Добірка наукової літератури з теми "Fabrication additive (FDM)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fabrication additive (FDM)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fabrication additive (FDM)":

1

Stöckli, Fritz, Fabio Modica, and Kristina Shea. "Designing passive dynamic walking robots for additive manufacture." Rapid Prototyping Journal 22, no. 5 (August 15, 2016): 842–47. http://dx.doi.org/10.1108/rpj-11-2015-0170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose Ongoing research in computational design synthesis of passive dynamic systems aims to automatically generate robotic configurations based on a given task. However, an automated design-to-fabrication process also requires a flexible fabrication method. This paper aims to explore designing and fabricating passive dynamic walking robots and all necessary components using single-material fused deposition modeling (FDM). Being able to fabricate all components of a robot using FDM is a step toward the goal of automated design and fabrication of passive dynamic robots. Design/methodology/approach Two different configurations of passive dynamic walking robots are re-designed to be fabricated using FDM. Different robotic joint assemblies are designed and tested. To arrive at feasible solutions, a modular design approach is chosen and adjustability of components after printing is integrated in the design. Findings The suitability of FDM for printing passive dynamic robots is shown to depend heavily on the sensitivity of the configuration. For one robot configuration, all components are printed in one job and only little assembly is needed after printing. For the second robot configuration, which has a more sensitive gait, a metal bearing is found to increase the performance substantially. Originality/value Printable, monolithic mechatronic systems require multi-material printing, including electronics. In contrast, passive dynamic systems not only have the potential to save energy and component cost compared to actuated systems but can also be fabricated using single-material FDM as demonstrated in this paper.
2

Gutierrez, Cassie, Rudy Salas, Gustavo Hernandez, Dan Muse, Richard Olivas, Eric MacDonald, Michael D. Irwin, et al. "CubeSat Fabrication through Additive Manufacturing and Micro-Dispensing." International Symposium on Microelectronics 2011, no. 1 (January 1, 2011): 001021–27. http://dx.doi.org/10.4071/isom-2011-tha4-paper3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fabricating entire systems with both electrical and mechanical content through on-demand 3D printing is the future for high value manufacturing. In this new paradigm, conformal and complex shapes with a diversity of materials in spatial gradients can be built layer-by-layer using hybrid Additive Manufacturing (AM). A design can be conceived in Computer Aided Design (CAD) and printed on-demand. This new integrated approach enables the fabrication of sophisticated electronics in mechanical structures by avoiding the restrictions of traditional fabrication techniques, which result in stiff, two dimensional printed circuit boards (PCB) fabricated using many disparate and wasteful processes. The integration of Additive Manufacturing (AM) combined with Direct Print (DP) micro-dispensing and robotic pick-and-place for component placement can 1) provide the capability to print-on-demand fabrication, 2) enable the use of micron-resolution cavities for press fitting electronic components and 3) integrate conductive traces for electrical interconnect between components. The fabrication freedom introduced by AM techniques such as stereolithography (SL), ultrasonic consolidation (UC), and fused deposition modeling (FDM) have only recently been explored in the context of electronics integration and 3D packaging. This paper describes a process that provides a novel approach for the fabrication of stiff conformal structures with integrated electronics and describes a prototype demonstration: a volumetrically-efficient sensor and microcontroller subsystem scheduled to launch in a CubeSat designed with the CubeFlow methodology.
3

Georgopoulou, Antonia, Lukas Egloff, Bram Vanderborght, and Frank Clemens. "A Sensorized Soft Pneumatic Actuator Fabricated with Extrusion-Based Additive Manufacturing." Actuators 10, no. 5 (May 10, 2021): 102. http://dx.doi.org/10.3390/act10050102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Soft pneumatic actuators with a channel network (pneu-net) based on thermoplastic elastomers are compatible with fused deposition modeling (FDM). However, conventional filament-based fused deposition modeling (FDM) printers are not well suited for thermoplastic elastomers with a shore hardness (Sh < 70A). Therefore, in this study, a pellet-based FDM printer was used to print pneumatic actuators with a shore hardness of Sh18A. Additionally, the method allowed the in situ integration of soft piezoresistive sensing elements during the fabrication. The integrated piezoresistive elements were based on conductive composites made of three different styrene-ethylene-butylene-styrene (SEBS) thermoplastic elastomers, each with a carbon black (CB) filler with a ratio of 1:1. The best sensor behavior was achieved by the SEBS material with a shore hardness of Sh50A. The dynamic and quasi-static sensor behavior were investigated on SEBS strips with integrated piezoresistive sensor composite material, and the results were compared with TPU strips from a previous study. Finally, the piezoresistive composite was used for the FDM printing of soft pneumatic actuators with a shore hardness of 18 A. It is worth mentioning that 3 h were needed for the fabrication of the soft pneumatic actuator with an integrated strain sensing element. In comparison to classical mold casting method, this is faster, since curing post-processing is not required and will help the industrialization of pneumatic actuator-based soft robotics.
4

Cuan-Urquizo, Enrique, Mario Martínez-Magallanes, Saúl E. Crespo-Sánchez, Alfonso Gómez-Espinosa, Oscar Olvera-Silva, and Armando Roman-Flores. "Additive manufacturing and mechanical properties of lattice-curved structures." Rapid Prototyping Journal 25, no. 5 (June 10, 2019): 895–903. http://dx.doi.org/10.1108/rpj-11-2018-0286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose The purpose of this paper is to study the feasibility of the fabrication of circle arc curved-layered structures via conventional fused deposition modeling (FDM) with three-axis machines and to identify the main structural parameters that have an influence on their mechanical properties. Design/methodology/approach Customized G-codes were generated via a script developed in MATLAB. The G-codes contain nozzle trajectories with displacements in the three axes simultaneously. Using these, the samples were fabricated with different porosities, and their influence on the mechanical responses evaluated via tensile testing. The load-displacement curves were analyzed to understand the structure-property relationship. Findings Circled arc curved-layered structures were successfully fabricated with conventional three-axis FDM machines. The response of these curved lattice structures under tensile loads was mapped to three main stages and deformation mechanisms, namely, straightening, stretching and fracture. The micro-structure formed by the transverse filaments affect the first stage significantly and the other two minimally. The main parameters that affect the structural response were found to be the transverse filaments, as these could behave as hinges, allowing the slide/rotation of adjacent layers and making the structure more shear sensitive. Research limitations/implications This paper was restricted to arc-curved samples fabricated with conventional three-axis FDM machines. Originality/value The FDM fabrication of curved-structures with controlled porosity and their relation to the resulting mechanical properties is presented here for the first time. The study of curved-lattice structures is of great relevance in various areas, such as biomedical, architecture and aerospace.
5

Wang, Shushu, Rakshith Badarinath, El-Amine Lehtihet, and Vittaldas Prabhu. "Evaluation of Additive Manufacturing Processes in Fabrication of Personalized Robot." International Journal of Automation Technology 11, no. 1 (January 5, 2017): 29–37. http://dx.doi.org/10.20965/ijat.2017.p0029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Customer participation in the design stage of creating personalized products is increasing. Additive manufacturing (AM) has become a popular enabler of personalization. In this study, we evaluate the fabrication of an open-source robot arm in terms of cost, build time, dimensional and locational accuracy, end-effector accuracy, and mechanical properties. The mechanical components of the table-top robot were fabricated using two different AM processes of fused deposition modeling (FDM) and material jetting (polymer jetting or PolyJet). A reduction of infill density by 50% in the FDM process slightly decreased the building time, material cost, and tensile strength, but induced a 95% reduction in yield strength. A simulation of the mechanical assembly using the CAD models for the robot and the expected tolerances of the components estimated the end-effector positioning accuracy as 0.01–0.22 mm. The 3D printed robot arm was redesigned and fabricated using the best evaluated process in this study.
6

T., Sathies, Senthil P., and Anoop M.S. "A review on advancements in applications of fused deposition modelling process." Rapid Prototyping Journal 26, no. 4 (January 30, 2020): 669–87. http://dx.doi.org/10.1108/rpj-08-2018-0199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM. Design/methodology/approach In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated. Findings The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity. Originality/value This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.
7

Hu, Xueling, Alix Marcelle Sansi Seukep, Velmurugan Senthooran, Lixin Wu, Lei Wang, Chen Zhang, and Jianlei Wang. "Progress of Polymer-Based Dielectric Composites Prepared Using Fused Deposition Modeling 3D Printing." Nanomaterials 13, no. 19 (October 6, 2023): 2711. http://dx.doi.org/10.3390/nano13192711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polymer-based dielectric composites are of great importance in advanced electronic industries and energy storage because of their high dielectric constant, good processability, low weight, and low dielectric loss. FDM (Fused Deposition Modeling) is a greatly accessible additive manufacturing technology, which has a number of applications in the fabrication of RF components, but the unavoidable porosity in FDM 3D-printed materials, which affects the dielectric properties of the materials, and the difficulty of large-scale fabrication of composites by FDM limit its application scope. This study’s main focus is on how the matrix, filler, interface, and FDM 3D printing parameters influence the electrical properties of FDM-printed polymer-based dielectric composites. This review article starts with the fundamental theory of dielectrics. It is followed by a summary of the factors influencing dielectric properties in recent research developments, as well as a projection for the future development of FDM-prepared polymer-based dielectric composites. Finally, improving the comprehensive performance of dielectric composites is an important direction for future development.
8

Raju, Suresh. "Evaluating Impact of Different Parameters in Additive Manufacturing for Complex Situations." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (June 2, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem35274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM) has emerged as an effective method for fabricating parts with internal complex features. However, optimizing process parameters to achieve desired mechanical properties for such complex geometries remains a challenge. This research aims to systematically evaluate the influence of AM process parameters on the tensile strength of PLA plus specimens containing a rectangular channel integrated inside the gauge section. A Taguchi L9 orthogonal design of experiments was formulated with four control factors - printing temperature, layer height, wall line count and infill percentage. Tensile testing specimen of standard ASTM D638-Type I containing a rectangular channel of 1.5x5x50mm was printed on an FDM machine. Tensile testing determined the ultimate tensile strength and percentage of elongation as the response. Signal- to-noise ratio analysis revealed optimized levels as 210°C, 0.20mm, 3 wall lines and 100% infill. Tensile testing of specimens printed at these conditions yielded average UTS of 34.58 MPa. Adopting Taguchi methodology, this study aims to improve understanding of interplay between key AM parameters and mechanical properties for PLA plus specimens with complex internal geometry. Optimized settings aid quality fabrication of functionally graded parts with intricate designs using this sustainable FDM material. Statistical design of experiments serves as an efficient evaluation approach. Key Words: Additive Manufacturing, Fused Deposition Modelling, PLA, Tensile Test Specimen
9

Laban, Othman, Elsadig Mahdi, Samahat Samim, and John-John Cabibihan. "A Comparative Study between Polymer and Metal Additive Manufacturing Approaches in Investigating Stiffened Hexagonal Cells." Materials 14, no. 4 (February 12, 2021): 883. http://dx.doi.org/10.3390/ma14040883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent polymer and metal additive manufacturing technologies were proven capable of building complex structures with high accuracy. Although their final products differ significantly in terms of mechanical properties and building cost, many structural optimization studies were performed with either one without systematic justification. Therefore, this study investigated whether the Direct Metal Laser Sintering (DMLS) and Fused Deposition Modelling (FDM) methodologies can provide similar conclusions when performing geometrical manipulations for optimizing structural crashworthiness. Two identical sets of four shapes of stiffened hexagonal cells were built and crushed under quasi-static loading. The results were compared in terms of collapsing behavior, load-carrying performance, and energy-absorption capability. Although the observed failure modes were different since the base-materials differ, similar improvement trends in performance were observed between both fabrication approaches. Therefore, FDM was recommended as a fabrication method to optimize thin-walled cellular hexagonal parameters since it was 80% more time-efficient and 53.6% cheaper than the DMLS technique.
10

Paterson, Abby Megan, Richard Bibb, R. Ian Campbell, and Guy Bingham. "Comparing additive manufacturing technologies for customised wrist splints." Rapid Prototyping Journal 21, no. 3 (April 20, 2015): 230–43. http://dx.doi.org/10.1108/rpj-10-2013-0099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose – The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting. Design/methodology/approach – This paper describes the design characteristics and subsequent fabrication of six different wrist splints using four different AM processes: laser sintering (LS), fused deposition modelling (FDM), stereolithography (SLA) and polyjet material jetting via Objet Connex. The suitability of each process was then compared against competing designs and processes from traditional splinting. The splints were created using a digital design workflow that combined recognised clinical best practice with design for AM principles. Findings – Research concluded that, based on currently available technology, FDM was considered the least suitable AM process for upper extremity splinting. LS, SLA and material jetting show promise for future applications, but further research and development into AM processes, materials and splint design optimisation is required if the full potential is to be realised. Originality/value – Unlike previous work that has applied AM processes to replicate traditional splint designs, the splints described are based on a digital design for AM workflow, incorporating novel features and physical properties not previously possible in clinical splinting. The benefits of AM for customised splint fabrication have been summarised. A range of AM processes have also been evaluated for splinting, exposing the limitations of existing technology, demonstrating novel and advantageous design features and opportunities for future research.

Дисертації з теми "Fabrication additive (FDM)":

1

Ahmadifar, Mohammad. "Etude de la rhéologie des composites polymères au cours du procédé FDM (Fabrication additive)." Thesis, Paris, HESAM, 2021. http://www.theses.fr/2021HESAE072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM) is a novel technology that enables rapid fabrication of physical models directly from 3D computer-aided design (CAD) data without any conventional tooling or programming requirement. Thermoplastic polymers are the most useful materials for the manufacturing of parts in the FFF process. In this process, extrusion of a semi-molten road through a nozzle is taken place to form each layer, the extruded road solidifies quickly due to the existence of temperature gradient between the surroundings and the extrusion temperature. Different key parameters affect the final products manufactured by this process. These parameters can be listed in three categories. Some of them are linked to the material, others are linked either to the characteristics of the process or to the specificity of the machine. They can influence the properties of the final part through their effect on various physical phenomena. The mentioned parameters affect the polymer temperature and its evolution. It is important to know the evolution of filaments temperature with time and recognize how it is affected by major process variables as mentioned. Due to the nature of the FFF process, it is important to measure the temperature profile and its evolution during the process by the means of local measurement methods. The idea of this work took place in 2018, by start reviewing literatures related to the FFF process. As mentioned, almost all studies and works either numerical or experimental approaches were based on global consideration. In the beginning, the work was concentrated on finding a method to be applied to the FFF process to proceed with the localized investigation. Afterward, the experiment was started to see the possibility of the work. As in the FFF process, there is a deposition of filaments, and each filament itself is heated by the deposition of newer filaments, there is almost a cyclic evolution of the temperature due to multi-layer d eposition and it means that each filament is re-heated consequently because of the deposition of a new filament. This is a critical issue in creating a filament bonding and diffusion of materials. To implement and measure this cyclic temperature, it is required to apply a measurement device in which to be capable of measuring the temperature of the polymer when leaving the nozzle. One can note that the mechanical properties of 3d-printed pieces are limited. In this work, we try to improve the mechanical properties by reinforcing the fibers such as glass fibers, carbon fibers, etc. At the same time by controlling the temperature evolution, we try to improve the adhesion between the layers to have the best structure. The used material as raw material was polyamide-6 (PA6). The main objective of this research is to study the rheological characteristics of materials during FDM/FFF to process optimization for mechanical characterization improvement of the fabricated parts. Therefore, the main objective is to take into account both the temperature and viscosity parameters, and to establish the Time-Temperature-Transformation diagram for process optimization. This helps to determine the processability area
Additive manufacturing (AM) is a novel technology that enables rapid fabrication of physical models directly from 3D computer-aided design (CAD) data without any conventional tooling or programming requirement. Thermoplastic polymers are the most useful materials for the manufacturing of parts in the FFF process. In this process, extrusion of a semi-molten road through a nozzle is taken place to form each layer, the extruded road solidifies quickly due to the existence of temperature gradient between the surroundings and the extrusion temperature. Different key parameters affect the final products manufactured by this process. These parameters can be listed in three categories. Some of them are linked to the material, others are linked either to the characteristics of the process or to the specificity of the machine. They can influence the properties of the final part through their effect on various physical phenomena. The mentioned parameters affect the polymer temperature and its evolution. It is important to know the evolution of filaments temperature with time and recognize how it is affected by major process variables as mentioned. Due to the nature of the FFF process, it is important to measure the temperature profile and its evolution during the process by the means of local measurement methods. The idea of this work took place in 2018, by start reviewing literatures related to the FFF process. As mentioned, almost all studies and works either numerical or experimental approaches were based on global consideration. In the beginning, the work was concentrated on finding a method to be applied to the FFF process to proceed with the localized investigation. Afterward, the experiment was started to see the possibility of the work. As in the FFF process, there is a deposition of filaments, and each filament itself is heated by the deposition of newer filaments, there is almost a cyclic evolution of the temperature due to multi-layer d eposition and it means that each filament is re-heated consequently because of the deposition of a new filament. This is a critical issue in creating a filament bonding and diffusion of materials. To implement and measure this cyclic temperature, it is required to apply a measurement device in which to be capable of measuring the temperature of the polymer when leaving the nozzle. One can note that the mechanical properties of 3d-printed pieces are limited. In this work, we try to improve the mechanical properties by reinforcing the fibers such as glass fibers, carbon fibers, etc. At the same time by controlling the temperature evolution, we try to improve the adhesion between the layers to have the best structure. The used material as raw material was polyamide-6 (PA6). The main objective of this research is to study the rheological characteristics of materials during FDM/FFF to process optimization for mechanical characterization improvement of the fabricated parts. Therefore, the main objective is to take into account both the temperature and viscosity parameters, and to establish the Time-Temperature-Transformation diagram for process optimization. This helps to determine the processability area
2

Coe, Edward Olin. "Printing on Objects: Curved Layer Fused Filament Fabrication on Scanned Surfaces with a Parallel Deposition Machine." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Consumer additive manufacturing (3D printing) has rapidly grown over the last decade. While the technology for the most common type, Fused Filament Fabrication (FFF), has systematically improved and sales have increased, fundamentally, the capabilities of the machines have remained the same. FFF printers are still limited to depositing layers onto a flat build plate. This makes it difficult to combine consumer AM with other objects. While consumer AM promises to allow us to customize our world, the reality has fallen short. The ability to directly modify existing objects presents numerous possibilities to the consumer: personalization, adding functionality, improving functionality, repair, and novel multi-material manufacturing processes. Indeed, similar goals for industrial manufacturing drove the research and development of technologies like direct write and directed energy deposition which can deposit layers onto uneven surfaces. Replicating these capabilities on consumer 3-axis FFF machines is difficult mainly due to issues with reliability, repeatability, and quality. This thesis proposes, demonstrates, and tests a method for scanning and printing dimensionally-accurate (unwarped) digital forms onto physical objects using a modified consumer-grade 3D printer. It then provides an analysis of the machine design considerations and critical process parameters.
Master of Science
3

Hayagrivan, Vishal. "Additive manufacturing : Optimization of process parameters for fused filament fabrication." Thesis, KTH, Lättkonstruktioner, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An obstacle to the wide spread use of additive manufacturing (AM) is the difficulty in estimating the effects of process parameters on the mechanical properties of the manufactured part. The complex relationship between the geometry, parameters and mechanical properties makes it impractical to derive an analytical relationship and calls for the use of a numerical model. An approach to formulate a numerical model in developed in this thesis. The AM technique focused in this thesis is fused filament fabrication (FFF). A numerical model is developed by recreating FFF build process in a simulation environment. Machine instructions generated by a slicer to build a part is used to create a numerical model. The model acts as a basis to determine the effects of process parameters on the stiffness and the strength of a part. Determining the stiffness of the part is done by calculating the response of the model to a uniformly distributed load. The strength of the part depends on it's thermal history. The developed numerical model serves as a basis to implement models describing the relation between thermal history and strength. The developed model is suited to optimize FFF parameters as it encompass effects of all FFF parameters. A genetic algorithm is used to optimize the FFF parameters for minimum weight with a minimum stiffness constraint.
Ett hinder för att additiv tillverkning (AT), eller ”3D-printing”, ska få ett bredare genomslag är svårigheten att uppskatta effekterna av processparametrar på den tillverkade produktens mekaniska prestanda. Det komplexa förhållandet mellan geometri och processparametrar gör det opraktiskt och komplicerat att härleda analytiska uttryck för att förutsäga de mekaniska egenskaperna. Alternativet är att istället använda numeriska modeller. Huvudsyftet med denna avhandling har därför varit att utveckla en numerisk modell som kan användas för att förutsäga de mekaniska egenskaperna för detaljer tillverkade genom AT. AT-tekniken som avses är inriktad på Fused Filament Fabrication (FFF). En numerisk modell har utvecklats genom att återskapa FFF-byggprocessen i en simuleringsmiljö. Instruktioner (skriven i GCode) som används för att bygga en detalj genom FFF har här översatts till en numerisk FE-modell. Modellen används sen för att bestämma effekterna av processparametrar på styvheten och styrkan hos den tillverkade detaljen. I detta arbete har strukturstyvheten hos olika detaljer beräknats genom att utvärdera modellens svar för jämnt fördelade belastningsfall. Styrkan, vilket är starkt beroende på den tillverkade detaljens termiska historia, har inte utvärderats. Den utvecklade numeriska modellen kan dock fungera som underlag för implementering av modeller som beskriver relationen mellan termisk historia och styrka. Den utvecklade modellen är anpassad för optimering av FFF-parametrar då den omfattar effekterna av alla FFF-parametrar. En genetisk algoritm har använts i detta arbete för att optimera parametrarna med avseende på vikt för en given strukturstyvhet.
4

Palmer, Andrew. "The Design and Development of an Additive Fabrication Process and Material Selection Tool." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the Manufacturing Industry there is a subset of technologies referred to as Rapid Technologies which are those technologies that create the ability to compress the time to market for new products under development . Of this subset, Additive Fabrication (AF), or more commonly known as Rapid Prototyping (RP), acquires much attention due to its unique and futuristic approach to the production of physical parts directly from 3D CAD data, CT or MRI scans, or data from laser scanning systems by utilizing various techniques to consecutively generate cross-sectional layers of a given thickness upon the previous layer to form 3D objects. While Rapid Prototyping is the most common name for the production technology it is also referred to as Additive Manufacturing, Layer Based Manufacturing, Direct Digital Manufacturing, Free-Form Fabrication, and 3-Dimensional Printing. With over 35 manufacturers of Additive Fabrication equipment in 2006 , the selection of an AF process and material for a specific application can become a significant task, especially for those with little or no technical experience with the technology and to add to this challenge, many of the various processes have multiple material options to select from . This research was carried out in order to design and construct a system that would allow a person, regardless of their level of technical knowledge, to quickly and easily filter through the large number of Additive Fabrication processes and their associated materials in order to find the most appropriate processes and material options to create physical reproductions of any part. The selection methodology used in this paper is a collection of assumptions and rules taken from the author's viewpoint of how, in real world terms, the selection process generally takes place between a consumer and a service provider. The methodology uses those assumptions in conjunction with a set of expert based rules to direct the user to a best set of qualifying processes and materials suited for their application based on as many or as few input fields the user may be able to complete.
M.S.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering MS
5

ANDERSSON, AXEL. "Automation of Fused Filament Fabrication : Realizing Small Batch Rapid Production." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this bachelor thesis, I examine how automation of fused filament fabrication (FFF) can be implemented, and what the limitations are for different kinds of automation solutions for FFF. Fused filament fabrication is a 3D-printing technology where a material is extruded through a nozzle, layer by layer, to create a print. The thesis also provides a calculation for the commercial feasibility of small batch rapid production with the implementation of an automation solution for FFF. The approach was a qualitative study containing five interviews, combined with empirical knowledge and data from the additive manufacturing company Svensson 3D. This was complemented with an analysis of which criteria to use when evaluating FFF automation solutions, and a framework for looking at FFF from an operator perspective. To calculate commercial feasibility of automation solutions for FFF, Internal Rate of Return and Payback Time were used. This resulted in six criteria to evaluate solutions for automation of FFF, three evaluations of problems within three solutions for automation of FFF, and a finding showing that small batch rapid production is commercially feasible with automated FFF. Lastly, the thesis contains a discussion regarding what the future is for FFF, and the limitations of the framework presented for evaluating automated FFF systems. Possible promising solutions for automated FFF are presented, together with ideas for how design for additive manufacturing can help shape the future of automated FFF.
I det här kandidatarbetet undersöker jag hur automatisering inom fused filament fabrication (FFF) kan implementeras, och vad begränsningarna är för olika sorters automatiseringslösningar för FFF. Det läggs även fram en uträkning för den kommersiella gångbarheten för small batch rapid production med implementeringen av ett automatiskt FFF-system. Tillvägagångsättet bestod av en kvalitativ studie baserad på fem intervjuer, kombinerad med empirisk kunskap och data från additiva tillverkningsföretaget Svensson 3D. Det här kompletterades med en analys av vilka parametrar som bör användas för att utvärdera lösningar för FFF-automatisering, och ett ramverk där automatiseringslösningarna betraktas ur ett operatörs-perspektiv. För att räkna ut den kommersiella gångbarheten för automatiseringslösningar av FFF användes internränta och återbetalningstid. Det här resulterade i sex parametrar för att utvärdera automatiseringslösningar för FFF, tre utvärderingar av vilka problem som finns i tre existerande automatiseringslösningar, och slutsatsen att small batch rapid production är kommersiellt gångbart för automatiserad FFF. Slutligen innehåller arbetet en diskussion gällande framtiden för FFF och begränsningarna hos det ramverk som presenterades för att utvärdera automatiserade FFF system. Möjliga lovande lösningar för automatiserad FFF presenteras och hur design för additiv tillverkning kan hjälpa till att forma framtiden för automatiserad FFF.
6

Prusic, André. "Perimeter." Thesis, KTH, Arkitektur, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The project explores the possibilities of using additive manufacturing (3d-printing) to build architecture. Through a combination of theoretical research and practical experiments a building system has been developed which has the capabilities to create houses with great geometric flexibilities to a affordable price today. The construction system Perimeter is demonstrated in a pavilion situated at Norra Djurgården in Stockholm.
Projektet undersöker möjligheterna att använda additiv tillverkning (3d-printning) för att bygga arkitekturen. Genom en kombination av teoretisk forskning och praktiska experiment har ett byggsystem utvecklats som har kapacitet att skapa hus med stora geometriska flexibilitet till ett överkomligt pris i dag. Konstruktionssystemet Perimeter demonstreras i en paviljong belägen på Norra Djurgården i Stockholm.
7

M'Bengue, Marie-Stella. "Conception et évaluation d'une endoprothèse vasculaire par impression 3D pour le traitement des anévrismes complexes de l'aorte abdominale." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILS057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La réparation endovasculaire (EVAR) d'un anévrisme de l'aorte abdominale (AAA) consiste en la mise en place d'une endoprothèse (EDP) par chirurgie mini-invasive au sein de l'anévrisme. Cet acte permet de prévenir la rupture des tissus endommagés impliqués dans un AAA, défini comme la dilatation localisée du diamètre de l'aorte. Lorsque l'amont de l'anévrisme englobe les artères périphériques rénales et/ou viscérales, l'AAA est qualifié de complexe. Dans ce cas, l'EDP déployée est dite « fenêtrée », en d'autres termes, perforée à l'emplacement des jonctions vers les artères périphériques. La prise en charge dans le cadre d'un AAA complexe devient alors plus limitante car l'EDP fenêtrée sera conçue sur mesure afin de correspondre à l'anatomie de l'anévrisme et à la position des artères périphériques du patient. Cela implique un délai de fabrication de plusieurs semaines, limite la prise en charge aux anévrismes stables et exclut les situations d'urgence. Dans ce contexte, l'impression 3D présente un intérêt considérable pour la fabrication d'EDP sur mesure et dans des délais très courts. Ainsi, l'objectif de ce travail de thèse est de concevoir un prototype d'endoprothèse par impression 3D d'un polyuréthane thermoplastique (TPU) de grade médical (élastomère thermoplastique). Le présent travail permettra de valider le procédé de conception et la fonctionnalité de notre 3D-EDP pour son application finale en tant que dispositif médical implantable.Dans un premier temps, l'impact du procédé de fabrication sur les propriétés chimiques, physiques et physico-chimiques du TPU a été étudié à chaque étape, des granulés à la stérilisation par rayons gamma d'une prothèse fabriquée par dépôt de filament fondu (FDM). L'évaluation préliminaire in vitro de la cytotoxicité et de l'hémocompatibilité du TPU a été réalisée après l'étape d'impression 3D et de stérilisation. Un vieillissement préliminaire du TPU en conditions oxydantes extrêmes a été réalisé afin de prédire l'évolution de ses propriétés sur le long terme. Par la suite, une stratégie de conception d'un prototype implantable par voie endovasculaire a été développée. Les propriétés de ce prototype stérilisé ont été caractérisées par différentes techniques (CES, ATG, DSC, FTIR, MEB, goniométrie, traction uniaxiale, …). Ses propriétés biologiques ont été évaluées in vitro par des tests de cytocompatibilité, hémocompatibilité et contact avec les macrophages pendant 24 heures (inflammation aigüe). L'évolution de ses propriétés physico-chimiques et mécaniques a été suivie par des études de vieillissement in vitro.La caractérisation des propriétés chimiques, physiques et physico-chimiques du TPU a montré que l'impression 3D FDM et la méthode de stérilisation par rayons gamma constituent une voie de fabrication viable d'un prototype comprimable dans un cathéter d'introduction endovasculaire. L'évaluation biologique in vitro a montré la cytotocompatibilité du prototype par la méthode de l'extrait. De plus, le prototype s'est révélé faiblement hémolytique et les plaquettes adhérant à sa surface n'étaient pas activées. La faible sécrétion de cytokines (IL-6 et TNF-a) au contact des macrophages inactivés a montré que le prototype d'EDP ne présente pas de caractère pro-inflammatoire. Enfin, les études de vieillissement ont montré un impact sur les propriétés mécaniques et de surface de notre prototype d'EDP sans toutefois compromettre sa fonctionnalité. Par la suite, la stratégie de conception pourrait évoluer vers une fonctionnalisation de l'EDP afin de prévenir les infections et les thromboses responsables respectivement de 2% et 6% des complications post-opératoires
Endovascular repair (EVAR) of an abdominal aortic aneurysm (AAA) involves the placement into the aneurysm of a stent graft (SG) by minimally invasive surgery. This procedure prevents rupture of the damaged tissue involved in an AAA, defined as a localized diameter dilation of the aorta. When the upstream portion of the aneurysm includes the peripheral renal and/or visceral arteries, the AAA is qualified as complex. In this case, the deployed SG is said “fenestrated”, in other words, perforated at the site of junctions to the peripheral arteries. Management of a complex AAA becomes more limiting as the fenestrated SG will be custom designed to match the anatomy of the aneurysm and the position of the peripheral arteries of the patient. This implies a manufacturing delay of several weeks, limits the management to stable aneurysms and excludes emergency situations. In this context, 3D printing (3DP) is of considerable interest for the fabrication of custom-made SGs in a very short time frame. Thus, the objective of this thesis work is to design a SG prototype by 3D printing of a medical grade thermoplastic polyurethane (TPU) (thermoplastic elastomer). The present work will validate the manufacturing process and the functionality of our 3DP-SG for its final application as an implantable medical device.First, the impact of the manufacturing process on the chemical, physical and physicochemical properties of TPU was studied at each step, from the pellets to the gamma-ray sterilization of a graft manufactured by fused filament deposition (FDM). In vitro preliminary evaluation of the cytotoxicity and hemocompatibility of TPU was carried out after the 3D printing and sterilization step. Aging of TPU under extreme oxidizing conditions was performed to predict the evolution of its properties in the long term. Subsequently, a design strategy for an endovascular implantable prototype was developed. The properties of said prototype were characterized by different techniques (SEC, TGA, DSC, FTIR, SEM, goniometry, uniaxial traction, ...). Its biological properties were evaluated in vitro by tests of cytocompatibility, hemocompatibility and contact with macrophages for 24 hours (acute inflammation). Moreover, the evolution of its physicochemical and mechanical properties was evaluated by in vitro aging studies.The characterization of the chemical, physical and physicochemical properties of TPU enabled the validation of a FDM printing manufacturing route and gamma ray sterilization of a crimpable SG prototype. The in vitro biological evaluation showed the non-cytotoxicity of the SG prototype by the extraction method. Moreover, the prototype was found to be weakly hemolytic and the platelets adhered on its surface were not activated. The low secretion of cytokines (IL-6 and TNF-α) upon contact with inactivated macrophages showed that the SG prototype does not exhibit a pro-inflammatory characteristic. Finally, aging studies showed an impact on the mechanical and surface properties of our SG prototype without compromising its functionality. Subsequently, the design strategy could evolve towards a functionalization of the SG prototype in order to prevent infections and thrombosis responsible for 2% and 6% of postoperative complications respectively
8

Muller, Pierre. "Fabrication additive de pièces multimatériaux." Phd thesis, Ecole centrale de nantes - ECN, 2013. http://tel.archives-ouvertes.fr/tel-00918030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les pièces multimatériaux à gradient fonctionnel (Functionally Graded Materials - FGM) sont des structures dont la composition et la microstructure du matériau changent graduellement à l'intérieur de la pièce. Cette distribution des matériaux permet de réaliser des gradients de propriétés au niveau mécanique, physique, chimique, etc. Les domaines d'application sont nombreux pour ces pièces, en particulier l'aérospatial et le biomédical mais également l'électronique, l'énergie nucléaire, la production d'outillage, le design, etc. L'utilisation des procédés innovants tels que les procédés de fabrication additive est indispensable pour la réalisation de pièces multimatériaux complexes. Bien que ces procédés aient les caractéristiques attendues pour la réalisation de pièces multimatériaux, on constate qu'aucune pièce fonctionnelle n'a encore été fabriquée à ce jour. Pour permettre la fabrication de pièces fonctionnelles, il est indispensable de proposer une méthodologie de fabrication complète permettant de passer de l'objet imaginé par le concepteur à la fabrication. Cette méthodologie doit comporter les étapes suivantes : description de la pièce à fabriquer, détermination d'une stratégie de fabrication adaptée et génération des instructions de fabrication. Parmi les étapes du processus de fabrication, celle de choix d'une stratégie de fabrication occupe une place importante. En effet, les caractéristiques de pièces - géométrie et répartition des matériaux - sont fortement dépendantes de la stratégie de fabrication choisie. Les travaux de thèse portent principalement sur les méthodes mises en place pour la détermination de trajectoires appropriées à la fabrication des pièces multimatériaux. Ces méthodes reposent sur la modélisation du procédé nécessaire à l'évaluation des stratégies et une optimisation du procédé permettant de diminuer les différences entre la répartition des matériaux souhaitée et celle fabriquée. Une des méthodes proposées permet d'obtenir automatiquement des trajectoires parfaitement adaptées aux pièces multimatériaux et repose sur la modélisation et l'optimisation du procédé. Ces travaux sont intégrés dans une méthodologie de fabrication de pièces multimatériaux. De plus, une maquette informatique a été développée pour mettre en avant les possibilités d'utilisation de cette méthodologie.
9

Abdelki, Andreas. "Fused deposition modeling of API-loaded mesoporous magnesium carbonate." Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this thesis, the incorporation of drug loaded mesoporous magnesium carbonate as an excipient for the additive manufacturing of oral tablets by fused deposition modeling was investigated. Cinnarizine, a BCS class II drug, was loaded into the pores of the mesoporous material via a soaking method, corresponding to a drug loading of 8.68 wt%. DSC measurements on the loaded material suggested that the drug was partially crystallized after incorporation, meanwhile the XRD diffractogram implied that the drug was in a state lacking long range order. The drug loaded material was combined with two pharmaceutical polymers, Aquasolve LG and Klucel ELF, and extruded into filaments with a single screw extruder. Filaments of Klucel ELF and drug loaded Upsalite (30:70 wt% ratio) were successfully implemented for the printing oral tablets, in contrast to the Aquasolve LG based filaments which were difficult to print due to thickness variations and non-uniform material distributions. The drug content obtained by TGA suggested drug loadings of 7.71 wt% and 2.23 wt% in the drug loaded Upsalite and tablets respectively. Dissolution studies using an USP II apparatus showed a slower API-release from the tablets in comparison to the crystalline drug, most probably due to slow diffusion of drug species through the polymeric matrix. For future studies, pharmaceutical polymers with higher aqueous solubility should be investigated in order to thoroughly examine the potential of utilizing the immediate release property of Upsalite.
10

Chen, Shuai. "Investigation of FEM numerical simulation for the process of metal additive manufacturing in macro scale." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI048/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La fabrication additive (FA) est devenue une nouvelle alternative pour la fabrication des pièces dans l'industrie. Cependant, il existe encore des limites pour ce procédé, en particulier la forme finale défavorable et les propriétés macroscopiques indésirables des pièces métalliques construites dans les systèmes de FA. La distorsion ou la fissure due à la contrainte résiduelle de ces pièces pose généralement de graves problèmes pour certains types de technologie de la FA métallique. Dans un système de FA, la qualité finale d'une pièce métallique dépend de nombreux paramètres de procédé, qui sont normalement optimisés par une série d'expériences sur des machines de FA. La simulation macroscopique dédiée au procédé de FA est une alternative potentielle pour les pièces métalliques fabriquées par la fabrication additive. Dans cette thèse, nous étudions d'abord le pré-processing de la simulation de FA par la méthode des éléments finis (FEM). Le procédé de fabrication additive est un phénomène multi-physique des champs couplés (champs thermique, mécanique et métallurgique). La simulation macroscopique est réalisée à deux niveaux différents. Au niveau de la couche, la reconstruction du modèle 3D est effectuée à partir du fichier de chemin de balayage de la machine de FA, basée sur la manipulation inverse de l'algorithme d'offsetting-clipping. Au niveau de la pièce, le modèle 3D de CAO est reconstruit dans un maillage des voxels, ce qui est pratique pour une pièce avec une géométrie complexe. Avec les températures de préchauffage différentes et les paramètres du procédé différents, la contrainte résiduelle d'une pièce est analysée. Ces simulations impliquent la technique potentielle pour réduire la contrainte résiduelle par l'optimisation des paramètres du procédé, au lieu de moyens traditionnels par augmenter la température de préchauffage. Basées sur la plateforme de simulation de FEM ci-dessus, deux simulations au niveau de ligne sont également étudiées dans cette thèse, visant à la relation entre le procédé de FA et la qualité finale de la pièce. Ces exemples démontrent la possibilité d'utiliser des simulations macroscopiques pour améliorer le contrôle de la qualité pendant le procédé de FA. Dans la première tâche, l'ensemble de données des paramètres de chauffage et la contrainte résiduelle sont générés par la simulation de FA. La corrélation entre eux est étudiée en utilisant des algorithmes de régression, tel que le réseau neuronal artificiel. Dans la deuxième tâche, un contrôleur de PID pour la boucle de rétroaction puissance-température est intégré dans la simulation de procédé de FA et l'auto-réglage de PID est numériquement étudié au lieu d'utiliser la machine de FA. Les deux tâches montrent le rôle important de la simulation de procédé macroscopique de FA, qui peut remplacer ou combiner les nombreuses expériences essai-erreur dans la fabrication additive métallique
Additive manufacturing (AM) has become a new option for the fabrication of metallic parts in industry. However, there are still some limitations for this application, especially the unfavourable final shape and undesired macroscopic properties of metallic parts built in AM systems. The distortion or crack due to the residual stress of these parts leads usually to severe problems for some kinds of metal AM technology. In an AM system, the final quality of a metallic part depends on many process parameters, which are normally optimized by a series of experiments on AM machines. In order to reduce the considerable time consumption and financial expense of AM experiments, the numerical simulation dedicated to AM process is a prospective alternative for metallic part fabricated by additive manufacturing. Because of the multi-scale character in AM process and the complex geometrical structures of parts, most of the academic researches in AM simulation concentrated on the microscopic melting pool. Consequently, the macroscopic simulation for the AM process of a metallic part becomes a current focus in this domain. In this thesis, we first study the pre-processing of AM simulation on Finite Element Method (FEM). The process of additive manufacturing is a multi-physics problem of coupled fields (thermal, mechanical, and metallurgical fields). The macroscopic simulation is conducted in two different levels with some special pre-processing work. For the layer level, the reconstruction of 3D model is conducted from the scan path file of AM machine, based on the inverse manipulation of offsetting-clipping algorithm. For the part level, the 3D model from CAD is reconstructed into a voxel-based mesh, which is convenient for a part with complex geometry. The residual stress of a part is analysed under different preheat temperatures and different process parameters. These simulations imply the potential technique of reducing residual stress by the optimisation of process parameters, instead of the traditional way by increasing preheat temperature. Based on the FEM simulation platform above, two simulations at line level are also studied in this thesis, aiming at the relation between the AM process and part's final quality. These examples demonstrate the feasibility of using macroscopic simulations to improve the quality control during the AM process. In the first task, dataset of heating parameters and residual stress are generated by AM simulation. The correlation between them is studied by using some regression algorithm, such as artificial neural network. In the second task, a PID controller for power-temperature feedback loop is integrated into AM process simulation and the PID auto-tuning is numerically investigated instead of using AM machine. Both of the two tasks show the important role of AM macroscopic process simulation, which may replace or combine with the numerous trial and error of experiments in metal additive manufacturing

Книги з теми "Fabrication additive (FDM)":

1

Singh, Rupinder, and J. Paulo Davim. Additive Manufacturing. Taylor & Francis Group, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Singh, Rupinder, and J. Paulo Davim. Additive Manufacturing: Applications and Innovations. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singh, Rupinder, and J. Paulo Davim. Additive Manufacturing: Applications and Innovations. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Singh, Rupinder, and J. Paulo Davim. Additive Manufacturing: Applications and Innovations. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fabrication additive (FDM)":

1

Liu, Yizhuo, and Hao Hua. "Translucent Tectonics: Lightweight Floor Slab System Based on FDM Manufacturing." In Computational Design and Robotic Fabrication, 503–14. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8405-3_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractA construction method for an FDM printed floor slab system is proposed in this paper. The integration of translucent thermoplastics and additive manufacturing enables architects to develop self-explanatory tectonics that reflect the logic and construction processes. Lightweight, transparent thermoplastics such as PET and PLA can be used in 3D printing to create visual contrast to conventional solid materials. The additive manufacturing process can improve structural behavior by controlling the material distribution. Therefore, the proposed floor slab system pursues ‘light and strong’ via using a carefully planned toolpath for FDM printing. An entire floor is subdivided into prefabricated modular components, which are then assembled using the post-tensioning method to improve the integrity and tensile strength of the floor system. A toolpath is designed based on the internal stress of the components such that the material density reflects the structural behavior of the floor slab. The material efficiency is thereby achieved by the optimized articulation. In addition, we maximize the continuity of the printing path to enhance the printing quality and reduce the manufacturing time. This construction method is applied to the renovation of a group of industrial buildings. Prototyping experiments were carried out using translucent PLA to visualize the material distribution inside modules, manifesting the design principle of “form follows performance”.
2

Raspall, Felix, and Carlos Bañón. "Large-Scale 3D Printing Using Recycled PET. The Case of Upcycle Lab @ DB Schenker Singapore." In Computational Design and Robotic Fabrication, 432–42. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8637-6_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractLarge-scale additive manufacturing for architectural applications is a growing research field. In the recent years, several real-scale projects demonstrated a preliminary viability of this technology for practical applications in architecture. Concurrently, the use of recycled polymers in 3d printing has progressed as a more sustainable feed for small-scale applications. However, there are limited empirical examples on the use of additive manufacturing using recycled polymers in large-scale and real-life architectural applications. This project develops two design and fabrication approaches to large-scale manufacturing using recycled Polyethylene Terephthalate (PET) from single-use bottles into large design elements and tests them in a real-life project. The two designs are discussed in detail: a 4 m diameter dome-like chandelier printed with a robotic extruder using recycled PET pellets, and a 3.5 m diameter chandelier using a Fused Deposition Modeling (FDM) printing farm. The paper covers the state of the art of related printing technologies and their gaps, describes the printing process developed in this research, details the design of the domes, and discusses the empirical evidence on the benefits and drawbacks of large-scale additive manufacturing using recycled polymers. Overall, the research demonstrates the possibilities of large-scale additive manufacturing using recycled polymers, adding findings form a real-life project to the growing body of research on additive manufacturing in architecture.
3

Woosley, Smith, and Shyam Aravamudhan. "Functionally Modified Composites for FDM 3D Printing." In Advanced Additive Manufacturing [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fused Deposition Modeling (FDM) 3D printing is an additive manufacturing technique used to fabricate solid thermoplastic polymer objects directly from computer-modeled designs. The current uses for this technology are restricted due to a limited choice of materials, which offer minimal functionality to the printed 3D parts. To expand the application space for FDM-based 3D printing, this chapter is aimed to add functional attributes to printable polymers through the creation of thermoplastic composites. The work focuses on a simple fabrication method to create composite for FDM printing and analytical techniques to characterize dispersion, thermal, and mechanical properties of the nanocomposite. Lastly, the functional characteristics of the FDM printed nanocomposite including their conductivity, ferromagnetism, and radiation shielding properties were studied.
4

Mahale, Rayappa Shrinivas, Gangadhar M. Kanaginahal, Shamanth Vasanth, Vivek Kumar Tiwary, Rajendrachari Shashanka, Sharath P. C., and Adarsh Patil. "Applications of Fused Deposition Modeling in Dentistry." In Advances in Chemical and Materials Engineering, 211–19. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6009-2.ch012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fused deposition modelling (FDM) is a popular additive manufacturing (AM) technique for modelling, prototyping, and production. FDM is a technology that creates three-dimensional things directly from three-dimensional CAD data. Layer by layer, thermoplastic material is extruded by a temperature-controlled head. FDM, also known as fused filament fabrication (FFF), is a simple and low-cost method of additive manufacturing that was first introduced in 1989. A thermoplastic filament is fed to a heated nozzle in the FFF process. The material is melted here, and the material is deposited as the nozzle travels layer by layer in the x and y axes along the geometry. FDM has proved beneficial in the medical field to produce more naturalistic models for educational, training, and research reasons, as well as treatment and surgical planning.
5

Pradeep Kumar G. S., Sachit T. S., Mruthunjaya M., Harish Kumar M., Raghu Yogaraju, and Sasidhar Jangam. "Mechanical and Tribological Properties of Polymer Composites Developed by FDM." In Advances in Chemical and Materials Engineering, 53–65. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6009-2.ch004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the coming years, researchers and manufacturers will be more concerned with the demand for products that are easy to construct and can be rendered seamlessly, even at complicated geometries, with the touch of a button. These requirements will be met by the advent of additive manufacturing. This will serve as the catalyst for a revolution. Additive layer manufacturing (ALM), also known as additive manufacturing (AM) or more commonly referred to as 3D printing, is a modern fabrication technology that uses a variety of raw materials to produce items such as medical implants and aircraft wing components by printing layers of material based on 3D digital models. In this chapter, the authors provide a comprehensive overview of the mechanical and tribological behaviour of ceramic, metallic, and fiber-reinforced polymer composites that are made by a range of additive manufacturing (AM) techniques. These composites can be used in a variety of applications, including aerospace, automotive, and medical.
6

Piljek, Petar, Nino Krznar, Matija Krznar, and Denis Kotarski. "Framework for Design and Additive Manufacturing of Specialised Multirotor UAV Parts." In Trends and Opportunities of Rapid Prototyping Technologies [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Rapid prototyping technologies have enabled a major step forward in the development of a very wide range of products, especially in the field of mechatronic systems. These technologies are largely related to additive manufacturing (AM), so-called 3D printing which is, in addition to product development, also suitable for the fabrication of mechatronic systems that are not intended for series production. In this chapter, a framework for the AM of specialised multirotor unmanned aerial vehicles (UAVs) parts is proposed and described for three AM technologies—fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). A different approach to parts design is shown where the main problems are addressed and guidelines for parts manufacturing are given. Special emphasis is related to the mechanical characteristics and low weight of the manufactured parts that are merged with carbon fibre segments. The manufactured (printed) parts are mounted in functional assemblies and preliminarily tested.
7

Senthilkumar, V., Velmurugan C., K. R. Balasubramanian, and M. Kumaran. "Additive Manufacturing of Multi-Material and Composite Parts." In Advances in Civil and Industrial Engineering, 127–46. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM) technology can be employed to produce multimaterial parts. In this approach, multiple types of materials are used for the fabrication of a single part. Custom-built functionally graded, heterogeneous, or porous structures and composite materials can be fabricated thorough this process. In this method, metals, plastics, and ceramics have been used with suitable AM methods to obtain multi-material products depending on functional requirements. The process of making composite materials by AM can either be performed during the material deposition process or by a hybrid process in which the combination of different materials can be performed before or after AM as a previous or subsequent stage of production of a component. Composite processes can be employed to produce functionally graded materials (FGM).
8

Tikate, Pavan, and Ishwar Sonar. "Performance of Cold-Form Steel (CFS) Sections Under Flexural Action." In Recent Experimental and Computational Research in Structural Engineering, 59–68. Grinrey Publishing, 2023. http://dx.doi.org/10.55084/grinrey/ert/978-81-964105-2-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cold-form steel (CFS) members have become increasingly popular because of its high strength with respect to weight, low conveying costs, and ease of fabrication and erection. Standard CFS sections generally fail as flexural members where high section modulus is required. For such cases, using built-up sections made up of nesting or back-to-back connection could be a viable solution. The present study extensively reviews recent advances in the design and analysis of CFS under flexural behavior. As per the most recent research in the field, it was revealed that CFS sections could benefit from the addition of stiffeners, namely intermediate stiffeners for closed built-up sections and stiffeners at the flange/web junction for open built-up sections, with or without edge stiffeners. In addition, several investigations of the behaviour of different CFS sections were presented. However, further research is required to determine how to analyse the flexural behaviour of open and closed built-up sections using finite element models (FEM).

Тези доповідей конференцій з теми "Fabrication additive (FDM)":

1

Patterson, Albert E., Seymur Hasanov, and Bhaskar Vajipeyajula. "Influence of Matrix Material on Impact Properties of Chopped Carbon Fiber-Thermoplastic Composites Made Using FDM/FFF." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-88941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A major applications of thermoplastic additive manufacturing (typically completed using the fused deposition modeling or fused filament fabrication (FDM/FFF) process) is in the production of polymer matrix composites. Several different reinforcing materials have been proposed and studied, a common one of which is chopped carbon fibers (CCF). Most of the published research on the properties and effect of the CCF reinforcement has relied upon a poly(lactic acid) (PLA) matrix, as it has a low and stable melting temperature, low cost, and mixes readily with particulate or chopped reinforcing materials. For commercially available CCF filament for FDM/FFF, the typical fiber content is around 15–25% by volume, with the remainder being the thermoplastic matrix. To better explore the influence of the matrix material on the properties of these materials, this study compares the IZOD impact properties of standard CCF PLA with CCF-reinforced materials using polyamide/nylon (PA), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate glycol (PETG) matrices. All cases were printed at full (100%) density. For each material, samples of 5 mm thickness were tested in the Type A (notch in tension) and Type E (notch in compression) configurations. Two print orientations (flat and horizontal) and two raster angles (0–90° and ±45°) were considered for each combination. As required by ASTM D256, the tests were replicated five times each. The results are compared with the major literature for CCF reinforced PLA, as well as benchmark tests using injection molded samples and non-CCF PLA, PA, PC, ABS, and PETG processed by FDM/FFF.
2

Smith, Austin, and Hamzeh Bardaweel. "Flexible Strain Sensor Using Additive Manufacturing and Conductive Liquid Metal: Design, Fabrication, and Characterization." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work a flexible strain sensor is fabricated using Fused Deposition Modeling (FDM) 3D printing technique. The strain sensor is fabricated using commercially available flexible Thermoplastic Polyurethane (TPU) filaments and liquid metal Galinstan Ga 68.5% In 21% Sn 10%. The strain sensor consists of U-shape 2.34mm long and 0.2mm deep channels embedded inside a TPU 3D printed structure. The performance of the strain sensor is measured experimentally. Gauge Factor is estimated by measuring change in electric resistance when the sensor is subject to 13.2% – 38.6% strain. Upon straining and unstraining, results from characterization tests show high linearity in the range of 13.2% to 38.6% strain with very little hysteresis. However, changes due to permanent deformations are a limiting factor in the usefulness of these sensors because these changes limit the consistency of the device. FDM 3D printing shows promise as a method for fabricating flexible strain sensors. However, more investigation is needed to look at the effects of geometries and 3D printing process parameters on the yield elongation of the flexible filaments. Additionally, more investigation is needed to observe the effect of distorted dimensions of the 3D printed channels on the sensitivity of the strain sensor. It is anticipated that successful implementation of these commercially available filaments and FDM 3D printers will lead to reduction in cost and complexity of developing these flexible sensors.
3

Ishak, Ismayuzri B., Mark B. Moffett, and Pierre Larochelle. "An Algorithm for Generating 3D Lattice Structures Suitable for Printing on a Multi-Plane FDM Printing Platform." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Manufacturing processes for the fabrication of complex geometries involve multi-step processes when using conventional machining techniques with material removal processes. Additive manufacturing processes give leverage for fabricating complex geometric structures compared to conventional machining. The capability to fabricate 3D lattice structures is a key additive manufacturing characteristic. Most conventional additive manufacturing processes involve layer based curing or deposition to produce a three-dimensional model. In this paper, a three-dimensional lattice structure generator for multi-plane fused deposition modeling printing was explored. A toolpath for an input geometric model with an overhang structure was able to be generated. The input geometric model was able to be printed using a six degree of freedom robot arm platform. Experimental results show the achievable capabilities of the 3D lattice structure generator for use with the multi-plane platform.
4

Deepan Kumar, Sadhasivam, Balakrishnan S, Sathiskumar Saminathan, V. Arun Raj, Sivaji Dhayaneethi, Soundrapandian E, and B. Veath Prakash. "Design and Fabrication of FDM Adapter Head Setup for CNC Milling Machine." In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<div class="section abstract"><div class="htmlview paragraph">The 3D printing technology is an Additive Manufacturing process which is capable of producing the complex shapes. At present there is no other technologies integrating the 3D printing and the CNC machine, thus we adapting a new design of 3D printing setup for CNC machine with some special feature as extruder, it is based on the Fusion Deposition Modelling (FDM) process with the help of the parts like Extruder, Heat Bed, Arduino boards where we are going to design a head of the printer which is to be attached with the BT40 commonly used Tool holder for the CNC milling machines. This extruder plays a vital role in this CNC milling machine for producing 3D printed components of different material and different colour. And this setup is capable of printing high resolution and complex shapes with different material and different colour by means of the heated filament. The post processing process like milling and surface finish can also be done by the CNC Machine. This setup is cost effective.</div></div>
5

Warner, Justin, Dino Celli, Onome Scott-Emuakpor, Tommy George, and Trevor Tomlin. "Fused Deposition Modeling Fabrication Evaluation of a Ti-6Al-4V Centrifugal Compressor." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-83321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Centrifugal compressors have a critical impact on the performance of a jet engine and can be made out of aluminum, steel, or titanium alloy. However, if made out of Ti-6Al-4V it would be more lightweight than if steel were used and stronger than if aluminum were used. Compressors manufactured using traditional techniques can be relatively expensive to manufacture, therefore, fused deposition modeling (FDM) or fused filament fabrication (FFF) can help reduce the cost while maintaining structural integrity. FDM/FFF usually prints polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS) layer-by-layer using an extruder with a spool of material feeding into the extruder. Recently, metal-polymer filaments have become commercially available using this same printing apparatus as common “hobby-class” FDM printers. Using FDM with a metal-polymer matrix allows for a lower cost of production because of the intricate designs it can accomplish with little to no machining involved. Additive printing with Ti-6Al-4V is challenging because of the health and safety concerns of the powder, but having the material in a spool eradicates these concerns of handling Ti-6Al-4V due to the Ti-6Al-4V powder being surrounded by a polymer. Even with the benefits of printing a spool of material using FDM, there has been very little research done of Ti-6Al-4V printed in a FDM format. Printing using the FDM process is known to create shrinkage of the part, it has been documented of different shrinkage percentages for steel using FDM but not Ti-6Al-4V. This document records the feasibility of using Ti-6Al-4V for a centrifugal compressor using FDM by incorporating a 3D structured blue light scanner before heat treatments while also analyzing manufacturing capabilities at the tips of blades as well as the base. This analysis is a first-stage to quantify FDM metal print characteristics and properties.
6

Blatt, Joshua, Jacob Kirkendoll, Paavana Krishna Mandava, Zachary Preston, Robert Joyce, and Roozbeh (Ross) Salary. "An Image-Based Convolutional Neural Network Platform for the Prediction of the Porosity of Composite Bone Scaffolds, Fabricated Using Material Extrusion Additive Manufacturing." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The overarching goal of this research work is to fabricate biocompatible, porous bone scaffolds that are not only mechanically robust but also dimensionally accurate for the treatment of osseous fractures, defects, and musculoskeletal diseases. In pursuit of this goal, the objective of the work is to develop an image-based intelligent platform, based on convolutional neural network, for prediction of the functional properties (such as porosity, stiffness, and compressive strength) of composite bone scaffolds (composed of polyamide, polyolefin, and cellulose fibers) fabricated using fused deposition modeling (FDM) process. FDM is a material extrusion additive manufacturing process, which has been extensively utilized for the fabrication of a wide range of biological tissues and constructs for tissue engineering applications. As a high-resolution method, FDM allows for deposition of composite materials with complex formulations as well as complex porous microstructures. Despite the advantages and engendered applications, the FDM process is inherently complex; the complexity of the process is, to a great extent, the result of complex physical phenomena (such as non-Newtonian material deposition, layer fusion, and phase change) in addition to unavoidable material-process interactions (e.g., molten polymer flow deposition and subsequent layer fusion vs. translation speed). Besides, there is a wide spectrum of scaffold design, composite material, and fabrication process parameters (such as molten polymer viscosity, scaffold morphology, nozzle diameter, deposition temperature, and forced convection rate influencing solidification rate) contributing to the complexity of the FDM process. As a result, investigation of the impact of consequential design, material, and process parameters as well as their interactions would be required for optimal fabrication of mechanically strong, dimensionally accurate, and porous composite bone scaffolds. In this study, an image-based convolutional neural network (CNN) platform is presented with the aim to intelligently learn the complex dynamics of composite material deposition and ultimately predict scaffold porosity. In this study, the CNN model is trained on the basis of monochromatic images acquired from FDM-fabricated bone scaffolds via a high-resolution charge-coupled device (CCD) camera. The bone scaffolds were fabricated based on a medical-grade composite material, deposited using a converging microcapillary nozzle having a diameter of 800 μm with a deposition temperature, translation speed, and layer height of 225 °C, 15 mm/s, and 400 μm, respectively. The CNN model is utilized for in-process prediction of the morphological properties of the fabricated bone scaffolds. Overall, the outcomes of this study pave the way for smart, patient-specific fabrication of robust and porous bone scaffolds with tunable medical and functional properties.
7

Billings, Christopher, Mrinal Saha, and Yingtao Liu. "Development and Implementation of a High-Temperature FDM Machine for Additive Manufacturing of Thermoplastics." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In recent years, the reduction in the entry cost of additive manufacturing has allowed for a paradigm shift in research and development methodologies worldwide. Explicitly focusing on FDM-based manufacturing and its role in the e-design process, this technology has dramatically reduced the idea to market timeframe compared to traditional manufacturing. However, the most significant drawback to this change is that these technologies are currently limited to low load and thermally static applications based on the material capabilities of many FDM machines. The exception to this rule is the few machines capable of printing with materials such as ULTEM and PEEK with thermally controlled chambers to address the above problems. Unfortunately, these machines are generally out of reach for most due to their cost and proprietary materials and software. This paper will outline the development and construction of a printer capable of working with materials at 500 degrees centigrade by utilizing a water-cooled dual extrusion system. This system will be operating inside a closed chamber capable of holding temperatures constant at 100 degrees centigrade. The entire system was manufactured for only 4% of the cost of current market offerings. The printer is based on a market available platform that has been upgraded to include a direct drive water-cooled dual extrusion head. The chamber heating is handled by a 110-volt platform that pairs with secondary heaters to control the interior temperature. The entire motion system is enclosed to control thermal swings, and all electronics are exterior mounted and cloud-based for monitoring and operation. In addition, this printer allows the fabrication of designs that produce parts that are up to six times stronger, three times more heat resilient, and three times less water absorbent. The reduction in entry cost to work with engineering-grade thermoplastics will significantly increase the adoption rate of additive manufacturing in small businesses and design shops.
8

James, Sagil, Rinkesh Contractor, Chris Veyna, and Galen Jiang. "Fabrication of Efficient Electrodes for Dye-Sensitized Solar Cells Using Additive Manufacturing." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dye-Sensitized Solar Cells (DSSC) are third generation solar cells used as an alternative to c-Si solar cells. DSSC are mostly flexible, easier to handle and are less susceptible to damage compared to c-Si solar cells. Additionally, DSSC is an excellent choice for indoor application as they perform better under diverse light condition. Most DSSCs are made of liquid medium sandwiched between two conductive polymer layers. However, DSSCs have significantly lower efficiencies compared to silicon solar cells. Also, use of liquid medium resulting in leaking of liquid, and occasional freezing during cold weather, and thermal expansion during hot weather conditions. DSSC can be manufactured in small quantities using relatively inexpensive solution-phase techniques such as roll-to-roll processing and screen printing technology. However, scaling-up the DSSC manufacturing from small-scale laboratory tests to sizeable industrial production requires better and efficient manufacturing processes. This research studies the feasibility of using additive manufacturing technique to fabricate electrodes of DSSC. The study aims to overcome the limitations of DSSCs including preventing leakage and providing more customized design. Experimental studies are performed to evaluate the effects of critical process parameters affecting the quality of electrodes for DSSC. Volume resistivity test is performed to evaluate the efficiency of the electrodes. In this study, the electrodes of DSSC are successfully fabricated using Fused Disposition Modeling (FDM) 3D printing technique. The results of this study would enable additive manufacturing technology towards rapid commercialization of DSSC technology.
9

Zhao, Daguan, Christoph Hart, Nathan A. Weese, Chantz M. Rankin, James Kuzma, James B. Day, and Roozbeh (Ross) Salary. "Experimental and Computational Analysis of the Mechanical Properties of Biocompatible Bone Scaffolds, Fabricated Using Fused Deposition Modeling Additive Manufacturing Process." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Fused deposition modeling (FDM), a material extrusion additive manufacturing process, has emerged as a method of choice for the fabrication of polymeric tissue engineering scaffolds. The FDM process is intrinsically complex, consisting of a multitude of parameters; in addition, there are material-machine-process interactions, which inevitably influence the mechanical properties, the surface morphology, and ultimately the functional integrity of fabricated bone structures. Consequently, physics-based process characterization and optimization in the FDM process is a burgeoning need. The overarching goal of this research work is to fabricate patient-specific, biocompatible, and biodegradable bone scaffolds for the treatment of osseous defects, fractures, and diseases. In pursuit of this goal, the objectives are to: (i) investigate the influence of consequential parameters of FDM on the functional properties of fabricated femur bone structures; and (ii) investigate the underlying physical phenomena behind the experimental observations using a computational finite-element model. In this study, biocompatible femur bone structures were FDM-deposited, based on a medical-grade polymer composite, composed of polyamide, polyolefin, and cellulose fibers. A new test specimen was designed, based on an X-ray micro-CT scan of a femur bone as well as the ASTM D638-14 (Type II) standard. In addition, the experimental characterization was on the basis of a cascade approach, composed of the following experimental deigns: (i) fractional-factorial design, utilized for factor screening and identification of consequential process parameters; (ii) Taguchi design, utilized for process optimization. Besides, a computational finite-element model was forwarded to investigate the underlying physical phenomena behind the experimental observations.
10

Chaffins, Abigail, Mohan Yu, Pier Paolo Claudio, James B. Day, and Roozbeh (Ross) Salary. "Investigation of the Functional Properties of Additively-Fabricated Triply Periodic Minimal Surface-Based Bone Scaffolds for the Treatment of Osseous Fractures." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Fused deposition modeling (FDM), is a direct-write material extrusion additive manufacturing process, which has emerged as a method of choice for the fabrication of a wide range of biological tissues and structures. FDM allows for non-contact, multi-material deposition of a broad spectrum of functional materials for tissue engineering applications. However, the FDM process is intrinsically complex, consisting of a multitude of parameters as well as material-machine interactions, which may adversely influence the mechanical properties, the surface morphology, and ultimately the functional integrity of fabricated bone scaffolds. Hence, process optimization in addition to physics-based characterization of the FDM process would be inevitably a need. The overarching goal of this research work is to fabricate biocompatible, porous bone scaffolds, incorporating autologous human bone marrow mesenchymal stem cells (hBMSCs), for the treatment of osseous fractures, defects, and eventually diseases. The objective of this work is to investigate the mechanical properties of several triply periodic minimal surface (TPMS) bone scaffolds, fabricated using fused deposition modeling (FDM) additive manufacturing process. In this study, biocompatible TPMS bone scaffolds were FDM-deposited, based on a medical-grade polymer composite, composed of polyamide, polyolefin, and cellulose fibers (named PAPC-II). In addition, the experimental characterization of the TPMS bone scaffolds was on the basis of a single factor experiment. The compression properties of the fabricated bone scaffolds were measured using a compression testing machine. Furthermore, a digital image processing program was developed in the MATLAB environment to characterize the morphological properties of the fabricated bone scaffolds.

До бібліографії