Добірка наукової літератури з теми "Explicit symplectic integrator"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Explicit symplectic integrator".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Explicit symplectic integrator"
Hu, Ai-Rong, and Guo-Qing Huang. "Application of Explicit Symplectic Integrators in the Magnetized Reissner–Nordström Spacetime." Symmetry 15, no. 5 (May 16, 2023): 1094. http://dx.doi.org/10.3390/sym15051094.
Повний текст джерелаTu, Xiongbiao, Qiao Wang, and Yifa Tang. "Highly Efficient Numerical Integrator for the Circular Restricted Three-Body Problem." Symmetry 14, no. 9 (August 25, 2022): 1769. http://dx.doi.org/10.3390/sym14091769.
Повний текст джерелаNettesheim, Peter, Folkmar A. Bornemann, Burkhard Schmidt, and Christof Schütte. "An explicit and symplectic integrator for quantum-classical molecular dynamics." Chemical Physics Letters 256, no. 6 (July 1996): 581–88. http://dx.doi.org/10.1016/0009-2614(96)00471-x.
Повний текст джерелаHu, Airong, and Guoqing Huang. "Chaos in a Magnetized Brane-World Spacetime Using Explicit Symplectic Integrators." Universe 8, no. 7 (July 4, 2022): 369. http://dx.doi.org/10.3390/universe8070369.
Повний текст джерелаHuang, Zongqiang, Guoqing Huang, and Airong Hu. "Application of Explicit Symplectic Integrators in a Magnetized Deformed Schwarzschild Black Spacetime." Astrophysical Journal 925, no. 2 (February 1, 2022): 158. http://dx.doi.org/10.3847/1538-4357/ac3edf.
Повний текст джерелаWang 王, Long 龙. "New Insight of Time-transformed Symplectic Integrator. I. Hybrid Methods for Hierarchical Triples." Astrophysical Journal 978, no. 1 (December 26, 2024): 65. https://doi.org/10.3847/1538-4357/ad98f3.
Повний текст джерелаWang, Long, Keigo Nitadori, and Junichiro Makino. "A slow-down time-transformed symplectic integrator for solving the few-body problem." Monthly Notices of the Royal Astronomical Society 493, no. 3 (February 19, 2020): 3398–411. http://dx.doi.org/10.1093/mnras/staa480.
Повний текст джерелаPagliantini, Cecilia. "Dynamical reduced basis methods for Hamiltonian systems." Numerische Mathematik 148, no. 2 (June 2021): 409–48. http://dx.doi.org/10.1007/s00211-021-01211-w.
Повний текст джерелаCotter, Colin. "Data assimilation on the exponentially accurate slow manifold." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1991 (May 28, 2013): 20120300. http://dx.doi.org/10.1098/rsta.2012.0300.
Повний текст джерелаSun, Xin, Xin Wu, Yu Wang, Chen Deng, Baorong Liu, and Enwei Liang. "Dynamics of Charged Particles Moving around Kerr Black Hole with Inductive Charge and External Magnetic Field." Universe 7, no. 11 (October 29, 2021): 410. http://dx.doi.org/10.3390/universe7110410.
Повний текст джерелаДисертації з теми "Explicit symplectic integrator"
Di, Stasio Jean. "The CD-Lagrange scheme, a robust explicit time-integrator for impact dynamics : A new singular mass formulation, and an extension to deformable-deformable contact." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSEI029.
Повний текст джерелаTyres are complex structures to simulate. The materials are heterogeneous and incompressible with non-linear responses. The geometry goes to the millimetre scales for tread patterns. For a finite elements simulation a precise mesh is then required. The model has then a large number of degrees of freedom and non-linear material laws. In dynamics, the simulation becomes even more challenging especially with impacts. Nevertheless it is crucial in the tire design process because it brings a deeper comprehension of the tire and avoids test on real structures. The explicit time-integration make feasible the impact simulations. They handle easily the non-linearities with a very low computational cost for a time-step. Merged with a precise contact formulation, they form robust, accurate and efficient schemes for addressing impact simulations. This work aims to choose and improve an explicit scheme for non-linear dynamics with impacts. The first part is a benchmark for selecting a scheme and enhance its possibilities of improvement. The selected one is the CD-Lagrange: an explicit scheme based on central difference method, a contact enforcement by Lagrange multipliers, and a contact condition on velocity. Two mains improvements are identified and explored. Firstly, the energy conservation at impact would make the scheme symplectic for deformable bodies. Secondly the formulation must be enlarged to deformable–deformable contact. The second part aims then to achieve the conservation of energy by adapting the singular mass matrix to the CD-Lagrange. The formulation is firstly built in 1D, and shows a major improvement for the energy balance. Then two possible extensions are explored for the 3D cases. The third part presents the CD-Lagrange scheme with a mortar formulation for deformable-deformable contact. It handles with stability and accuracy large sliding and friction. An acceleration technique is proposed for solving the contact problem, without any loss of accuracy
Larousse, Paul. "Modélisation d'interface endommageable en dynamique explicite dédiée au démoulage de pneumatiques." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0098.
Повний текст джерелаThe tire is a complex product subjected to numerous constraints, and the designer must find a compromise between cost, performance, safety and recyclability. It is composed of a multitude of overlayed layers of different materials, resulting in complex behaviors. Thus, numerical simulation is an obvious choice by allowing the study of a wide range of scenarios. It enables to study the impact of each manufacturing step, and in particular the unmolding tire process, which inspired this thesis. This non-regular problem is associated to contact and damage, described by a cohesive zone model, with fast dynamics phenomena, rarely combined together in simulation. Since the problem is a transient dynamics one, the choice of an explicit time integrator is natural. The proposed idea here is the use of an explicit symplectic scheme providing by definition good energy properties and discrete equations conservation. Based on previous work, the explicit CD-Lagrange scheme is chosen. Thus, the study is focused on the contact interface between a deformable solid and a rigid one. A method for solving interface problems in dynamics is presented. A thermodynamic and explicit resolution framework is then proposed, with local treatment of non-linearities and non-regularities leading to a matrix-free resolution algorithm. Formulations are based on the thermodynamic framework of generalized standard materials and non-regular mechanics. Next, the focus is set on the thermodynamic evolution laws by studying temporal non-locality in order to limit the damage localization on the interface. Delayed-effect models are then introduced. The modular aspect of the proposed resolution is shown, with application of several interface laws and bulk behaviors. Application to large transformation contact problems is also provided. Finally, the feasibility of the approach is demonstrated by its integration into a semi-industrial code, MEF++
Частини книг з теми "Explicit symplectic integrator"
Reich, Sebastian. "Explicit symplectic integration of rod dynamics." In Foundations of Computational Mathematics, 368. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60539-0_29.
Повний текст джерелаLOPEZ-MARCOS, M. A., J. M. SANZ-SERNA, and ROBERT D. SKEEL. "AN EXPLICIT SYMPLECTIC INTEGRATOR WITH MAXIMAL STABILITY INTERVAL." In Numerical Analysis, 163–75. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789812812872_0012.
Повний текст джерелаТези доповідей конференцій з теми "Explicit symplectic integrator"
Terze, Zdravko, Andreas Mueller, and Dario Zlatar. "Störmer-Verlet Integration Scheme for Multibody System Dynamics in Lie-Group Setting." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12308.
Повний текст джерела