Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Extracellular matrix (ECM) peptides.

Статті в журналах з теми "Extracellular matrix (ECM) peptides"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Extracellular matrix (ECM) peptides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hozumi, Kentaro, and Motoyoshi Nomizu. "Mixed Peptide-Conjugated Chitosan Matrices as Multi-Receptor Targeted Cell-Adhesive Scaffolds." International Journal of Molecular Sciences 19, no. 9 (September 11, 2018): 2713. http://dx.doi.org/10.3390/ijms19092713.

Повний текст джерела
Анотація:
Biomaterials are important for cell and tissue engineering. Chitosan is widely used as a scaffold because it is easily modified using its amino groups, can easily form a matrix, is stable under physiological conditions, and is inactive for cell adhesion. Chitosan is an excellent platform for peptide ligands, especially cell adhesive peptides derived from extracellular matrix (ECM) proteins. ECM proteins, such as collagen, fibronectin, and laminin, are multifunctional and have diverse cell attachment sites. Various cell adhesive peptides have been identified from the ECM proteins, and these are useful to design functional biomaterials. The cell attachment activity of peptides is influenced by the solubility, conformation, and coating efficiency to solid materials, whereas immobilization of peptides to a polysaccharide such as chitosan avoids these problems. Peptide–chitosan matrices promote various biological activities depending on the peptide. When the peptides are immobilized to chitosan, the activity of the peptides is significantly enhanced. Further, mixed peptide–chitosan matrices, conjugated with more than one peptide on a chitosan matrix, interact with multiple cellular receptors and promote specific biological responses via receptor cross-talk. Receptor cross-talk is important for mimicking the biological activity of ECM and the proteins. The mixed peptide–chitosan matrix approach is useful to develop biomaterials as a synthetic ECM for cell and tissue engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tran, Thi Xuan Thuy, Gyu-Min Sun, Hue Vy An Tran, Young Hun Jeong, Petr Slama, Young-Chae Chang, In-Jeong Lee, and Jong-Young Kwak. "Synthetic Extracellular Matrix of Polyvinyl Alcohol Nanofibers for Three-Dimensional Cell Culture." Journal of Functional Biomaterials 15, no. 9 (September 10, 2024): 262. http://dx.doi.org/10.3390/jfb15090262.

Повний текст джерела
Анотація:
An ideal extracellular matrix (ECM) replacement scaffold in a three-dimensional cell (3D) culture should induce in vivo-like interactions between the ECM and cultured cells. Highly hydrophilic polyvinyl alcohol (PVA) nanofibers disintegrate upon contact with water, resulting in the loss of their fibrous morphology in cell cultures. This can be resolved by using chemical crosslinkers and post-crosslinking. A crosslinked, water-stable, porous, and optically transparent PVA nanofibrous membrane (NM) supports the 3D growth of various cell types. The binding of cells attached to the porous PVA NM is low, resulting in the aggregation of cultured cells in prolonged cultures. PVA NMs containing integrin-binding peptides of fibronectin and laminin were produced to retain the blended peptides as cell-binding substrates. These peptide-blended PVA NMs promote peptide-specific cell adherence and growth. Various cells, including epithelial cells, cultured on these PVA NMs form layers instead of cell aggregates and spheroids, and their growth patterns are similar to those of the cells cultured on an ECM-coated PVA NM. The peptide-retained PVA NMs are non-stimulatory to dendritic cells cultured on the membranes. These peptide-retaining PVA NMs can be used as an ECM replacement matrix by providing in vivo-like interactions between the matrix and cultured cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dolmatov, Igor Yu, and Vladimir A. Nizhnichenko. "Extracellular Matrix of Echinoderms." Marine Drugs 21, no. 7 (July 22, 2023): 417. http://dx.doi.org/10.3390/md21070417.

Повний текст джерела
Анотація:
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Monteiro-Lobato, Gabriela M., Pedro S. T. Russo, Flavia V. Winck, and Luiz H. Catalani. "Proteomic Analysis of Decellularized Extracellular Matrix: Achieving a Competent Biomaterial for Osteogenesis." BioMed Research International 2022 (October 11, 2022): 1–18. http://dx.doi.org/10.1155/2022/6884370.

Повний текст джерела
Анотація:
Decellularized ECMs have been used as biological scaffolds for tissue repair due to their tissue-specific biochemical and mechanical composition, poorly simulated by other materials. It is used as patches and powders, and it could be further processed via enzymatic digestion under acidic conditions using pepsin. However, part of the bioactivity is lost during the digestion process due to protein denaturation. Here, stepwise digestion was developed to prepare a competent biomaterial for osteogenesis from three different ECM sources. In addition, three different proteases were compared to evaluate the most effective digestion protocol for specific cellular processes. GAGs and peptide quantification showed that the stepwise method yielded a higher concentration of bioactive residues. Circular dichroism analysis also showed that the stepwise approach preserved the secondary structures better. The protein profiles of the digested ECMs were analyzed, and it was found to be highly diverse and tissue-specific. The digestion of ECM from pericardium produced peptides originated from 94 different proteins, followed by 48 proteins in ECM from tendon and 35 proteins in ECM from bone. In addition, digested products from pericardium ECM yielded increased proliferation and differentiation of bone marrow mesenchymal stem cells to mature osteoblasts.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fujita, Motomichi, Manabu Sasada, Takuya Iyoda, Satoshi Osada, Hiroaki Kodama, and Fumio Fukai. "Biofunctional Peptide FNIII14: Therapeutic Potential." Encyclopedia 1, no. 2 (April 8, 2021): 350–59. http://dx.doi.org/10.3390/encyclopedia1020029.

Повний текст джерела
Анотація:
Biofunctional peptide FNIII14, which is derived from the 14th fibronectin (FN) type III-like (FN-III) repeat of FN molecule, is capable of inhibiting cell adhesion to the extracellular matrix (ECM). This functional site is usually buried within the molecular structure of FN, but can be exposed by conformational changes and proteolytic cleavage. Peptide FNIII14 can induce a conformational change in β1-integrin from the active to the inactive form, causing functional inactivation. Based on this anti-adhesive activity, peptide FNIII14 exhibits therapeutic potential for several diseases such as metabolic diseases, organ fibrosis, and malignant tumors. Peptide FNIII14 blocks integrin-mediated signaling by a mechanism entirely distinct from that of conventional antagonisitic peptides, including Arg-Gly-Asp peptides that competitively inhibit the ECM binding of integrin.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Olivares-Navarrete, Rene, Sharon L. Hyzy, Argelia Almaguer-Flores, Corinna Mauth, Anja C. Gemperli, Barbara D. Boyan, and Zvi Schwartz. "Amelogenin Peptide Extract Increases Differentiation and Angiogenic and Local Factor Production and Inhibits Apoptosis in Human Osteoblasts." ISRN Biomaterials 2013 (August 1, 2013): 1–11. http://dx.doi.org/10.5402/2013/347318.

Повний текст джерела
Анотація:
Enamel matrix derivative (EMD), a decellularized porcine extracellular matrix (ECM), is used clinically in periodontal tissue regeneration. Amelogenin, EMD’s principal component, spontaneously assembles into nanospheres in vivo, forming an ECM complex that releases proteolytically cleaved peptides. However, the role of amelogenin or amelogenin peptides in mediating osteoblast response to EMD is not clear. Human MG63 osteoblast-like cells or normal human osteoblasts were treated with recombinant human amelogenin or a 5 kDa tyrosine-rich amelogenin peptide (TRAP) isolated from EMD and the effect on osteogenesis, local factor production, and apoptosis assessed. Treated MG63 cells increased alkaline phosphatase specific activity and levels of osteocalcin, osteoprotegerin, prostaglandin E2, and active/latent TGF-β1, an effect sensitive to the effector and concentration. Primary osteoblasts exhibited similar, but less robust, effects. TRAP-rich 5 kDa peptides yielded more mineralization than rhAmelogenin in osteoblasts in vitro. Both amelogenin and 5 kDa peptides protected MG63s from chelerythrine-induced apoptosis. The data suggest that the 5 kDa TRAP-rich sequence is an active amelogenin peptide that regulates osteoblast differentiation and local factor production and prevents osteoblast apoptosis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Merchant, Michael L., Michelle T. Barati, Dawn J. Caster, Jessica L. Hata, Liliane Hobeika, Susan Coventry, Michael E. Brier, et al. "Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis." Journal of the American Society of Nephrology 31, no. 8 (June 19, 2020): 1883–904. http://dx.doi.org/10.1681/asn.2019070696.

Повний текст джерела
Анотація:
BackgroundThe mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants.MethodsECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides.ResultsOf 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C.ConclusionsECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barnes, Ashlynn M., Tessa B. Holmstoen, Andrew J. Bonham, and Teisha J. Rowland. "Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins." Bioengineering 9, no. 12 (November 22, 2022): 720. http://dx.doi.org/10.3390/bioengineering9120720.

Повний текст джерела
Анотація:
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into cardiomyocytes (hESC-CMs and iPSC-CMs, respectively), which hold great promise for cardiac regenerative medicine and disease modeling efforts. However, the most widely employed differentiation protocols require undefined substrates that are derived from xenogeneic (animal) products, contaminating resultant hESC- and iPSC-CM cultures with xenogeneic proteins and limiting their clinical applicability. Additionally, typical hESC- and iPSC-CM protocols produce CMs that are significantly contaminated by non-CMs and that are immature, requiring lengthy maturation procedures. In this review, we will summarize recent studies that have investigated the ability of purified extracellular matrix (ECM) proteins to support hESC- and iPSC-CM differentiation, with a focus on commercially available ECM proteins and coatings to make such protocols widely available to researchers. The most promising of the substrates reviewed here include laminin-521 with laminin-221 together or Synthemax (a synthetic vitronectin-based peptide coating), which both resulted in highly pure CM cultures. Future efforts are needed to determine whether combinations of specific purified ECM proteins or derived peptides could further improve CM maturation and culture times, and significantly improve hESC- and iPSC-CM differentiation protocols.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hulahan, Taylor S., Laura Spruill, Elizabeth N. Wallace, Yeonhee Park, Robert B. West, Jeffrey R. Marks, E. Shelley Hwang, Richard R. Drake, and Peggi M. Angel. "Extracellular Microenvironment Alterations in Ductal Carcinoma In Situ and Invasive Breast Cancer Pathologies by Multiplexed Spatial Proteomics." International Journal of Molecular Sciences 25, no. 12 (June 19, 2024): 6748. http://dx.doi.org/10.3390/ijms25126748.

Повний текст джерела
Анотація:
Ductal carcinoma in situ (DCIS) is a heterogeneous breast disease that remains challenging to treat due to its unpredictable progression to invasive breast cancer (IBC). Contemporary literature has become increasingly focused on extracellular matrix (ECM) alterations with breast cancer progression. However, the spatial regulation of the ECM proteome in DCIS has yet to be investigated in relation to IBC. We hypothesized that DCIS and IBC present distinct ECM proteomes that could discriminate between these pathologies. Tissue sections of pure DCIS, mixed DCIS-IBC, or pure IBC (n = 22) with detailed pathological annotations were investigated by multiplexed spatial proteomics. Across tissues, 1,005 ECM peptides were detected in pathologically annotated regions and their surrounding extracellular microenvironments. A comparison of DCIS to IBC pathologies demonstrated 43 significantly altered ECM peptides. Notably, eight fibrillar collagen peptides could distinguish with high specificity and sensitivity between DCIS and IBC. Lesion-targeted proteomic imaging revealed heterogeneity of the ECM proteome surrounding individual DCIS lesions. Multiplexed spatial proteomics reported an invasive cancer field effect, in which DCIS lesions in closer proximity to IBC shared a more similar ECM profile to IBC than distal counterparts. Defining the ECM proteomic microenvironment provides novel molecular insights relating to DCIS and IBC.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mazzocchi, Andrea, Kyung Min Yoo, Kylie G. Nairon, L. Madison Kirk, Elaheh Rahbar, Shay Soker, and Aleksander Skardal. "Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli." Biomedical Materials 17, no. 2 (January 13, 2022): 025001. http://dx.doi.org/10.1088/1748-605x/ac45eb.

Повний текст джерела
Анотація:
Abstract Current in vitro three-dimensional (3D) models of liver tissue have been limited by the inability to study the effects of specific extracellular matrix (ECM) components on cell phenotypes. This is in part due to limitations in the availability of chemical modifications appropriate for this purpose. For example, hyaluronic acid (HA), which is a natural ECM component within the liver, lacks key ECM motifs (e.g. arginine–glycine–aspartic acid (RGD) peptides) that support cell adhesion. However, the addition of maleimide (Mal) groups to HA could facilitate the conjugation of ECM biomimetic peptides with thiol-containing end groups. In this study, we characterized a new crosslinkable hydrogel (i.e. HA-Mal) that yielded a simplified ECM-mimicking microenvironment supportive of 3D liver cell culture. We then performed a series of experiments to assess the impact of physical and biochemical signaling in the form of RGD peptide incorporation and transforming growth factor ß (TGF-ß) supplementation, respectively, on hepatic functionality. Hepatic stellate cells (i.e. LX-2) exhibited increased cell–matrix interactions in the form of cell spreading and elongation within HA-Mal matrices containing RGD peptides, enabling physical adhesions, whereas hepatocyte-like cells (HepG2) had reduced albumin and urea production. We further exposed the encapsulated cells to soluble TGF-ß to elicit a fibrosis-like state. In the presence of TGF-ß biochemical signals, LX-2 cells became activated and HepG2 functionality significantly decreased in both RGD-containing and RGD-free hydrogels. Altogether, in this study we have developed a hydrogel biomaterial platform that allows for discrete manipulation of specific ECM motifs within the hydrogel to better understand the roles of cell–matrix interactions on cell phenotype and overall liver functionality.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Marin, Davide, and Silvia Marchesan. "Self-Assembled Peptide Nanostructures for ECM Biomimicry." Nanomaterials 12, no. 13 (June 22, 2022): 2147. http://dx.doi.org/10.3390/nano12132147.

Повний текст джерела
Анотація:
Proteins are functional building blocks of living organisms that exert a wide variety of functions, but their synthesis and industrial production can be cumbersome and expensive. By contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review, we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside hydrogel scaffolds.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Glavey, Siobhan, Alexandra Naba, Salomon Manier, Manuela Gambella, Alberto Rocci, Antonio Sacco, John M. Asara, et al. "Proteomic Characterization of the Multiple Myeloma Bone Marrow Extracellular Matrix." Blood 124, no. 21 (December 6, 2014): 2051. http://dx.doi.org/10.1182/blood.v124.21.2051.2051.

Повний текст джерела
Анотація:
Abstract Background The extracellular matrix (ECM) is a major component of the tumor microenvironment, contributing to the regulation of cell survival, proliferation, differentiation and metastasis. In multiple myeloma (MM), interactions between MM cells and the bone marrow (BM) microenvironment, of which the ECM forms a major component, are critical to the pathogenesis of the disease and the development of drug resistance. To date, despite some knowledge of the composition of the ECM in tumors, detailed profiling of the composition of the ECM in MM has not been carried out. Until recently ECM proteins have proven difficult to characterize due to their biochemical properties and large size. Recent advances in proteomics have led to the characterization of the ECM and ECM-associated proteins (“matrisome”) in normal human tissues and tumors using a systematic and comprehensive approach. Methods Tumor Xenograft models; MM1S-GFP-Luc+ cells (5x106) were injected intravenously into SCID-Bg mice (n=4/group) and animals underwent weekly bioluminescent imaging (BLI). Mice were sacrificed after 2 weeks in order to mimic early tumor development (luminescence = 1x105 p/sec/cm2/sr) or 5 weeks (1x108 p/sec/cm2/sr) to model more advanced MM. Human bone marrow aspirates; Whole bone marrow was obtained from newly diagnosed MM patients (n=9) and healthy human donors (ND) (n=4) following written informed consent. ECM proteins were enriched from bone marrow samples obtained from MM patients, NDs and mice according to previously published methods.Tandem Mass Spectrometry (LC-MS/MS): Peptides were run using reversed-phase microcapillary liquid chromatography – tandem mass spectrometry (LC-MS/MS) on a high resolution hybrid Orbitrap Elite mass spectrometer. MS/MS data were searched against the UniProt Human database using MASCOT to identify proteins. Spectral counts were used as a semi-quantitative measure of abundance. ECM proteins were defined according to the in-silico definition of the matrisome. Validation of expression of ECM mRNA in MM cell lines (MM1s, RPMI-8226 and U266) and in CD138+ cells and bone marrow stromal cells (BMSC’s) from MM patients in comparison to NDs was performed using qRT-PCR. Results Primary myeloma sample ECM; Using a spectral count of 2 as a cutoff of peptide abundance we identified a total of 536 unique proteins in ND bone marrow of which 35 are defined as matrisome proteins. 982 unique proteins were enriched from whole bone marrow samples of newly diagnosed MM patients of which 26 are defined as matrisome proteins, 7 unique proteins were identified as ECM or ECM-associated in newly diagnosed patients which were not detected in the ND samples including PRG3, FGG, LEG10, TLN1 and PLEC. Critical ECM components such as laminins, matrix metalloproteinases and collagens were also found to be significantly altered in newly diagnosed MM with evidence of destruction of ECM components in active disease. Tumor Xenograft ECM; In mice with an earlier phase of human MM1s cell tumor burden we detected a total of 329 unique proteins of which 48 were defined as matrisome proteins, 23 of these proteins were unique to the earlier phase of MM in these mice. Mice with more advanced tumor development had unique ECM proteins which were not detected in the earlier disease stage including collagens, laminins and matrix metalloproteinases, indicating that these ECM components may be critical for re-modelling the ECM in MM. Interestingly, in our xenograft model of MM we were able to detect both human and mouse ECM components indicating that the tumor ECM is secreted from both the murine stroma and the human MM cells and allowing delineation of the source of individual ECM components. This indicates that as MM progresses certain ECM components, including FBN1, which were initially derived from stroma are later derived from MM cells. Differential expression of ECM components, including FBN1 between normal and malignant plasma cells was confirmed using qRT-PCR. Conclusions We have performed proteomic profiling of the unique tumor ECM in MM using mass spectrometry with a view to determining the specific components that may be altered with disease progression. Through this approach plasma-cell-derived ECM can be identified with a view to developing therapeutic strategies in this disease. Disclosures Glavey: BMS: Consultancy, Research Funding. Palumbo:Bristol-Myers Squibb: Consultancy, Honoraria; Genmab A/S: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Janssen-Cilag: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria; Onyx Pharmaceuticals: Consultancy, Honoraria; Array BioPharma: Honoraria; Amgen: Consultancy, Honoraria; Sanofi: Honoraria. Ghobrial:Onyx: Advisory board Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Iyoda, Takuya, та Fumio Fukai. "Modulation of Tumor Cell Survival, Proliferation, and Differentiation by the Peptide Derived from Tenascin-C: Implication ofβ1-Integrin Activation". International Journal of Cell Biology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/647594.

Повний текст джерела
Анотація:
Cell adhesion to extracellular matrix (ECM) participates in various biological processes, such as cell survival, proliferation, differentiation, and migration. Since these processes are essential for keeping homeostasis, aberration of these processes leads to a variety of diseases including cancer. Previously, we found that a peptide derived from tenascin- (TN-) C, termed TNIIIA2, stimulates cell adhesion to ECM through activation ofβ1-integrin. It has been shown that TNIIIA2 can modulate cell proliferation and differentiation. Interestingly, TNIIIA2 could not only enhance cell proliferation but also induce apoptotic cell death, depending on cellular context. In this review, we show the function of the peptide TNIIIA2 in cell survival, proliferation, and differentiation and refer to the possibility of new strategy for tumor suppression by regulating cell adhesion status using the ECM-derived functional peptides.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Graham, L. L., T. Friel, and R. L. Woodman. "Fibronectin enhances Campylobacter fetus interaction with extracellular matrix components and INT 407 cells." Canadian Journal of Microbiology 54, no. 1 (January 2008): 37–47. http://dx.doi.org/10.1139/w07-115.

Повний текст джерела
Анотація:
Campylobacter fetus is a recognized pathogen of cattle and sheep that can also infect humans. No adhesins specific for C. fetus have to date been identified; however, bacterial attachment is essential to establish an infecting population. Scanning electron microscopy revealed C. fetus attachment to the serosal surface of human colonic biopsy explants, a location consistent with the presence of the extracellular matrix (ECM). To determine whether the ECM mediated C. fetus adherence, 7 C. fetus strains were assessed in a solid-phase binding assay for their ability to bind to immobilized ECM components. Of the ECM components assayed, adherence to fibronectin was noted for all strains. Attachment to ECM components was neither correlated with S-layer expression nor with cell-surface hydrophobicity. Ligand immunoblots, however, identified the S-layer protein as a major site of fibronectin binding, and modified ECM binding assays revealed that soluble fibronectin significantly enhanced the attachment of S-layer-expressing C. fetus strains to other ECM components. Soluble fibronectin also increased C. fetus adherence to INT 407 cells. This adherence was inhibited when INT 407 cells were incubated with synthetic peptides containing an RGD sequence, indicating that integrin receptors were involved in fibronectin-mediated attachment. Together, this data suggests that C. fetus can bind to immobilized fibronectin and use soluble fibronectin to enhance attachment to other ECM components and intestinal epithelial cells. In vivo, fibronectin would promote bacterial adherence, thereby, contributing to the initial interaction of C. fetus with mucosal and submucosal surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Huet, C., C. Pisselet, B. Mandon-Pepin, P. Monget, and D. Monniaux. "Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function." Journal of Endocrinology 169, no. 2 (May 1, 2001): 347–60. http://dx.doi.org/10.1677/joe.0.1690347.

Повний текст джерела
Анотація:
The extracellular matrix (ECM), constituting the follicular basal lamina and present also between follicular cells and in the follicular fluid, is believed to regulate granulosa cell (GC) function during follicular development. Ovine GCs isolated from small (1-3 mm in diameter) or large (4-7 mm in diameter) antral follicles were cultured on various pure ECM components (type I collagen, fibronectin, laminin), synthetic substrata enhancing (RGD peptides) or impairing (poly 2-hydroxyethylmethacrylate (poly-hema)) cell adhesion, or in the presence of heparin. The effects of these factors, used alone or in combination with IGF-I and/or FSH, were evaluated in terms of GC spread, survival, proliferation and steroidogenesis. When grown on type I collagen (CI) gel, poly-hema or heparin, GCs from both large and small follicles exhibited a round shape and a low proliferation rate. Compared with non-coated plastic substratum as a control, these ECM or synthetic compounds enhanced estradiol secretion and reduced progesterone secretion by large-follicle GCs. In contrast, GCs from both large and small follicles spread extensively on CI coating, fibronectin, laminin and RGD peptides. Fibronectin and laminin dramatically increased the proliferation rate and enhanced survival of GCs from both origins. Moreover, fibronectin, laminin and RGD peptides reduced estradiol secretion by large-follicle GCs. Unexpectedly, CI coating increased estradiol secretion and reduced progesterone secretion by large-follicle GCs, suggesting that type I collagen was able to maintain estradiol secretion independently of GC shape. Finally, GC responsiveness to IGF-I and FSH, in terms of proliferation and steroidogenesis, was generally maintained when cells were grown on ECM components, RGD peptides and in the presence of heparin. However, when large-follicle GCs were grown as non-adherent clusters (as observed on poly-hema) basal and IGF-I- and/or FSH-stimulated progesterone secretions were totally abolished. Overall, this study shows that GC shape, survival, proliferation and steroidogenesis can be modulated in vitro by pure ECM components in a specific and coordinated manner. It is suggested that, in vivo, fibronectin and laminin would sustain follicular development by enhancing the survival and proliferation of GCs, whereas type I collagen might participate in the maintenance of estradiol secretion in large antral follicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hulahan, Taylor S., Yeonhee Park, Laura Spruill, Hari Nakshatri, Marvella Ford, and Peggi M. Angel. "429 Spatial Investigation of the Extracellular Matrix Metastatic Niche in Invasive Breast Cancer by Mass Spectrometry Imaging." Journal of Clinical and Translational Science 8, s1 (April 2024): 128. http://dx.doi.org/10.1017/cts.2024.371.

Повний текст джерела
Анотація:
OBJECTIVES/GOALS: Metastasis to regional areas decreases invasive breast cancer (IBC) survival rate by 13%. Despite the clinical importance of lymph node involvement, the role of extracellular matrix (ECM) remodeling in metastases is unknown. We hypothesize that the spatial dysregulation of the collagen proteome facilitates pro-tumorigenic immune infiltration. METHODS/STUDY POPULATION: Lymph node metastases were compared to patient-matched primary tumor and normal lymph nodes using tissue microarrays (TMA) from 31 generational South Carolina women with IBC (black women, BW n=10, white women, WW n=21) and lumpectomies from 5 triple-negative breast cancer (TNBC) patients (BW n=3; WW n=2) by ECM-targeted mass spectrometry imaging. RESULTS/ANTICIPATED RESULTS: Between metastatic and normal lymph nodes, 10% of peptides, primarily from fibrillar collagens, were significantly different by area under the receiver operating curve (AUROC>70%; p-value< 0.01) within the TMAs. In a subsequent preliminary study of the TNBC metastatic niche, a segmentation analysis of 152 putatively identified peptides and 117,909 pixels revealed 10 uniquely localized proteomic groups. 12 peptides were found to have significantly decreased relative peak intensities in lymph node metastases compared to the primary tumor and normal lymph nodes by a one-way ANOVA test (p< 0.05). 7 peptides could discriminate between metastatic and normal lymph nodes, while 22 peptides could discriminate between metastatic lymph nodes and the primary tumor (AUROC>0.70; p-value < 0.05). DISCUSSION/SIGNIFICANCE: Our preliminary interrogation highlights emerging differences between lymph node metastases, the primary tumor, and normal lymph nodes. Future work is needed to connect these discrete ECM proteomes to immune infiltration alterations, which could contribute to disparate patient outcomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Liu, Yuying, Jianping Gao, Lin Liu, Jiyao Kang, Xi Luo, Yingjun Kong, and Guifeng Zhang. "Identification and Characterization of Fibronectin-Binding Peptides in Gelatin." Polymers 14, no. 18 (September 8, 2022): 3757. http://dx.doi.org/10.3390/polym14183757.

Повний текст джерела
Анотація:
Collagen and fibronectin (FN) are important components in the extracellular matrix (ECM). Collagen-FN binding belongs to protein-protein interaction and plays a key role in regulating cell behaviors. In this study, FN-binding peptides were isolated from gelatin (degraded collagen) using affinity chromatography, and the amino acid sequences were determined using HPLC-MS. The results indicated that all FN-binding peptides contained GPAG or GPPG. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and dual-polarization interferometry (DPI) were used to analyze the effects of hydroxylation polypeptide on FN binding activity. DPI analysis indicated that peptides with molecular weight (MW) between 2 kDa and 30 kDa showed higher FN-binding activity, indicating MW range played an important role in the interaction between FN and peptides. Finally, two peptides with similar sequences except for hydroxylation of prolines were synthesized. The FN-binding properties of the synthesized peptides were determined by MALDI-TOF MS. For peptide, GAPGADGP*AGAPGTP*GPQGIAGQR, hydroxylation of P8 and P15 is necessary for FN-binding. For peptide, GPPGPMGPPGLAGPPGESGR, the FN-binding process is independent of proline hydroxylation. Thus, FN-binding properties are proline-hydroxylation dependent.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Biela, Sarah, Britta Striegl, Kerstin Frey, Joachim P. Spatz, and Ralf Kemkemer. "Distance-dependent adhesion of vascular cells on biofunctionalized nanostructures." Current Directions in Biomedical Engineering 3, no. 2 (September 7, 2017): 683–86. http://dx.doi.org/10.1515/cdbme-2017-0144.

Повний текст джерела
Анотація:
AbstractCell-cell and cell-extracellular matrix (ECM) adhesion regulates fundamental cellular functions and is crucial for cell-material contact. Adhesion is influenced by many factors like affinity and specificity of the receptor-ligand interaction or overall ligand concentration and density. To investigate molecular details of cell-ECM and cadherins (cell-cell) interaction in vascular cells functional nanostructured surfaces were used Ligand-functionalized gold nanoparticles (AuNPs) with 6-8 nm diameter, are precisely immobilized on a surface and separated by non-adhesive regions so that individual integrins or cadherins can specifically interact with the ligands on the AuNPs. Using 40 nm and 90 nm distances between the AuNPs and functionalized either with peptide motifs of the extracellular matrix (RGD or REDV) or vascular endothelial-cadherins (VEC), the influence of distance and ligand specificity on spreading and adhesion of endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. We demonstrate that RGD-dependent adhesion of vascular cells is similar to other cell types and that the distance dependence for integrin binding to ECM-peptides is also valid for the REDV motif. VEC-ligands decrease adhesion significantly on the tested ligand distances. These results may be helpful for future improvements in vascular tissue engineering and for development of implant surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wu, Chi-Chung, Sylvia Jeratsch, Johannes Graumann, and Didier Y. R. Stainier. "Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix." Circulation Research 127, no. 7 (September 11, 2020): 896–907. http://dx.doi.org/10.1161/circresaha.119.316303.

Повний текст джерела
Анотація:
Rationale: After birth, cycling mammalian CMs (cardiomyocytes) progressively lose the ability to undergo cytokinesis and hence they become binucleated, which leads to cell cycle exit and loss of regenerative capacity. During late embryonic and early postnatal heart growth, CM development is accompanied by an expansion of the cardiac fibroblast (cFb) population and compositional changes in the ECM (extracellular matrix). Whether and how these changes influence cardiomyocyte cytokinesis is currently unknown. Objective: To elucidate the role of postnatal cFbs and the ECM in cardiomyocyte cytokinesis and identify ECM proteins that promote cardiomyocyte cytokinesis. Methods and Results: Using primary rat cardiomyocyte cultures, we found that a proportion of postnatal, but not embryonic, cycling cardiomyocytes fail to progress through cytokinesis and subsequently binucleate, consistent with published reports of in vitro and in vivo observations. Direct coculture with postnatal cFbs increased cardiomyocyte binucleation, which could be inhibited by RGD peptide treatment. In contrast, cFb-conditioned medium or transwell coculture did not significantly increase cardiomyocyte binucleation, suggesting that cFbs inhibit cardiomyocyte cytokinesis through ECM modulation rather than by secreting diffusible factors. Furthermore, we found that both embryonic and postnatal CMs binucleate at a significantly higher rate when cultured on postnatal cFb-derived ECM compared with embryonic cFb-derived ECM. These cytokinetic defects correlate with cardiomyocyte inefficiency in mitotic rounding, a process which is key to successful cytokinesis. To identify ECM proteins that modulate cardiomyocyte cytokinesis, we compared the composition of embryonic and postnatal cFb-derived ECM by mass spectrometry followed by functional assessment. We found that 2 embryonically enriched ECM proteins, SLIT2 and NPNT (nephronectin), promote cytokinesis of postnatal CMs in vitro and in vivo. Conclusions: We identified the postnatal cardiac ECM as a nonpermissive environment for cardiomyocyte cytokinesis and uncovered novel functions for the embryonic ECM proteins SLIT2 and NPNT (nephronectin) in promoting postnatal cardiomyocyte cytokinesis. Graphic Abstract: A graphic abstract is available for this article.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Fujita, Motomichi, Manabu Sasada, Takuya Iyoda, and Fumio Fukai. "Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide." Molecules 25, no. 14 (July 16, 2020): 3239. http://dx.doi.org/10.3390/molecules25143239.

Повний текст джерела
Анотація:
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bat, V., C. Jones, F. Boudreau, N. Faucheux, and N. Perreault. "A150 DEVELOPMENT OF MIMETIC MATRICES AS INSTRUCTIVE ORGANOIDS MICROENVIRONMENT FOR THE STUDY OF COLONIC DISEASES." Journal of the Canadian Association of Gastroenterology 7, Supplement_1 (February 14, 2024): 115–16. http://dx.doi.org/10.1093/jcag/gwad061.150.

Повний текст джерела
Анотація:
Abstract Background The functional complexity of the colonic epithelium is dependent on its interaction with the microenvironment involving gradients of soluble factors, extracellular matrix (ECM) proteins and stiffness. The influence of dynamic changes in the ECM has been observed in tumours, with variations in protein expression and rigidity. Their biomolecular impacts on epithelial cell behaviour are less studied due to the structural complexity of the matrix. Organoids offers a novel approach for the study of ECM biodynamics, as they require a matrix (Matrigel) to develop. Previous work showed that it is possible to grow organoids in hydrogels other than Matrigel. To evaluate the effect of matrix composition alteration on cancer initiation, we developed biofunctionalized composite hydrogels that mimic the ECM changes (chemical and physical) observed in the BmpR1a-deficient telocytes Foxl1 + (Bmpr1a△Foxl1+) mouse model of colorectal cancer (CRC) initiation. Aims The development of mimetic matrices, in association with organoids, would enable us to uncover the impact of matrix deregulation on colonic cells behaviour in pathogenesis process. Methods These hydrogels were made of alginate and 8-arm polyethylene glycol- vinyl sulfone (PEG) macromers bearing cysteine residues (CYS) and peptides. Four peptides derived from fibronectin, laminin 111, collagen I and collagen IV were used to mimic the ECM changes in the Bmpr1a△Foxl1+ colon. The grafting of CYS on alginate or peptides on PEG macromers was first characterized by thiol quantification assays. The non-grafted peptides were also analysed by uHPLC. Stiffness of the hydrogels was then determined by dynamic mechanical analysis. Finally, normal mouse organoids were seeded on hydrogels and evaluated for survival by live/dead labeling and proliferation by Alamar blue assays. Matrigel was used as a control. Results Chemical characterization revealed that CYS were grafted onto the alginate chain at around 190 μmol/g alginate. The PEG macromers were functionalized with four peptides at concentration varying from 0.25 to 1.5 mM. Rigidity of the hydrogels depends on the concentration of alginate used where lower concentration leads to soft matrix (0.5 kPa, homeostasis) and high concentration produced a stiff matrix (4 kPa, diseased). Organoids seeded in these mimetic composite hydrogels survived and proliferated in comparison to alginate alone. Conclusions Our results indicate that we can develop mimetic composite hydrogels where colon organoids can survive and thrive. This is a breakthrough model for defining the roles of ECM mechanical and biochemical stimuli in epithelial behaviour during the initiation and development of CRC. Funding Agencies CIHR
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Suttinont, Chawapun, Yasumasa Mashimo, Masayasu Mie, and Eiry Kobatake. "Delivery of bFGF for Tissue Engineering by Tethering to the ECM." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/208089.

Повний текст джерела
Анотація:
Delivery of growth factors to target cells is an important subject in tissue engineering. Towards that end, we have developed a growth factor-tethered extracellular matrix (ECM). Here, basic fibroblast growth factor (bFGF) was tethered to extracellular matrix noncovalently. The designed ECM was comprised of 12 repeats of the APGVGV peptide motif derived from elastin as a stable structural unit and included the well-known cell adhesive RGD peptide as an active functional unit. To bind bFGF to the ECM, an acidic amino acid-rich sequence was introduced at the C-terminus of the ECM protein. It consisted of 5 repeats of 4 aspartic acids and a serine, DDDDS. bFGF has a highly basic amino acid domain. Therefore, bFGF was tethered to the ECM protein by electrostatic interaction. Cells cultured on bFGF-tethered ECM were well attached to the ECM and induced proliferation without addition of soluble bFGF.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Goke, M., A. Zuk, and D. K. Podolsky. "Regulation and function of extracellular matrix intestinal epithelial restitution in vitro." American Journal of Physiology-Gastrointestinal and Liver Physiology 271, no. 5 (November 1, 1996): G729—G740. http://dx.doi.org/10.1152/ajpgi.1996.271.5.g729.

Повний текст джерела
Анотація:
Repair of epithelial injury in the gastrointestinal tract is initially accomplished by migration of epithelial cells from the wound edge (“restitution”). To assess expression and function of the extracellular matrix (ECM) in the restitution phase after epithelial injury, in vitro studies using wounded monolayers or a rat intestinal epithelium-derived cell line (IEC-6) were undertaken. IEC-6 cells expressed fibronectin (FN) mRNA and protein in large amounts and lesser quantities of laminin-beta 1 (LN beta 1) and LN gamma 1. Collagen IV (Col IV) was weakly expressed, and LN alpha 1 was not detected. After wounding a significant decrease in FN, LN beta 1, LN gamma 1, and Col IV alpha 1 mRNA steady-state levels was observed; mean content 24 h after wounding was reduced by 75–90%. FN, LN, and Col IV proteins were also reduced. The downregulation of these ECM transcripts and proteins could be substantially prevented by transforming growth factor-beta 1, a restitution-promoting growth factor. In addition to changes of expression, the distribution of FN and LN was also altered in migrating cells after wounding, as assessed by immunofluorescence. Arg-Gly-Asp peptides that recognize the major cell attachment site on FN and antibodies recognizing the main noncollagenous domain of Col IV inhibited cell migration, but immunoneutralizing anti-LN antisera did not affect restitution. In conclusion, although paradoxically downregulated after wounding, ECM proteins, in particular FN and Col IV molecules, are able to enhance intestinal epithelial restitution.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Jariwala, Nathan, Matiss Ozols, Alexander Eckersley, Rachel Watson, Bezaleel Mambwe, Andrew Gilmore, Laurent Debelle, et al. "P13 Prediction and in vitro characterization of tetrapeptide matrikines with diverse effects on human dermal fibroblasts." British Journal of Dermatology 189, no. 1 (July 2023): e18-e19. http://dx.doi.org/10.1093/bjd/ljad174.034.

Повний текст джерела
Анотація:
Abstract The extracellular matrices (ECMs) of mammalian tissues play important roles in mediating and maintaining tissue function. However, aberrant and progressive remodelling of ECM components is a key feature in the pathology and ageing of many organs, including skin. Crucially, these degradative processes not only impair function, but may also release peptide fragments, known as matrikines, with cell signalling capabilities. In addition to endogenously produced matrikines, many exogenously applied bioactive peptides, with proven activity in skin, are homologous to naturally occurring amino acid sequences within ECM proteins. Despite the ability of some peptides to induce clinical benefits in aged skin, there has been no published conceptual framework to guide the prediction of new therapeutic matrikines. Here, we tested the hypothesis that small bioactive peptides (matrikines) can be predicted by the in silico digestion of dermal proteins by ECM proteases. We first identified a target cohort of 27 ECM proteins that were abundant in the dermis and/or were reported to undergo age-related remodelling. Utilizing an established machine-learning tool (PROSPER) we developed a PYTHON algorithm that could predict peptides liberated by in silico cleavage with eight skin-active enzymes [matrix metalloproteinase (MMP)-2, MMP-3, MMP-7 and MMP-9, cathepsin G and cathepsin K, granzyme B and elastase-2]. For the 27 target proteins this approach predicted the identity of 453 tetrapeptides. These peptides were predicted to be liberated predominantly from collagens (I, III, IV, VI and VII), some elastic fibre-associated proteins (EMILIN1 and fibulin-1) and the adhesive glycoprotein fibronectin. Eight peptides were selected for synthesis and biological activity testing based on their predicted protein sources, high solubility and likelihood of successful manufacture. The ability of these peptides to promote ECM synthesis (procollagen I, fibronectin, decorin, collagen IV, hyaluronic acid and fibrillin-1) in cultured human dermal fibroblasts (HDFs) was assessed by enzyme-linked immunosorbent assay or immunofluorescence (fibrillin-1 only). With the exception of hyaluronic acid, all of the peptides enhanced the synthesis of at least some ECM markers, including procollagen-I and decorin. Deposition of fibrillin-1, which is a sensitive marker of both skin ageing and repair, was significantly enhanced by three peptides. The ability of the peptides to influence the wider HDF secretome was assessed by liquid chromatography tandem mass spectrometry proteomics. Four of the peptides modulated synthesis of proteins in a wide range of functional classes, including enzyme inhibitors, ECM-affiliated proteins, cell adhesion molecules and basement membrane components, while the remaining four exhibited more targeted activities. We conclude that bioinformatic prediction of cleaved peptide fragments from ECM proteins can identify multiple small peptides with potentially beneficial activities for skin. This approach can both identify new matrikines and provide insights into the mechanisms underpinning tissue repair. Funding sources: this study was funded by the No. 7 Beauty Company.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sottile, Jane, Feng Shi, Inna Rublyevska, Hou-Yu Chiang, Joseph Lust, and Jennifer Chandler. "Fibronectin-dependent collagen I deposition modulates the cell response to fibronectin." American Journal of Physiology-Cell Physiology 293, no. 6 (December 2007): C1934—C1946. http://dx.doi.org/10.1152/ajpcell.00130.2007.

Повний текст джерела
Анотація:
Communication between cells and the extracellular matrix (ECM) is critical for regulation of cell growth, survival, migration, and differentiation. Remodeling of the ECM can occur under normal physiological conditions, as a result of tissue injury, and in certain pathological conditions. ECM remodeling leads to alterations in ECM composition and organization that can alter many aspects of cell behavior, including cell migration. The cell migratory response varies depending on the type, amount, and organization of ECM molecules present, as well as the integrin and proteoglycan repertoire of the cells. We and others have shown that the deposition of several ECM molecules, including collagen types I and III, depends on the presence and stability of ECM fibronectin. Hence, the effect of fibronectin and fibronectin matrix on cell function may partially depend on its ability to direct the deposition of collagen in the ECM. In this study, we used collagen-binding fibronectin mutants and recombinant peptides that interfere with fibronectin-collagen binding to show that fibronectin-dependent collagen I deposition regulates the cell migratory response to fibronectin. These data show that the ability of fibronectin to organize other proteins in the ECM is an important aspect of fibronectin function and highlight the importance of understanding how interactions between ECM proteins influence cell behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Pedrosa, Catarina R., Christel Chanseau, Christine Labrugère, Sivashankar Krishnamoorthy, and Marie-Christine Durrieu. "Mesenchymal Stem Cell Differentiation Driven by Osteoinductive Bioactive Nanoscale Topographies." Applied Sciences 11, no. 23 (November 25, 2021): 11209. http://dx.doi.org/10.3390/app112311209.

Повний текст джерела
Анотація:
Human mesenchymal stem cells (hMSCs) respond to the characteristics of their surrounding microenvironment, i.e., their extracellular matrix (ECM). The possibility of mimicking the ECM offers the opportunity to elicit specific cell behaviors. The control of surface properties of a biomaterial at the scale level of the components of the ECM has the potential to effectively modulate cell response. Ordered nanoscale silicon pillar arrays were fabricated using reverse micelles of block copolymers on full wafers, with standard deviations lower than 15%. Bioactive synthetic peptides were covalently grafted on nanoarrays to evaluate possible synergies between chemistry and topography on osteogenic differentiation of hMSCs. Functionalization with RGD (Arg-Gly-Asp) and BMP-2 (bone morphogenetic protein-2) mimetic peptides lead to an enhancement of osteogenic differentiation. Bare nanopillar arrays of reduced pitch were found to promote faster hMSC differentiation. These findings highlight the relevance of investigating possibilities of engineering in vitro systems which can be fine-tuned according to the envisaged cell response.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

de Cavanagh, Elena MV, Marcelo Ferder, Felipe Inserra, and Leon Ferder. "Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint." American Journal of Physiology-Heart and Circulatory Physiology 296, no. 3 (March 2009): H550—H558. http://dx.doi.org/10.1152/ajpheart.01176.2008.

Повний текст джерела
Анотація:
Malfunctioning mitochondria strongly participate in the pathogenesis of cardiovascular damage associated with hypertension and other disease conditions. Eukaryotic cells move, assume their shape, resist mechanical stress, accommodate their internal constituents, and transmit signals by relying on the constant remodeling of cytoskeleton filaments. Mitochondrial ATP is needed to support cytoskeletal dynamics. Conversely, mitochondria need to interact with cytoskeletal elements to achieve normal motility, morphology, localization, and function. Extracellular matrix (ECM) quantity and quality influence cellular growth, differentiation, morphology, survival, and mobility. Mitochondria can sense ECM composition changes, and changes in mitochondrial functioning modify the ECM. Maladaptive ECM and cytoskeletal alterations occur in a number of cardiac conditions and in most types of glomerulosclerosis, leading to cardiovascular and renal fibrosis, respectively. Angiotensin II (ANG II), a vasoactive peptide and growth factor, stimulates cytosolic and mitochondrial oxidant production, eventually leading to mitochondrial dysfunction. Also, by inducing integrin/focal adhesion changes, ANG II regulates ECM and cytoskeletal composition and organization and, accordingly, contributes to the pathogenesis of cardiovascular remodeling. ANG II-initiated integrin signaling results in the release of transforming growth factor-β1 (TGF-β1), a cytokine that modifies ECM composition and structure, induces reorganization of the cytoskeleton, and modifies mitochondrial function. Therefore, it is possible to hypothesize that the depression of mitochondrial energy metabolism brought about by ANG II is preceded by ANG II-induced integrin signaling and the consequent derangement of the cytoskeletal filament network and/or ECM organization. ANG II-dependent TGF-β1 release is a potential link between ANG II, ECM, and cytoskeleton derangements and mitochondrial dysfunction. It is necessary to emphasize that the present hypothesis is among many other plausible explanations for ANG II-mediated mitochondrial dysfunction. A potential limitation of this proposal is that the results compiled here were obtained in different cells, tissues, and/or experimental models.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Puah, Perng Yang. "ID2015 Preparation of graphene oxide/oligopeptides composite for promoting mesenchymal stem cell proliferation." Biomedical Research and Therapy 4, S (September 5, 2017): 48. http://dx.doi.org/10.15419/bmrat.v4is.258.

Повний текст джерела
Анотація:
Human mesenchymal stem cells (hMSCs) treatments are being tested clinically for a range of disorders. However, ex vivo expansion of hMSCs is still depending on human or animal source extracellular matrix (ECM) molecules. These ECM molecules are expensive to manufacture, have limited scalability and high batch-to-batch variability. Surface modification techniques have been instrumental in the development of scaffolds that promote cell-surface interactions. In this study, the surface of graphene oxide (GO) was modified in order to promote the attachment and proliferation of mesenchymal stem cells (hMSCs). YIGSR, WYQNMIR, IKVAV and QHREDGS peptide sequences derived from ECM adhesion peptides were combined alternatively to form oligopeptides and each oligopeptide was attached to GO through π-π and electrostatic interactions. The presence of peptide bond in the GO/peptide composites were confirmed by using modified Lowry method. The GO/Peptide-IKVAV composite showed increase proliferation rate and better attachment of hMSCs at day 1 as compared to GO substrate. In addition, the GO/Peptide-IKVAV composite proved to be a suitable environment for the time-dependent viability of hMSCs. The data obtained here collectively demonstrates that the GO/Peptide-IKVAV composite is a potential substrate for the adhesion and proliferation of hMSCs
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Carvalho, Marta S., Joaquim M. S. Cabral, Cláudia L. da Silva, and Deepak Vashishth. "Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix." Polymers 13, no. 7 (March 30, 2021): 1095. http://dx.doi.org/10.3390/polym13071095.

Повний текст джерела
Анотація:
Engineering biomaterials that mimic the extracellular matrix (ECM) of bone is of significant importance since most of the outstanding properties of the bone are due to matrix constitution. Bone ECM is composed of a mineral part comprising hydroxyapatite and of an organic part of primarily collagen with the rest consisting on non-collagenous proteins. Collagen has already been described as critical for bone tissue regeneration; however, little is known about the potential effect of non-collagenous proteins on osteogenic differentiation, even though these proteins were identified some decades ago. Aiming to engineer new bone tissue, peptide-incorporated biomimetic materials have been developed, presenting improved biomaterial performance. These promising results led to ongoing research focused on incorporating non-collagenous proteins from bone matrix to enhance the properties of the scaffolds namely in what concerns cell migration, proliferation, and differentiation, with the ultimate goal of designing novel strategies that mimic the native bone ECM for bone tissue engineering applications. Overall, this review will provide an overview of the several non-collagenous proteins present in bone ECM, their functionality and their recent applications in the bone tissue (including dental) engineering field.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Goldbloom-Helzner, Leora, Dake Hao, and Aijun Wang. "Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides." International Journal of Molecular Sciences 20, no. 17 (August 21, 2019): 4072. http://dx.doi.org/10.3390/ijms20174072.

Повний текст джерела
Анотація:
Collagen is the most widespread extracellular matrix (ECM) protein in the body and is important in maintaining the functionality of organs and tissues. Studies have explored interventions using collagen-targeting tissue engineered techniques, using collagen hybridizing or collagen binding peptides, to target or treat dysregulated or injured collagen in developmental defects, injuries, and diseases. Researchers have used collagen-targeting peptides to deliver growth factors, drugs, and genetic materials, to develop bioactive surfaces, and to detect the distribution and status of collagen. All of these approaches have been used for various regenerative medicine applications, including neovascularization, wound healing, and tissue regeneration. In this review, we describe in depth the collagen-targeting approaches for regenerative therapeutics and compare the benefits of using the different molecules for various present and future applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Peterson, Julie A., Susan A. Maroney, Nicholas D. Martinez та Alan E. Mast. "Major Reservoir for Heparin-Releasable TFPIα (Tissue Factor Pathway Inhibitor α) Is Extracellular Matrix". Arteriosclerosis, Thrombosis, and Vascular Biology 41, № 6 (червень 2021): 1942–55. http://dx.doi.org/10.1161/atvbaha.120.315728.

Повний текст джерела
Анотація:
Objective: Human endothelial cells produce 2 alternatively spliced TFPI (tissue factor pathway inhibitor) isoforms that maintain anticoagulant properties of the vasculature. TFPIβ is glycosylphosphatidylinositol anchored on the cell surface. TFPIα has a basic C terminus sharing homology with VEGF (vascular endothelial growth factor) and is a heparin-releasable protein, suggesting it binds glycosaminoglycans on the endothelium surface. However, this is unclear because TFPIα is not on the surface of cultured endothelial cells. This study identifies the source of heparin-releasable TFPIα. Approach and Results: ELISA assays localized heparin-releasable TFPIα to the extracellular matrix (ECM) of Ea.hy926 cells and human umbilical vein endothelial cells. Immunofluorescence microscopy for TFPIα showed punctate intracytoplasmic staining and ECM staining beneath individual cells. Flow cytometry identified TFPIβ but not TFPIα on the cell surface. TFPIα localization to ECM was confirmed with ELISA and immunohistochemistry studies of umbilical cord veins. The TFPIα C terminus interacted with Ea.hy926 ECM glycosaminoglycans, and a homologous VEGF peptide competed for this binding, suggesting these interactions modulate VEGF responses. Immobilized TFPIα C-terminal peptide bound to several ECM proteoglycans in Ea.hy926 conditioned media. Immunofluorescence studies of human kidney colocalized TFPIα with 4 of these proteoglycans surrounding the microvasculature: glypican-1, syndecan-4, thrombospondin, and laminin-5. The absence of TFPIα on the surface of endothelial cells and its co-localization with specific ECM proteins suggests TFPIα binds to unique proteoglycan structures. Conclusions: ECM contained the primary vascular pool of heparin-releasable TFPIα. By localizing to ECM, TFPIα is positioned to inhibit the procoagulant activity of tissue factor surrounding the vasculature.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Lingasamy, Prakash, Kristina Põšnograjeva, Sergei Kopanchuk, Allan Tobi, Ago Rinken, Ignacio J. General, Eliana K. Asciutto, and Tambet Teesalu. "PL1 Peptide Engages Acidic Surfaces on Tumor-Associated Fibronectin and Tenascin Isoforms to Trigger Cellular Uptake." Pharmaceutics 13, no. 12 (November 24, 2021): 1998. http://dx.doi.org/10.3390/pharmaceutics13121998.

Повний текст джерела
Анотація:
Tumor extracellular matrix (ECM) is a high-capacity target for the precision delivery of affinity ligand-guided drugs and imaging agents. Recently, we developed a PL1 peptide (sequence: PPRRGLIKLKTS) for systemic targeting of malignant ECM. Here, we map the dynamics of PL1 binding to its receptors Fibronectin Extra Domain B (FN-EDB) and Tenascin C C-isoform (TNC-C) by computational modeling and cell-free binding studies on mutated receptor proteins, and study cellular binding and internalization of PL1 nanoparticles in cultured cells. Molecular dynamics simulation and docking analysis suggested that the engagement of PL1 peptide with both receptors is primarily driven by electrostatic interactions. Substituting acidic amino acid residues with neutral amino acids at predicted PL1 binding sites in FN-EDB (D52N-D49N-D12N) and TNC-C (D39N-D45N) resulted in the loss of binding of PL1 nanoparticles. Remarkably, PL1-functionalized nanoparticles (NPs) were not only deposited on the target ECM but bound the cells and initiated a robust cellular uptake via a pathway resembling macropinocytosis. Our studies establish the mode of engagement of the PL1 peptide with its receptors and suggest applications for intracellular delivery of nanoscale payloads. The outcomes of this work can be used for the development of PL1-derived peptides with improved stability, affinity, and specificity for precision targeting of the tumor ECM and malignant cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Lorentz, Axel, Detlef Schuppan, Andreas Gebert, Michael P. Manns, and Stephan C. Bischoff. "Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins." Blood 99, no. 3 (February 1, 2002): 966–72. http://dx.doi.org/10.1182/blood.v99.3.966.

Повний текст джерела
Анотація:
Abstract Mast cells are inflammatory and immunoregulatory cells resident in tissues. They develop from bone marrow-derived progenitor cells that enter the tissue through the blood circulation. The specific localization and migration of mast cells in tissues is dependent on their interaction with extracellular matrix (ECM) proteins. Adhesion of human mast cells isolated from intestinal mucosa and cultured in the presence of stem cell factor (SCF) to ECM proteins is analyzed. It was observed that SCF is a unique cytokine enhancing mast cell adhesion to all tested ECM proteins (fibronectin, laminin, collagen I, III, IV, VI, XIV) up to 5-fold, particularly to fibronectin (54% ± 12% of mast cells) and to denatured collagens (40% ± 12% on cyanogen bromide-cleaved peptides of collagen I). Most noteworthy, preculture of mast cells with interleukin-4 (IL-4), in addition to SCF, reduced their potency to adhere to ECM proteins to one third compared to mast cells cultured with SCF alone. Mast cell adhesion was preferentially mediated by β1 integrins, and most cells expressed the ECM-binding integrins α2β1, α3β1, α4β1, α5β1, and αVβ3. SCF-induced mast cell adhesion was totally blocked by wortmannin and apigenin, indicating an involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase, and it was related to an up-regulation of the HUTS-21 β1 epitope, which is associated with an activated conformation of β1. In conclusion, these data indicate that SCF induces the adhesion of cultured mast cells to ECM proteins, whereas IL-4 may promote detachment from the ECM.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Gumpenberger, Matthias, Barbara Wessner, Alexandra Graf, Marco V. Narici, Christian Fink, Sepp Braun, Christian Hoser, Anthony J. Blazevich, and Robert Csapo. "Remodeling the Skeletal Muscle Extracellular Matrix in Older Age—Effects of Acute Exercise Stimuli on Gene Expression." International Journal of Molecular Sciences 21, no. 19 (September 25, 2020): 7089. http://dx.doi.org/10.3390/ijms21197089.

Повний текст джерела
Анотація:
With advancing age, the skeletal muscle extracellular matrix (ECM) undergoes fibrotic changes that may lead to increased muscle stiffness, injury susceptibility and strength loss. This study tested the potential of different exercises to counter these changes by stimulating the activity of genes associated with ECM remodeling. Twenty-six healthy men (66.9 ± 3.9 years) were stratified to two of four groups, performing unilateral (i) conventional resistance exercise, (ii) conventional resistance exercise followed by self-myofascial release (CEBR), (iii) eccentric-only exercise (ECC) or (iv) plyometric jumps (PLY). The non-trained leg served as control. Six hours post-exercise, vastus lateralis muscle biopsy samples were analyzed for the expression of genes associated with ECM collagen synthesis (COL1A1), matrix metallopeptidases (collagen degradation; MMPs) and peptidase inhibitors (TIMP1). Significant between-group differences were found for MMP3, MMP15 and TIMP1, with the greatest responses in MMP3 and TIMP1 seen in CEBR and in MMP15 in ECC. MMP9 (3.24–3.81-fold change) and COL1A1 (1.47–2.40-fold change) were increased in CEBR and PLY, although between-group differences were non-significant. The expression of ECM-related genes is exercise-specific, with CEBR and PLY triggering either earlier or stronger remodeling than other stimuli. Training studies will test whether execution of such exercises may help counter age-associated muscle fibrosis.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Papadimitriou, E., V. G. Manolopoulos, G. T. Hayman, M. E. Maragoudakis, B. R. Unsworth, J. W. Fenton, and P. I. Lelkes. "Thrombin modulates vectorial secretion of extracellular matrix proteins in cultured endothelial cells." American Journal of Physiology-Cell Physiology 272, no. 4 (April 1, 1997): C1112—C1122. http://dx.doi.org/10.1152/ajpcell.1997.272.4.c1112.

Повний текст джерела
Анотація:
We have identified a novel cellular action of thrombin on cultured rat adrenal medullary endothelial cells (RAMEC). Five-minute incubation of RAMEC with physiological concentrations of thrombin (<1 U/ml) caused within 3 h an increase in the basolateral deposition of the extracellular matrix (ECM) proteins fibronectin, laminin, and collagens IV and I, concomitant with a corresponding decrease in the apical release of these proteins into the medium. This shift in vectorial secretion of ECM proteins, quantitated with enzyme-linked immunoassays, was time dependent. Maximal stimulation of ECM protein deposition was observed after incubation of cells with thrombin for 5-15 min. Prolonged exposure (>1 h) to thrombin resulted in loss of proteins from the ECM. Thrombin-stimulated ECM protein deposition exhibited a bell-shaped dose dependence, peaking for all proteins at 0.25 U/ml of thrombin, and was independent of de novo mRNA or protein synthesis. Maximal amounts of deposited proteins increased between 2.5-fold (fibronectin) and 4-fold (collagen I) over baseline values. Similar results were obtained with thrombin receptor agonist peptide (TRAP), proteolytically active gamma-thrombin, and, to a lesser extent, other serine proteases such as trypsin and plasmin. A scrambled TRAP, proteolytically inactive PPACK-thrombin, DIP-thrombin, and type IV collagenase were ineffective. Together, these results suggest that the thrombin effects are mediated by proteolytic activation of the thrombin receptor. Possible involvement of the phospholipase C-signaling pathway in thrombin-mediated ECM protein deposition was also investigated. Inhibition or downregulation of protein kinase C (PKC) and chelation of intracellular or extracellular Ca2+ did not suppress, but rather enhanced, basal and thrombin-stimulated ECM protein deposition. Quantitative differences in augmentation of basolateral deposition by these treatments suggest differential regulatory pathways for individual ECM proteins. Our data indicate that, in cultured RAMEC, short-term activation of the thrombin receptor causes an increase in amounts of deposited ECM protein by a cellular signaling pathway that is independent of PKC activation and/or elevation of intracellular Ca2+.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Broekelmann, Thomas J., Nicholas K. Bodmer, and Robert P. Mecham. "Identification of the growth factor–binding sequence in the extracellular matrix protein MAGP-1." Journal of Biological Chemistry 295, no. 9 (January 27, 2020): 2687–97. http://dx.doi.org/10.1074/jbc.ra119.010540.

Повний текст джерела
Анотація:
Microfibril-associated glycoprotein-1 (MAGP-1) is a component of vertebrate extracellular matrix (ECM) microfibrils that, together with the fibrillins, contributes to microfibril function. Many of the phenotypes associated with MAGP-1 gene inactivation are consistent with dysregulation of the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling system. We have previously shown that full-length MAGP-1 binds active TGFβ-1 and some BMPs. The work presented here further defines the growth factor–binding domain of MAGP-1. Using recombinant domains and synthetic peptides, along with surface plasmon resonance analysis to measure the kinetics of the MAGP-1–TGFβ-1 interaction, we localized the TGFβ- and BMP-binding site in MAGP-1 to a 19-amino acid–long, highly acidic sequence near the N terminus. This domain was specific for binding active, but not latent, TGFβ-1. Growth factor activity experiments revealed that TGFβ-1 retains signaling activity when complexed with MAGP-1. Furthermore, when bound to fibrillin, MAGP-1 retained the ability to interact with TGFβ-1, and active TGFβ-1 did not bind fibrillin in the absence of MAGP-1. The absence of MAGP was sufficient to raise the amount of total TGFβ stored in the ECM of cultured cells, suggesting that the MAGPs compete with the TGFβ large latent complex for binding to microfibrils. Together, these results indicate that MAGP-1 plays an active role in TGFβ signaling in the ECM.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ariel, Amiram, Eran J. Yavin, Rami Hershkoviz, Ann Avron, Suzanne Franitza, Izhar Hardan, Liora Cahalon, Mati Fridkin, and Ofer Lider. "IL-2 Induces T Cell Adherence to Extracellular Matrix: Inhibition of Adherence and Migration by IL-2 Peptides Generated by Leukocyte Elastase." Journal of Immunology 161, no. 5 (September 1, 1998): 2465–72. http://dx.doi.org/10.4049/jimmunol.161.5.2465.

Повний текст джерела
Анотація:
Abstract Migration of inflammatory cells requires cell adhesion and their subsequent detachment from the extracellular matrix (ECM). Leukocyte activation and migration must be terminated to stop inflammation. Here, we report that IL-2 enhances human T cell adherence to laminin, collagen type IV, and fibronectin (FN). In contrast, neutrophil elastase, an enzyme activated during inflammation, degrades IL-2 to yield IL-2 fractions that inhibit IL-2-induced T cell adhesion to FN. The amino acid composition of two of these IL-2 fractions, which appear to block T cell adherence to FN, were analyzed, and three peptides were consequently synthesized. The three peptides IVL, RMLT, and EFLNRWIT, but not the corresponding inversely synthesized peptides, inhibited T cell adhesion to FN induced by a variety of activators: IL-2, IL-7, macrophage inflammatory protein (MIP)-1β, and PMA, as well as anti-CD3 and anti-β1 integrin-activating mAb. Moreover, these IL-2 peptides inhibited T cell chemotaxis via FN-coated membranes induced by IL-2 and MIP-1β. Inhibition of T cell adherence and migration apparently involves abrogation of the rearrangement of the T cell actin cytoskeleton. Thus, the migrating immune cells, the cytokines, and the ECM can create a functional relationship in which both inflammation-inducing signals and inhibitory molecules of immune responses can coexist; the enzymatic products of IL-2 may serve as natural feedback inhibitors of inflammation.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Hershkoviz, R., L. Preciado-Patt, O. Lider, M. Fridkin, J. Dastych, D. D. Metcalfe, and Y. A. Mekori. "Extracellular matrix-anchored serum amyloid A preferentially induces mast cell adhesion." American Journal of Physiology-Cell Physiology 273, no. 1 (July 1, 1997): C179—C187. http://dx.doi.org/10.1152/ajpcell.1997.273.1.c179.

Повний текст джерела
Анотація:
Mast cells are known to accumulate in various inflammatory processes, some of which are known to be associated with increased local and systemic levels of acute-phase reactants such as serum amyloid A (SAA) or with amyloid deposition. The mechanism(s) by which mast cells are recruited to these sites, however, has not been fully elucidated. It has recently been shown that SAA interacts with extracellular matrix (ECM) components and thereby acts as a chemoattractant and regulator of immune cell migration. On the basis of these observations, we examined the effect of SAA on mast cell adhesion to ECM, an essential step in cellular transmigration. We could first demonstrate strong specific binding of recombinant human SAA (rSAA) to murine mast cells using flow cytometry. Moreover, radiolabeled rSAA was found to bind, in a saturable manner, to mast cells, reaching a binding affinity of 10(-8) M. When immobilized by preincubation with ECM, SAA or its proteolytically degraded amyloid A fragment (amino acid residues 2-82), which contains RGD-related adhesion motif but not the COOH-terminal portion of SAA (amino acid residues 77-104), induced the adhesion of resting mast cells to ECM or laminin. SAA and AA, in soluble or immobilized forms, did not activate mast cells to release mediators. Mast cell adhesion to the immobilized ECM-SAA complex appeared to occur through an integrin recognition, inasmuch as adhesion was calcium dependent and could be blocked by an RGD-containing peptide or by anti-CD29 monoclonal antibody. Genistein also inhibited adhesion, indicating that tyrosine kinase activity was involved. These data suggest that SAA bound to ECM may serve as an important inducer of mast cell adhesion, thus regulating mast cell recruitment and accumulation at these sites, which in turn could potentiate further pathology.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Benoit, Yannick D., Jean-François Groulx, David Gagné, and Jean-François Beaulieu. "RGD-Dependent Epithelial Cell-Matrix Interactions in the Human Intestinal Crypt." Journal of Signal Transduction 2012 (September 5, 2012): 1–10. http://dx.doi.org/10.1155/2012/248759.

Повний текст джерела
Анотація:
Interactions between the extracellular matrix (ECM) and integrin receptors trigger structural and functional bonds between the cell microenvironment and the cytoskeleton. Such connections are essential for adhesion structure integrity and are key players in regulating transduction of specific intracellular signals, which in turn regulate the organization of the cell microenvironment and, consequently, cell function. The RGD peptide-dependent integrins represent a key subgroup of ECM receptors involved in the maintenance of epithelial homeostasis. Here we review recent findings on RGD-dependent ECM-integrin interactions and their roles in human intestinal epithelial crypt cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Lin, Chien-Yu, Umar-Farouk Mamani, Yuhan Guo, Yanli Liu, and Kun Cheng. "Peptide-Based siRNA Nanocomplexes Targeting Hepatic Stellate Cells." Biomolecules 13, no. 3 (February 28, 2023): 448. http://dx.doi.org/10.3390/biom13030448.

Повний текст джерела
Анотація:
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) in the liver due to chronic injuries and inflammation. These injuries activate and transform quiescent hepatic stellate cells (HSCs) into proliferative myofibroblast-like cells, which are the key contributors to the secretin of ECM in the fibrotic liver. The insulin-like growth factor 2 receptor (IGF2R) is a multifunctional receptor that is overexpressed on activated HSCs and is a specific molecular marker of activated HSCs in the fibrotic liver. We recently discovered an IGF2R-specific peptide that significantly increases the binding affinity and uptake of a protein-based siRNA nanocomplex to activated HSCs. However, there is a potential concern about the immunogenicity of protein-based siRNA delivery systems. In this study, we used the IGF2R-specific peptide to modify a small peptide-based siRNA nanocomplex for HSC-specific drug delivery. We incorporated a short spacer and glutamate residues into the IGF2R peptides. The siRNA nanocomplex modified with the IGF2R-3GK6E peptide demonstrated higher HSC specificity compared to an unmodified nanocomplex. This peptide-based nanocomplex provides a promising platform to effectively deliver Pcbp2 siRNA to activated HSCs for the treatment of liver fibrosis.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sever, Melike, Gokhan Gunay, Mustafa O. Guler, and Ayse B. Tekinay. "Tenascin-C derived signaling induces neuronal differentiation in a three-dimensional peptide nanofiber gel." Biomaterials Science 6, no. 7 (2018): 1859–68. http://dx.doi.org/10.1039/c7bm00850c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhai, Yuanxin, Quanwei Wang, Zhanchi Zhu, Wenlong Zheng, Sancheng Ma, Ying Hao, Lingyan Yang, and Guosheng Cheng. "Cell-derived extracellular matrix enhanced by collagen-binding domain-decorated exosomes to promote neural stem cells neurogenesis." Biomedical Materials 17, no. 1 (December 20, 2021): 014104. http://dx.doi.org/10.1088/1748-605x/ac4089.

Повний текст джерела
Анотація:
Abstract Enhancing neurogenesis of neural stem cells (NSCs) is crucial in stem cell therapy for neurodegenerative diseases. Within the extracellular microenvironment, extracellular matrix (ECM) plays a pivotal role in modulating cell behaviors. However, a single ECM biomaterial is not sufficient to establish an ideal microenvironment. As multifunctional nanocarriers, exosomes display tremendous advantages for the treatments of various diseases. Herein, collagen binding domain peptide-modified exosomes (CBD-Exo) were obtained from the SH-SY5Y cell line infected with lentivirus particles encoding CBD-lysosome associated membrane glycoprotein 2b (CBD-Lamp2b) to improve the binding efficiency of exosomes and ECM. An exosomes-functionalized ECM (CBD-Exo/ECM) was then constructed via the interaction between CBD and collagen in ECM. Then, CBD-Exo/ECM was employed as a carrier for NSCs culture. The results showed that CBD-Exo/ECM can support the neurogenesis of NSCs with the percentage of proliferation marker EdU-positive (35.8% ± 0.47% vs 21.9% ± 2.32%) and neuron maker Tuj-1-positive (55.8% ± 0.47% vs 30.6% ± 2.62%) were both significantly increased in the exosomes-functionalized ECM system. This exosomes-functionalized ECM was capable to promote the cell proliferation and accelerate neuronal differentiation of NSCs, providing a potential biomedical material for stem cell application in tissue engineering and regenerative medicine.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Mizejewski, Gerald J. "The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy." Cancers 16, no. 8 (April 17, 2024): 1531. http://dx.doi.org/10.3390/cancers16081531.

Повний текст джерела
Анотація:
Metastasis (Met) largely contributes to the major cause of cancer deaths throughout the world, rather than the growth of the tumor mass itself. The present report brings together several of the pertinent contributors to cancer growth and metastatic processes from an activity standpoint. Such biological activities include the following: (1) cell adherence and detachment; (2) cell-to-cell contact; (3) contact inhibition; (4) the cell interfacing with the extracellular matrix (ECM); (5) tumor cell-to-stroma communication networks; (6) chemotaxis; and (7) cell membrane potential. Moreover, additional biochemical factors that contribute to cancer growth and metastasis have been shown to comprise the following: (a) calcium levels in the extracellular matrix and in intracellular compartments; (b) cation voltage and ATP-regulated potassium channels; (c) selective and non-selective cation channels; and (d) chemokines (cytokines) and their receptors, such as CXCL12 (SDF-1) and its receptor/binding partner, CXCR4. These latter molecular components represent a promising group of an interacting and synchronized set of candidates ideal for peptide therapeutic targeting for cancer growth and metastasis. Such peptides can be obtained from naturally occurring proteins such as alpha-fetoprotein (AFP), an onco-fetal protein and clinical biomarker.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Osses, Nelson, and Enrique Brandan. "ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression." American Journal of Physiology-Cell Physiology 282, no. 2 (February 1, 2002): C383—C394. http://dx.doi.org/10.1152/ajpcell.00322.2001.

Повний текст джерела
Анотація:
Transcription of specific skeletal muscle genes requires the expression of the muscle regulatory factor myogenin. To assess the role of the extracellular matrix (ECM) in skeletal muscle differentiation, the specific inhibitors of proteoglycan synthesis, sodium chlorate and β-d-xyloside, were used. Treatment of cultured skeletal muscle cells with each inhibitor substantially abolished the expression of creatine kinase and α-dystroglycan. This inhibition was totally reversed by the addition of exogenous ECM. Myoblast treatment with each inhibitor affected the deposition and assembly of the ECM constituents glypican, fibronectin, and laminin. These treatments did not affect MyoD, MEF2A, and myogenin expression and nuclear localization. Differentiated myoblast treatment with RGDS peptides completely inhibited myogenesis without affecting the expression or nuclear localization of myogenin. Integrin-mediated signaling of focal adhesion kinase was partially inhibited by chlorate and β-d-xyloside, an effect reversed by the addition of exogenous ECM gel. These results suggested that the expression of myogenin is not sufficient to successfully drive skeletal muscle formation and that ECM is required to complete the skeletal muscle differentiation process.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Futaki, Yudai, Ikumi Amimoto, Megumi Tanaka, Tomoki Ito, and Yoshiaki Hirano. "Discovery of Cell Aggregate-Inducing Peptides." Processes 9, no. 3 (March 18, 2021): 538. http://dx.doi.org/10.3390/pr9030538.

Повний текст джерела
Анотація:
Most cells within the human body interact with neighboring cells and extracellular matrix (ECM) components to establish a unique 3D organization. These cell–cell and cell–ECM interactions form a complex communication network of biochemical and mechanical signals critical for normal cell physiology. The behavior of cells in a 3D environment is fundamentally different from that of cells in monolayer culture. Aggregation can affect cell–cell interactions, being more representative of the normal tissue microenvironment. Therefore, 3D cell culture technologies have been developed. The general method for cell aggregate is a physical method; it is difficult to control the size and number of cell aggregates. In any case, no chemical method has been discovered yet, so a new method to solve these problems is needed. In this paper, we describe the induction of a cell aggregate of the newly discovered (Lys-Pro)12(KP24) peptide. Since it was revealed that KP24 had cell aggregate-inducing activity, its derivatives were molecularly designed to clarify the importance of the KP24 sequence. We report that cell aggregations were induced by KP24 to form aggregates of fibroblast cells. We evaluated KP24 derivative periodic peptides such as (Lys-Pro-Pro)8(KPP24) and (Lys-Lys-Pro)8(KKP24). The relationship between the structure of the peptide chain and the activity induced by the cell aggregations was investigated from the viewpoint of basic research and the biomedical engineering field.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Wang, Brian X., Christopher Kane, Laura Nicastro, Oisín King, Worrapong Kit-Anan, Barrett Downing, Graziano Deidda, et al. "Integrins Increase Sarcoplasmic Reticulum Activity for Excitation—Contraction Coupling in Human Stem Cell-Derived Cardiomyocytes." International Journal of Molecular Sciences 23, no. 18 (September 19, 2022): 10940. http://dx.doi.org/10.3390/ijms231810940.

Повний текст джерела
Анотація:
Engagement of the sarcoplasmic reticulum (SR) Ca2+ stores for excitation–contraction (EC)-coupling is a fundamental feature of cardiac muscle cells. Extracellular matrix (ECM) proteins that form the extracellular scaffolding supporting cardiac contractile activity are thought to play an integral role in the modulation of EC-coupling. At baseline, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show poor utilisation of SR Ca2+ stores, leading to inefficient EC-coupling, like developing or human CMs in cardiac diseases such as heart failure. We hypothesised that integrin ligand–receptor interactions between ECM proteins and CMs recruit the SR to Ca2+ cycling during EC-coupling. hiPSC-CM monolayers were cultured on fibronectin-coated glass before 24 h treatment with fibril-forming peptides containing the integrin-binding tripeptide sequence arginine–glycine–aspartic acid (2 mM). Micropipette application of 40 mM caffeine in standard or Na+/Ca2+-free Tyrode’s solutions was used to assess the Ca2+ removal mechanisms. Microelectrode recordings were conducted to analyse action potentials in current-clamp. Confocal images of labelled hiPSC-CMs were analysed to investigate hiPSC-CM morphology and ultrastructural arrangements in Ca2+ release units. This study demonstrates that peptides containing the integrin-binding sequence arginine–glycine–aspartic acid (1) abbreviate hiPSC-CM Ca2+ transient and action potential duration, (2) increase co-localisation between L-type Ca2+ channels and ryanodine receptors involved in EC-coupling, and (3) increase the rate of SR-mediated Ca2+ cycling. We conclude that integrin-binding peptides induce recruitment of the SR for Ca2+ cycling in EC-coupling through functional and structural improvements and demonstrate the importance of the ECM in modulating cardiomyocyte function in physiology.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Vitale, Mario, Tiziana Di Matola, Gianfranco Fenzi, Maddalena Illario, and Guido Rossi. "Fibronectin Is Required to Prevent Thyroid Cell Apoptosis through an Integrin-Mediated Adhesion Mechanism1." Journal of Clinical Endocrinology & Metabolism 83, no. 10 (October 1, 1998): 3673–80. http://dx.doi.org/10.1210/jcem.83.10.5175.

Повний текст джерела
Анотація:
Apoptosis or programmed cell death occurs in a wide variety of cell types when adhesion to extracellular matrix (ECM) is denied. Invasion and metastasis by tumor cells involve the loss of normal cell-ECM contacts and require independence from such control mechanisms. We studied whether the immortalized thyroid cell line TAD-2 is a model suitable to investigate thyroid cell-ECM interaction, and we analyzed the role of integrin-fibronectin (FN) interaction in apoptosis. Adhesion, spreading, and cytoskeleton organization in TAD-2 cultured cells were dependent upon integrin-FN interaction. Cell spreading and cytoskeletal organization were coupled to deposition of insoluble FN induced by serum. Expression of integrin-FN receptors was demonstrated by flow cytofluorometry with specific antibodies, and strong integrin-dependent adhesion was demonstrated by attachment assays to immobilized FN. Apoptosis, occurring in different culture conditions, was determined by cell morphology and DNA electrophoretic analysis and quantitated by flow cytometry in propidium iodide-stained cells. Thyroid cells underwent apoptosis in the presence of serum when adhesion was prevented by specific peptides that inhibit integrin binding to FN (RGD-containing peptides) or by coating the culture plates with agar. In serum-free cultures, apoptosis was prevented by insoluble FN immobilized on the plates, but not by soluble FN. These results suggest that the TAD-2 cell line is a good model to study thyroid cell-ECM interaction, that FN, assembled into insoluble matrix, is required for cytoskeletal organization and to prevent thyroid cell apoptosis, and that integrin-mediated adhesion is involved in this process.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Perera, T. Hiran, Xi Lu, and Laura A. Smith Callahan. "Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension." Journal of Functional Biomaterials 11, no. 1 (March 6, 2020): 15. http://dx.doi.org/10.3390/jfb11010015.

Повний текст джерела
Анотація:
Low neural tissue extracellular matrix (ECM) content has led to the understudy of its effects on neural cells and tissue. Hyaluronic acid (HA) and laminin are major neural ECM components, but direct comparisons of their cellular effects could not be located in the literature. The current study uses human-induced pluripotent stem-cell-derived neural stem cells to assess the effects of HA, laminin, and HA with laminin-derived peptides IKVAV and LRE on cellular morphology, attachment, neurite extension and ECM remodeling. Increased attachment was observed on HA with and without IKVAV and LRE compared to laminin. Cellular morphology and neurite extension were similar on all surfaces. Using a direct binding inhibitor of Cav2.2 voltage gated calcium channel activity, a known binding partner of LRE, reduced attachment on HA with and without IKVAV and LRE and altered cellular morphology on surfaces with laminin or IKVAV and LRE. HA with IKVAV and LRE reduced the fluorescent intensity of fibronectin staining, but did not alter the localization of ECM remodeling enzymes matrix metalloprotease 2 and 9 staining compared to HA. Overall, the data indicate HA, IKVAV and LRE have complementary effects on human-induced pluripotent stem-cell-derived neural stem cell behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Szychowski, Konrad A., and Bartosz Skóra. "Review of the Relationship between Reactive Oxygen Species (ROS) and Elastin-Derived Peptides (EDPs)." Applied Sciences 11, no. 18 (September 18, 2021): 8732. http://dx.doi.org/10.3390/app11188732.

Повний текст джерела
Анотація:
Reactive oxygen species (ROS) are central elements of a number of physiological processes such as differentiation and intracellular signaling, as well as pathological processes, e.g., inflammation or apoptosis. ROS are involved in the growth and proliferation of stem cells, cell communication, cell aging, all types of inflammation, cancer development and proliferation, or type 2 diabetes. Elastin-derived peptides (EDPs) are detected in all these conditions and, according to the current state of knowledge, the role of the extracellular matrix (ECM) protein is crucial. It is believed that EDPs are a result of the aforementioned pathological conditions and are generated during degradation of ECM. However, as shown in the literature, the production of EDPs can be induced not only by inter alia chemical, enzymatic, and physical factors but also directly by ROS. No comprehensive study of the impact of ROS on EDPs and EDPs on ROS production has been conducted to date; therefore, the aim of this paper is to summarize the current state of knowledge of the relationship between ROS and ECM with special involvement of EDPs in the processes mentioned above. Depending on the type of cells, tissue, or organism, the relationships between ROS and ECM/EDPs may differ completely.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Pugliese, Raffaele. "Supramolecular-Covalent Peptides Self-Assembly: From Design to Regenerative Medicine and Beyond." Biophysica 2, no. 4 (October 11, 2022): 324–39. http://dx.doi.org/10.3390/biophysica2040030.

Повний текст джерела
Анотація:
The field of supramolecular peptides self-assembly has undergone outstanding growth since the early 1990s after the serendipitously discovery by Shuguang Zhang of an ionic self-complementary peptide as a repeating segment in a yeast protein. From then on, the field expanded at an accelerating pace and these self-assembled materials have become an integral part of a broad plethora of designer supramolecular nanomaterials useful for different applications ranging from 3D tissue cell cultures, regenerative medicine, up to optoelectronics. However, the supramolecular peptide based-nanomaterials available thus far for regenerative medicine still lack the dynamic complexity found in the biological structures that mediate regeneration. Indeed, self-assembling peptide (SAPs) suffer from poor mechanical stability, losing mechanical properties at low strains. Just like the extracellular matrix (ECM) of living systems, the chemical structure of the SAP-biomaterials should concurrently contain non-covalent and covalent bonds, bringing, respectively, infinite and finite lifetimes of interactions to obtain a reversibly dynamic matrix. In this review, will be highlighted the major advantages and current limitations of SAP-based biomaterials, and it will be discussed the most widely used strategies for precisely tune their mechanical properties (stiffness, resilience, strain-failure, stress resistance), describing recent and promising approaches in tissue engineering, regenerative medicine, and beyond.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії