Дисертації з теми "Explorative multivariate data analysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Explorative multivariate data analysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bergfors, Linus. "Explorative Multivariate Data Analysis of the Klinthagen Limestone Quarry Data." Thesis, Uppsala University, Department of Information Technology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122575.
Повний текст джерела
The today quarry planning at Klinthagen is rough, which provides an opportunity to introduce new exciting methods to improve the quarry gain and efficiency. Nordkalk AB, active at Klinthagen, wishes to start a new quarry at a nearby location. To exploit future quarries in an efficient manner and ensure production quality, multivariate statistics may help gather important information.
In this thesis the possibilities of the multivariate statistical approaches of Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were evaluated on the Klinthagen bore data. PCA data were spatially interpolated by Kriging, which also was evaluated and compared to IDW interpolation.
Principal component analysis supplied an overview of the variables relations, but also visualised the problems involved when linking geophysical data to geochemical data and the inaccuracy introduced by lacking data quality.
The PLS regression further emphasised the geochemical-geophysical problems, but also showed good precision when applied to strictly geochemical data.
Spatial interpolation by Kriging did not result in significantly better approximations than the less complex control interpolation by IDW.
In order to improve the information content of the data when modelled by PCA, a more discrete sampling method would be advisable. The data quality may cause trouble, though with sample technique of today it was considered to be of less consequence.
Faced with a single geophysical component to be predicted from chemical variables further geophysical data need to complement existing data to achieve satisfying PLS models.
The stratified rock composure caused trouble when spatially interpolated. Further investigations should be performed to develop more suitable interpolation techniques.
Yang, Di. "Analysis guided visual exploration of multivariate data." Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-050407-005925/.
Повний текст джерелаEngel, Daniel [Verfasser], Hans [Akademischer Betreuer] Hagen, and Bernd [Akademischer Betreuer] Hamann. "Explorative and Model-based Visual Analysis of Multivariate Data / Daniel Engel. Betreuer: Hans Hagen ; Bernd Hamann." Kaiserslautern : Technische Universität Kaiserslautern, 2014. http://d-nb.info/1054636176/34.
Повний текст джерелаDoshi, Punit Rameshchandra. "Adaptive prefetching for visual data exploration." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0131103-203307.
Повний текст джерелаKeywords: Adaptive prefetching; Large-scale multivariate data visualization; Semantic caching; Hierarchical data exploration; Exploratory data analysis. Includes bibliographical references (p.66-70).
Lu, Kewei. "Distribution-based Exploration and Visualization of Large-scale Vector and Multivariate Fields." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483545901567695.
Повний текст джерелаVargas, Aurea Rossy Soriano. "Visual exploration to support the identification of relevant attributes in time-varying multivariate data." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23102018-115029/.
Повний текст джерелаA cintilação ionosférica é uma variação rápida na amplitude e/ou na fase dos sinais de rádio que viajam através da ionosfera. Este fenômeno espacial e variante no tempo é de grande interesse, pois pode afetar a qualidade de recepção dos sinais de satélite. Receptores especializados em regiões estratégicas podem rastrear múltiplas variáveis relacionadas ao fenômeno, gerando um banco de dados de observações históricas sobre o comportamento regional da cintilação. O estudo do comportamento da cintilação é desafiador, uma vez que requer a análise extensiva de dados multivariados e variantes no tempo, coletados por longos períodos. Medições são registradas continuamente, e são de natureza heterogênea, compreendendo múltiplas variáveis de diferentes categorias e possivelmente com muitos valores faltantes. Portanto, existe a necessidade de introduzir estratégias alternativas, eficientes e intuitivas, que contribuam para a adquisição de conhecimento, a partir dos dados, por especialistas que estudam a cintilação ionosférica. Tais desafios motivaram o estudo da aplicabilidade de técnicas de visualização para apoiar tarefas de identificação de atributos relevantes no estudo do comportamento de fenômenos ou domínios que envolvem múltiplas variáveis, como a cintilação. Em particular, esta tese introduz um arcabouço visual, o qual foi denominado TV-MV Analytics, que apoia tarefas de análise exploratória sobre dados multivariados e variáveis no tempo, inspirado em requisitos de especialistas no estudo da cintilação, vinculados à Faculdade de Ciências e Tecnologia da UNESP de Presidente Prudente, Brasil. O TV-MV Analytics fornece aos analistas um ciclo de interativo de exploração que apoia a inspeção do comportamento temporal de múltiplas variáveis, em diferentes escalas temporais, por meio de representações visuais temporais associadas a técnicas de agrupamento e de projeção multidimensional. Também permite avaliar como diferentes sub-espaços de atributos caracterizam um determinado comportamento, podendo direcionar o processo de análise e inserir seu conhecimento do domínio no processo de análise exploratória. As funcionalidades do TV-MV Analytics também são ilustradas em dados variantes no tempo oriundos de outros três domínios de aplicação. Os resultados experimentais indicaram que as soluções propostas têm bom potencial em tarefas de mineração de dados multivariados e variantes no tempo, uma vez que reduz o esforço e contribui para os especialistas obterem informações detalhadas sobre o comportamento histórico das variáveis que descrevem um determinado fenômeno ou domínio.
Rammelkamp, Kristin. "Investigation of LIBS and Raman data analysis methods in the context of in-situ planetary exploration." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20703.
Повний текст джерелаThe studies presented in this thesis investigate different data analysis approaches for mainly laser-induced breakdown spectroscopy (LIBS) and also Raman data in the context of planetary in-situ exploration. Most studies were motivated by Mars exploration due to the first extraterrestrially employed LIBS instrument ChemCam on NASA's Mars Science Laboratory (MSL) and further planned LIBS and Raman instruments on upcoming missions to Mars. Next to analytical approaches, statistical methods known as multivariate data analysis (MVA) were applied and evaluated. In this thesis, four studies are presented in which LIBS and Raman data analysis strategies are evaluated. In the first study, LIBS data normalization with plasma parameters, namely the plasma temperature and the electron density, was studied. In the second study, LIBS measurements in vacuum conditions were investigated with a focus on the degree of ionization of the LIBS plasma. In the third study, the capability of MVA methods such as principal component analysis (PCA) and partial least squares regression (PLS-R) for the identification and quantification of halogens by means of molecular emissions was tested. The outcomes are promising, as it was possible to distinguish apatites and to quantify chlorine in a particular concentration range. In the fourth and last study, LIBS data was combined with complementary Raman data in a low-level data fusion approach using MVA methods. Also, concepts of high-level data fusion were implemented. Low-level LIBS and Raman data fusion can improve identification capabilities in comparison to the single datasets. However, the improvement is comparatively small regarding the higher amount of information in the low-level fused data and dedicated strategies for the joint analysis of LIBS and Raman data have to be found for particular scientific objectives.
Ablin, Pierre. "Exploration of multivariate EEG /MEG signals using non-stationary models." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT051.
Повний текст джерелаIndependent Component Analysis (ICA) models a set of signals as linear combinations of independent sources. This analysis method plays a key role in electroencephalography (EEG) and magnetoencephalography (MEG) signal processing. Applied on such signals, it allows to isolate interesting brain sources, locate them, and separate them from artifacts. ICA belongs to the toolbox of many neuroscientists, and is a part of the processing pipeline of many research articles. Yet, the most widely used algorithms date back to the 90's. They are often quite slow, and stick to the standard ICA model, without more advanced features.The goal of this thesis is to develop practical ICA algorithms to help neuroscientists. We follow two axes. The first one is that of speed. We consider the optimization problems solved by two of the most widely used ICA algorithms by practitioners: Infomax and FastICA. We develop a novel technique based on preconditioning the L-BFGS algorithm with Hessian approximation. The resulting algorithm, Picard, is tailored for real data applications, where the independence assumption is never entirely true. On M/EEG data, it converges faster than the `historical' implementations.Another possibility to accelerate ICA is to use incremental methods, which process a few samples at a time instead of the whole dataset. Such methods have gained huge interest in the last years due to their ability to scale well to very large datasets. We propose an incremental algorithm for ICA, with important descent guarantees. As a consequence, the proposed algorithm is simple to use and does not have a critical and hard to tune parameter like a learning rate.In a second axis, we propose to incorporate noise in the ICA model. Such a model is notoriously hard to fit under the standard non-Gaussian hypothesis of ICA, and would render estimation extremely long. Instead, we rely on a spectral diversity assumption, which leads to a practical algorithm, SMICA. The noise model opens the door to new possibilities, like finer estimation of the sources, and use of ICA as a statistically sound dimension reduction technique. Thorough experiments on M/EEG datasets demonstrate the usefulness of this approach.All algorithms developed in this thesis are open-sourced and available online. The Picard algorithm is included in the largest M/EEG processing Python library, MNE and Matlab library, EEGlab
Oliveira, Irene. "Correlated data in multivariate analysis." Thesis, University of Aberdeen, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401414.
Повний текст джерелаPrelorendjos, Alexios. "Multivariate analysis of metabonomic data." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24286.
Повний текст джерелаTavares, Nuno Filipe Ramalho da Cunha. "Multivariate analysis applied to clinical analysis data." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12288.
Повний текст джерелаFolate, vitamin B12, iron and hemoglobin are essential for metabolic functions in the body. The deficiency of these can be the cause of several known pathologies and, untreated, can be responsible for severe morbidity and even death. The objective of this study is to characterize a population, residing in the metropolitan area of Lisbon and Setubal, concerning serum levels of folate, vitamin B12, iron and hemoglobin, as well as finding evidence of correlations between these parameters and illnesses, mainly cardiovascular, gastrointestinal, neurological and anemia. Clinical analysis data was collected and submitted to multivariate analysis. First the data was screened with Spearman correlation and Kruskal-Wallis analysis of variance to study correlations and variability between groups. To characterize the population, we used cluster analysis with Ward’s linkage method. Finally a sensitivity analysis was performed to strengthen the results. A positive correlation between iron with, ferritin and transferrin, and with hemoglobin was observed with the Spearman correlation. Kruskal-Wallis analysis of variance test showed significant differences between these biomarkers in persons aged 0 to 29, 30 to 59 and over 60 years old. Cluster analysis proved to be a useful tool when characterizing a population based on its biomarkers, showing evidence of low folate levels for the population in general, and hemoglobin levels below the reference values. Iron and vitamin B12 were within the reference range for most of the population. Low levels of the parameters were registered mainly in patients with cardiovascular, gastrointestinal, and neurological diseases and anemia.
Rehman, Naveed Ur. "Data-driven time-frequency analysis of multivariate data." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9116.
Повний текст джерелаDroop, Alastair Philip. "Correlation Analysis of Multivariate Biological Data." Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507622.
Повний текст джерелаCollins, Gary Stephen. "Multivariate analysis of flow cytometry data." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324749.
Повний текст джерелаHaydock, Richard. "Multivariate analysis of Raman spectroscopy data." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30697/.
Повний текст джерелаZhu, Liang. "Semiparametric analysis of multivariate longitudinal data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/6044.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 3, 2009) Vita. Includes bibliographical references.
Schmutz, Amandine. "Contributions à l'analyse de données fonctionnelles multivariées, application à l'étude de la locomotion du cheval de sport." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1241.
Повний текст джерелаWith the growth of smart devices market to provide athletes and trainers a systematic, objective and reliable follow-up, more and more parameters are monitored for a same individual. An alternative to laboratory evaluation methods is the use of inertial sensors which allow following the performance without hindering it, without space limits and without tedious initialization procedures. Data collected by those sensors can be classified as multivariate functional data: some quantitative entities evolving along time and collected simultaneously for a same individual. The aim of this thesis is to find parameters for analysing the athlete horse locomotion thanks to a sensor put in the saddle. This connected device (inertial sensor, IMU) for equestrian sports allows the collection of acceleration and angular velocity along time in the three space directions and with a sampling frequency of 100 Hz. The database used for model development is made of 3221 canter strides from 58 ridden jumping horses of different age and level of competition. Two different protocols are used to collect data: one for straight path and one for curved path. We restricted our work to the prediction of three parameters: the speed per stride, the stride length and the jump quality. To meet the first to objectives, we developed a multivariate functional clustering method that allow the division of the database into smaller more homogeneous sub-groups from the collected signals point of view. This method allows the characterization of each group by it average profile, which ease the data understanding and interpretation. But surprisingly, this clustering model did not improve the results of speed prediction, Support Vector Machine (SVM) is the model with the lowest percentage of error above 0.6 m/s. The same applied for the stride length where an accuracy of 20 cm is reached thanks to SVM model. Those results can be explained by the fact that our database is build from 58 horses only, which is a quite low number of individuals for a clustering method. Then we extend this method to the co-clustering of multivariate functional data in order to ease the datamining of horses’ follow-up databases. This method might allow the detection and prevention of locomotor disturbances, main source of interruption of jumping horses. Lastly, we looked for correlation between jumping quality and signals collected by the IMU. First results show that signals collected by the saddle alone are not sufficient to differentiate finely the jumping quality. Additional information will be needed, for example using complementary sensors or by expanding the database to have a more diverse range of horses and jump profiles
Lans, Ivo A. van der. "Nonlinear multivariate analysis for multiattribute preference data." [Leiden] : DSWO Press, Leiden University, 1992. http://catalog.hathitrust.org/api/volumes/oclc/28733326.html.
Повний текст джерелаTardif, Geneviève. "Multivariate Analysis of Canadian Water Quality Data." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32245.
Повний текст джерелаSnavely, Anna Catherine. "Multivariate Data Analysis with Applications to Cancer." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10371.
Повний текст джерелаBolton, Richard John. "Multivariate analysis of multiproduct market research data." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302542.
Повний текст джерелаDurif, Ghislain. "Multivariate analysis of high-throughput sequencing data." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1334/document.
Повний текст джерелаThe statistical analysis of Next-Generation Sequencing data raises many computational challenges regarding modeling and inference, especially because of the high dimensionality of genomic data. The research work in this manuscript concerns hybrid dimension reduction methods that rely on both compression (representation of the data into a lower dimensional space) and variable selection. Developments are made concerning: the sparse Partial Least Squares (PLS) regression framework for supervised classification, and the sparse matrix factorization framework for unsupervised exploration. In both situations, our main purpose will be to focus on the reconstruction and visualization of the data. First, we will present a new sparse PLS approach, based on an adaptive sparsity-inducing penalty, that is suitable for logistic regression to predict the label of a discrete outcome. For instance, such a method will be used for prediction (fate of patients or specific type of unidentified single cells) based on gene expression profiles. The main issue in such framework is to account for the response to discard irrelevant variables. We will highlight the direct link between the derivation of the algorithms and the reliability of the results. Then, motivated by questions regarding single-cell data analysis, we propose a flexible model-based approach for the factorization of count matrices, that accounts for over-dispersion as well as zero-inflation (both characteristic of single-cell data), for which we derive an estimation procedure based on variational inference. In this scheme, we consider probabilistic variable selection based on a spike-and-slab model suitable for count data. The interest of our procedure for data reconstruction, visualization and clustering will be illustrated by simulation experiments and by preliminary results on single-cell data analysis. All proposed methods were implemented into two R-packages "plsgenomics" and "CMF" based on high performance computing
Lee, Yau-wing. "Modelling multivariate survival data using semiparametric models." Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B4257528X.
Повний текст джерела李友榮 and Yau-wing Lee. "Modelling multivariate survival data using semiparametric models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B4257528X.
Повний текст джерелаBillah, Baki. "The analysis of multivariate incomplete failure time data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25823.pdf.
Повний текст джерелаRawizza, Mark Alan. "Time-series analysis of multivariate manufacturing data sets." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10895.
Повний текст джерелаRitchie, Elspeth Kathryn. "Application of multivariate data analysis in biopharmaceutical production." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3356.
Повний текст джерелаLawal, Najib. "Modelling and multivariate data analysis of agricultural systems." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/modelling-and-multivariate-data-analysis-of-agricultural-systems(f6b86e69-5cff-4ffb-a696-418662ecd694).html.
Повний текст джерелаHopkins, Julie Anne. "Sampling designs for exploratory multivariate analysis." Thesis, University of Sheffield, 2000. http://etheses.whiterose.ac.uk/14798/.
Повний текст джерелаZhou, Feifei, and 周飞飞. "Cure models for univariate and multivariate survival data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B45700977.
Повний текст джерелаNicolini, Olivier. "LIBS Multivariate Analysis with Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286595.
Повний текст джерелаLaser-Induced Breakdown Spectroscopy (LIBS) är en spektroskopisk teknik som används för kemisk analys av material. Genom att analysera det spektrum som erhållits med denna teknik är det möjligt att förstå den kemiska sammansättningen av ett prov. Möjligheten att analysera material på ett kontaktlöst och online sätt utan förberedelse av prov gör LIBS till en av de mest intressanta teknikerna för kemisk sammansättning analys. Trots dess inneboende fördelar lider LIBS-analysen av dålig noggrannhet och begränsad reproducerbarhet av resultaten på grund av interferenseffekter orsakade av provets kemiska sammansättning eller andra experimentella faktorer. Hur man kan förbättra analysens noggrannhet genom att extrahera användbar information från LIBS-data med hög dimensionering är fortfarande den största utmaningen med denna teknik. I det nuvarande arbetet, med syftet att föreslå en robust analysmetod, presenterar jag en pipeline för multivariat regression på LIBS-data som består av förbehandling, val av funktioner och regression. Första rådata förbehandlas genom tillämpning av intensitetsfiltrering, normalisering och baslinjekorrektion för att mildra effekten av interferensfaktorer såsom laserens energifluktuationer eller närvaron av baslinjen i spektrumet. Funktionsval gör det möjligt att hitta de mest informativa linjerna för ett element som sedan används som input i den efterföljande regressionsfasen för att förutsäga elementkoncentrationen. Partial Least Squares (PLS) och Elastic Net visade den bästa förutsägelseförmågan bland de undersökta regressionsmetoderna, medan Interval PLS (iPLS) och Iterative PredictorWeighting PLS (IPW-PLS) visade sig vara de bästa funktionsval algoritmerna för denna typ av data. Genom att tillämpa dessa funktionsval algoritmer på hela LIBS-spektrumet före regression med PLS eller Elastic Net är det möjligt att få exakta förutsägelser på ett robust sätt.
Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data." Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.
Повний текст джерелаCai, Jianwen. "Generalized estimating equations for censored multivariate failure time data /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/9581.
Повний текст джерелаNothnagel, Carien. "Multivariate data analysis using spectroscopic data of fluorocarbon alcohol mixtures / Nothnagel, C." Thesis, North-West University, 2012. http://hdl.handle.net/10394/7064.
Повний текст джерелаThesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2012.
陳志昌 and Chee-cheong Chan. "Compositional data analysis of voting patterns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31977236.
Повний текст джерелаChan, Chee-cheong. "Compositional data analysis of voting patterns." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13787160.
Повний текст джерелаWang, Lianming. "Statistical analysis of multivariate interval-censored failure time data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4375.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 2, 2007) Vita. Includes bibliographical references.
Ahmadi-Nedushan, Behrooz 1966. "Multivariate statistical analysis of monitoring data for concrete dams." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82815.
Повний текст джерелаStatistical models such as multiple linear regression, and back propagation neural networks have been used to estimate the response of individual instruments. Multiple linear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST) models and (2) models that consider concrete temperatures as predictors.
Univerariate, bivariate, and multivariate methods are proposed for the identification of anomalies in the instrumentation data. The source of these anomalies can be either bad readings, faulty instruments, or changes in dam behavior.
The proposed methodologies are applied to three different dams, Idukki, Daniel Johnson and Chute-a-Caron, which are respectively an arch, multiple arch and a gravity dam. Displacements, strains, flow rates, and crack openings of these three dams are analyzed.
This research also proposes various multivariate statistical analyses and artificial neural networks techniques to analyze dam monitoring data. One of these methods, Principal Component Analysis (PCA) is concerned with explaining the variance-covariance structure of a data set through a few linear combinations of the original variables. The general objectives are (1) data reduction and (2) data interpretation. Other multivariate analysis methods such as canonical correlation analysis, partial least squares and nonlinear principal component analysis are discussed. The advantages of methodologies for noise reduction, the reduction of number of variables that have to be monitored, the prediction of response parameters, and the identification of faulty readings are discussed. Results indicated that dam responses are generally correlated and that only a few principal components can summarize the behavior of a dam.
Das, Mitali. "Motion within music : the analysis of multivariate MIDI data." Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367466.
Повний текст джерелаSheppard, Therese. "Extending covariance structure analysis for multivariate and functional data." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/extending-covariance-structure-analysis-for-multivariate-and-functional-data(e2ad7f12-3783-48cf-b83c-0ca26ef77633).html.
Повний текст джерелаChen, Man-Hua. "Statistical analysis of multivariate interval-censored failure time data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4776.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 6, 2009) Includes bibliographical references.
Edberg, Alexandra. "Monitoring Kraft Recovery Boiler Fouling by Multivariate Data Analysis." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230906.
Повний текст джерелаDetta arbete handlar om inkruster i sodapannan pa Montes del Plata, Uruguay. Multivariat dataanalys har anvands for att analysera den stora datamangd som fanns tillganglig for att undersoka hur olika parametrar paverkar inkrusterproblemen. Principal·· Component Analysis (PCA) och Partial Least Square Projection (PLS) har i detta jobb anvants. PCA har anvants for att jamfora medelvarden mellan tidsperioder med hoga och laga inkrusterproblem medan PLS har anvants for att studera korrelationen mellan variablema och darmed ge en indikation pa vilka parametrar som kan tankas att andras for att forbattra tillgangligheten pa sodapannan. Resultaten visar att sodapannan tenderar att ha problem med inkruster som kan hero pa fdrdelningen av luft, pa svartlutens tryck eller pa torrhalten i svartluten. Resultaten visar ocksa att multivariat dataanalys ar ett anvandbart verktyg for att analysera dessa typer av inkrusterproblem.
Chang, Janis. "Analysis of ordered categorical data." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27857.
Повний текст джерелаScience, Faculty of
Statistics, Department of
Graduate
Wan, Chung-him, and 溫仲謙. "Analysis of zero-inflated count data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43703719.
Повний текст джерелаWan, Chung-him. "Analysis of zero-inflated count data." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43703719.
Повний текст джерелаFitzgerald-DeHoog, Lindsay M. "Multivariate analysis of proteomic data| Functional group analysis using a global test." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1602759.
Повний текст джерелаProteomics is a relatively new discipline being implemented in life science fields. Proteomics allows a whole-systems approach to discerning changes in organismal physiology due to physical perturbations. The advantages of a proteomic approach may be counteracted by the ability to analyze the data in a meaningful way due to inherent problems with statistical assumptions. Furthermore, analyzing significant protein volume differences among treatment groups often requires analysis of numerous proteins even when limiting analyses to a particular protein type or physiological pathway. Improper use of traditional techniques leads to problems with multiple hypotheses testing.
This research will examine two common techniques used to analyze proteomic data and will apply these to a novel proteomic data set. In addition, a Global Test originally developed for gene array data will be employed to discover its utility for proteomic data and the ability to counteract the multiple hypotheses testing problems encountered with traditional analyses.
Kurtovic, Sanela. "Directed Evolution of Glutathione Transferases Guided by Multivariate Data Analysis." Doctoral thesis, Uppsala University, Department of Biochemistry and Organic Chemistry, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8718.
Повний текст джерелаEvolution of enzymes with novel functional properties has gained much attention in recent years. Naturally evolved enzymes are adapted to work in living cells under physiological conditions, circumstances that are not always available for industrial processes calling for novel and better catalysts. Furthermore, altering enzyme function also affords insight into how enzymes work and how natural evolution operates.
Previous investigations have explored catalytic properties in the directed evolution of mutant libraries with high sequence variation. Before this study was initiated, functional analysis of mutant libraries was, to a large extent, restricted to uni- or bivariate methods. Consequently, there was a need to apply multivariate data analysis (MVA) techniques in this context. Directed evolution was approached by DNA shuffling of glutathione transferases (GSTs) in this thesis. GSTs are multifarious enzymes that have detoxication of both exo- and endogenous compounds as their primary function. They catalyze the nucleophilic attack by the tripeptide glutathione on many different electrophilic substrates.
Several multivariate analysis tools, e.g. principal component (PC), hierarchical cluster, and K-means cluster analyses, were applied to large mutant libraries assayed with a battery of GST substrates. By this approach, evolvable units (quasi-species) fit for further evolution were identified. It was clear that different substrates undergoing different kinds of chemical transformation can group together in a multi-dimensional substrate-activity space, thus being responsible for a certain quasi-species cluster. Furthermore, the importance of the chemical environment, or substrate matrix, in enzyme evolution was recognized. Diverging substrate selectivity profiles among homologous enzymes acting on substrates performing the same kind of chemistry were identified by MVA. Important structure-function activity relationships with the prodrug azathioprine were elucidated by segment analysis of a shuffled GST mutant library. Together, these results illustrate important methods applied to molecular enzyme evolution.
Stenlund, Hans. "Improving interpretation by orthogonal variation : Multivariate analysis of spectroscopic data." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43476.
Повний текст джерелаCombrexelle, Sébastien. "Multifractal analysis for multivariate data with application to remote sensing." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/16477/1/Combrexelle.pdf.
Повний текст джерелаDuchesne, Carl. "Improvement of processes and product quality through multivariate data analysis /." *McMaster only, 2000.
Знайти повний текст джерела