foram investigados. Ademais, um Autoencoder Convolucional (CAE), um descritor de atributos aprendidos, também foi implementado e avaliado. Também, abordagens de classificação de uma e duas classes foram implementadas e avaliadas. Os experimentos realizados neste trabalho foram concebidos para medir o desempenho de diferentes esquemas de PAD em duas condições: (i) intra-banco de dados e (ii) inter-banco de dados. Os resultados revelaram que a eficácia dos atributos aprendidos pelo CAE em esquemas de PAD baseados na abordagem de classificação de duas classes fornece, em geral, o melhor desempenho em protocolos de avaliação intra-banco de dados. Os resultados também indicam que os esquemas de PAD baseados na abordagem de classificação de uma classe não são inferiores em comparação às suas contrapartes de duas classes nas avaliações inter-banco de dados.
The vulnerabilities of Face Recognition Systems (FRS) to Presentation Attacks (PA) have been recently recognized by the biometric community, but there is still a lack of generalized software-based facial Presentation Attack Detection (PAD) techniques that perform robustly in realistic authentication scenarios. The main objective of this dissertation is to analyze, evaluate and compare some of the most relevant, state-of-the-art feature-based methods for facial PAD in a variety of conditions, considering three of the facial spoofing databases publicly available 3DMAD, REPLAYMOBILE and OULU-NPU. In the current work, PAD methods based on LBP-RGB, BSIF-RGB and IQM hand-crafted texture descriptors were investigated. Additionally, a Convolutional Autoencoder (CAE), a learned feature descriptor, was also implemented and evaluated. Furthermore, oneclass and two-class classification approaches were implemented and evaluated. The experiments conducted in this work were designed to measure the performance of different PAD schemes in two conditions, namely: (i) intradatabase and (ii) inter-database (or cross-database). The results revealed the effectiveness of the features learned by CAE in two-class classification PAD schemes provide, in general, the best performance in intra-database evaluation protocols. The results also indicate that PAD schemes based on one-class classification approach are not inferior as compared to their twoclass counterpart in the inter-database evaluations.
Öberg, Fredrik. "Investigation on how presentation attack detection can be used to increase security for face recognition as biometric identification : Improvements on traditional locking system." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42294.
Повний текст джерелаKomulainen, J. (Jukka). "Software-based countermeasures to 2D facial spoofing attacks." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208732.
Повний текст джерелаTiivistelmä Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa. Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla. Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta. Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia. Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot
Jezequel, Loïc. "Vers une détection d'anomalie unifiée avec une application à la détection de fraude." Electronic Thesis or Diss., CY Cergy Paris Université, 2023. http://www.theses.fr/2023CYUN1190.
Повний текст джерелаDetecting observations straying apart from a baseline case is becoming increasingly critical in many applications. It is found in fraud detection, medical imaging, video surveillance or even in manufacturing defect detection with data ranging from images to sound. Deep anomaly detection was introduced to tackle this challenge by properly modeling the normal class, and considering anything significantly different as anomalous. Given the anomalous class is not well-defined, classical binary classification will not be suitable and lack robustness and reliability outside its training domain. Nevertheless, the best-performing anomaly detection approaches still lack generalization to different types of anomalies. Indeed, each method is either specialized on high-scale object anomalies or low-scale local anomalies.In this context, we first introduce a more generic one-class pretext-task anomaly detector. The model, named OC-MQ, computes an anomaly score by learning to solve a complex pretext task on the normal class. The pretext task is composed of several sub-tasks allowing it to capture a wide variety of visual cues. More specifically, our model is made of two branches each representing discriminative and generative tasks.Nevertheless, an additional anomalous dataset is in reality often available in many applications and can provide harder edge-case anomalous examples. In this light, we explore two approaches for outlier-exposure. First, we generalize the concept of pretext task to outlier-exposure by dynamically learning the pretext task itself with normal and anomalous samples. We propose two the models SadTPS and SadRest that respectively learn a discriminative pretext task of thin plate transform recognition and generative task of image restoration. In addition, we present a new anomaly-distance model SadCLR, where the training of previously unreliable anomaly-distance models is stabilized by adding contrastive regularization on the representation direction. We further enrich existing anomalies by generating several types of pseudo-anomalies.Finally, we extend the two previous approaches to be usable in both one-class and outlier-exposure setting. Firstly, we introduce the AnoMem model which memorizes a set of multi-scale normal prototypes by using modern Hopfield layers. Anomaly distance estimators are then fitted on the deviations between the input and normal prototypes in a one-class or outlier-exposure manner. Secondly, we generalize learnable pretext tasks to be learned only using normal samples. Our proposed model HEAT adversarially learns the pretext task to be just challenging enough to keep good performance on normal samples, while failing on anomalies. Besides, we choose the recently proposed Busemann distance in the hyperbolic Poincaré ball model to compute the anomaly score.Extensive testing was conducted for each proposed method, varying from coarse and subtle style anomalies to a fraud detection dataset of face presentation attacks with local anomalies. These tests yielded state-of-the-art results, showing the significant success of our methods
Giunta, Alberto. "Implementazione e analisi comparativa di tecniche di Face Morphing Detection." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17029/.
Повний текст джерелаScherhag, Ulrich Johannes [Verfasser], Dieter W. [Akademischer Betreuer] Fellner, Christoph [Akademischer Betreuer] Busch, and Raymond N. J. [Akademischer Betreuer] Veldhuis. "Face Morphing and Morphing Attack Detection / Ulrich Johannes Scherhag ; Dieter W. Fellner, Christoph Busch, Raymond N. J. Veldhuis." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1230062467/34.
Повний текст джерелаFalade, Joannes Chiderlos. "Identification rapide d'empreintes digitales, robuste à la dissimulation d'identité." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC231.
Повний текст джерелаBiometrics are increasingly used for identification purposes due to the close relationship between the person and their identifier (such as fingerprint). We focus this thesis on the issue of identifying individuals from their fingerprints. The fingerprint is a biometric data widely used for its efficiency, simplicity and low cost of acquisition. The fingerprint comparison algorithms are mature and it is possible to obtain in less than 500 ms a similarity score between a reference template (enrolled on an electronic passport or database) and an acquired template. However, it becomes very important to check the identity of an individual against an entire population in a very short time (a few seconds). This is an important issue due to the size of the biometric database (containing a set of individuals of the order of a country). Thus, the first part of the subject of this thesis concerns the identification of individuals using fingerprints. Our topic focuses on the identification with N being at the scale of a million and representing the population of a country for example. Then, we use classification and indexing methods to structure the biometric database and speed up the identification process. We have implemented four identification methods selected from the state of the art. A comparative study and improvements were proposed on these methods. We also proposed a new fingerprint indexing solution to perform the identification task which improves existing results. A second aspect of this thesis concerns security. A person may want to conceal their identity and therefore do everything possible to defeat the identification. With this in mind, an individual may provide a poor quality fingerprint (fingerprint portion, low contrast by lightly pressing the sensor...) or provide an altered fingerprint (impression intentionally damaged, removal of the impression with acid, scarification...). It is therefore in the second part of this thesis to detect dead fingers and spoof fingers (silicone, 3D fingerprint, latent fingerprint) used by malicious people to attack the system. In general, these methods use machine learning techniques and deep learning. Secondly, we proposed a new presentation attack detection solution based on the use of statistical descriptors on the fingerprint. Thirdly, we have also build three presentation attacks detection workflow for fake fingerprint using deep learning. Among these three deep solutions implemented, two come from the state of the art; then the third an improvement that we propose. Our solutions are tested on the LivDet competition databases for presentation attack detection
Pancisi, Emanuele. "Riconoscimento di volti morphed: un approccio basato su Deep Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23154/.
Повний текст джерелаNóbrega, Murilo Leite. "Explainable and Interpretable Face Presentation Attack Detection Methods." Master's thesis, 2021. https://hdl.handle.net/10216/139294.
Повний текст джерелаКниги з теми "Face presentation attack detection"
Wan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. Multi-Modal Face Presentation Attack Detection. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01824-4.
Повний текст джерелаWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. Advances in Face Presentation Attack Detection. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32906-7.
Повний текст джерелаLi, Stan Z., Escalera, Jun Wan, Guodong Guo, and Hugo Jair Escalante. Multi-Modal Face Presentation Attack Detection. Morgan & Claypool Publishers, 2020.
Знайти повний текст джерелаLi, Stan Z., Jun Wan, Sergio Escalera, Guodong Guo, and Hugo Jair Escalante. Multi-Modal Face Presentation Attack Detection. Springer International Publishing AG, 2020.
Знайти повний текст джерелаLi, Stan Z., Escalera, Jun Wan, Guodong Guo, and Hugo Jair Escalante. Multi-Modal Face Presentation Attack Detection. Morgan & Claypool Publishers, 2020.
Знайти повний текст джерелаLi, Stan Z., Jun Wan, Sergio Escalera, Guodong Guo, and Hugo Jair Escalante. Multi-Modal Face Presentation Attack Detection. Morgan & Claypool Publishers, 2020.
Знайти повний текст джерелаNicholas, Evans. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection. Springer, 2019.
Знайти повний текст джерелаNicholas, Evans. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection and Vulnerability Assessment. Springer, 2023.
Знайти повний текст джерелаЧастини книг з теми "Face presentation attack detection"
Wan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. "Review of Participants’ Methods." In Multi-Modal Face Presentation Attack Detection, 19–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01824-4_3.
Повний текст джерелаWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. "Conclusions and Future Works." In Multi-Modal Face Presentation Attack Detection, 59–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01824-4_5.
Повний текст джерелаWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. "Challenge Results." In Multi-Modal Face Presentation Attack Detection, 37–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01824-4_4.
Повний текст джерелаHernandez-Ortega, Javier, Julian Fierrez, Aythami Morales, and Javier Galbally. "Introduction to Face Presentation Attack Detection." In Handbook of Biometric Anti-Spoofing, 187–206. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92627-8_9.
Повний текст джерелаWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. "Face Presentation Attack Detection (PAD) Challenges." In Synthesis Lectures on Computer Vision, 17–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32906-7_2.
Повний текст джерелаBhattacharjee, Sushil, Amir Mohammadi, André Anjos, and Sébastien Marcel. "Recent Advances in Face Presentation Attack Detection." In Handbook of Biometric Anti-Spoofing, 207–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92627-8_10.
Повний текст джерелаKomulainen, Jukka, Zinelabidine Boulkenafet, and Zahid Akhtar. "Review of Face Presentation Attack Detection Competitions." In Handbook of Biometric Anti-Spoofing, 291–317. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92627-8_14.
Повний текст джерелаYu, Zitong, Jukka Komulainen, Xiaobai Li, and Guoying Zhao. "Review of Face Presentation Attack Detection Competitions." In Handbook of Biometric Anti-Spoofing, 287–336. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5288-3_12.
Повний текст джерелаLiu, Yaojie, Joel Stehouwer, Amin Jourabloo, Yousef Atoum, and Xiaoming Liu. "Presentation Attack Detection for Face in Mobile Phones." In Selfie Biometrics, 171–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26972-2_8.
Повний текст джерелаLiu, Si-Qi, and Pong C. Yuen. "Recent Progress on Face Presentation Attack Detection of 3D Mask Attack." In Handbook of Biometric Anti-Spoofing, 231–59. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5288-3_10.
Повний текст джерелаТези доповідей конференцій з теми "Face presentation attack detection"
Denisova, Anna. "An improved simple feature set for face presentation attack detection." In WSCG'2022 - 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2022. Západočeská univerzita, 2022. http://dx.doi.org/10.24132/csrn.3201.3.
Повний текст джерелаNandy, Anubhab, and Satish Kumar Singh. "Face Spoofing and Presentation Attack Detection." In 2022 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE, 2022. http://dx.doi.org/10.1109/aic55036.2022.9848980.
Повний текст джерелаFang, Hao, Ajian Liu, Jun Wan, Sergio Escalera, Hugo Jair Escalante, and Zhen Lei. "Surveillance Face Presentation Attack Detection Challenge." In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2023. http://dx.doi.org/10.1109/cvprw59228.2023.00677.
Повний текст джерелаBaweja, Yashasvi, Poojan Oza, Pramuditha Perera, and Vishal M. Patel. "Anomaly Detection-Based Unknown Face Presentation Attack Detection." In 2020 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2020. http://dx.doi.org/10.1109/ijcb48548.2020.9304935.
Повний текст джерелаDamer, Naser, and Kristiyan Dimitrov. "Practical View on Face Presentation Attack Detection." In British Machine Vision Conference 2016. British Machine Vision Association, 2016. http://dx.doi.org/10.5244/c.30.112.
Повний текст джерелаSanghvi, Nilay, Sushant Kumar Singh, Akshay Agarwal, Mayank Vatsa, and Richa Singh. "MixNet for Generalized Face Presentation Attack Detection." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412123.
Повний текст джерела"Face Presentation Attack Detection via Spatiotemporal Autoencoder." In 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302402.
Повний текст джерелаNowara, Ewa Magdalena, Ashutosh Sabharwal, and Ashok Veeraraghavan. "PPGSecure: Biometric Presentation Attack Detection Using Photopletysmograms." In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017. http://dx.doi.org/10.1109/fg.2017.16.
Повний текст джерелаMirzaalian, Hengameh, Mohamed E. Hussein, Leonidas Spinoulas, Jonathan May, and Wael Abd-Almageed. "Explaining Face Presentation Attack Detection Using Natural Language." In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021). IEEE, 2021. http://dx.doi.org/10.1109/fg52635.2021.9667024.
Повний текст джерелаAgarwal, Akshay, Akarsha Sehwag, Richa Singh, and Mayank Vatsa. "Deceiving Face Presentation Attack Detection via Image Transforms." In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). IEEE, 2019. http://dx.doi.org/10.1109/bigmm.2019.00018.
Повний текст джерела