Добірка наукової літератури з теми "Explicit Powertrain Consumption Model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Explicit Powertrain Consumption Model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Explicit Powertrain Consumption Model"
Bou Nader, Wissam S., Charbel J. Mansour, Maroun G. Nemer, and Olivier M. Guezet. "Exergo-technological explicit methodology for gas-turbine system optimization of series hybrid electric vehicles." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232, no. 10 (October 6, 2017): 1323–38. http://dx.doi.org/10.1177/0954407017728849.
Повний текст джерелаOu, Shiqi, Wan Li, Jie Li, Zhenhong Lin, Xin He, Jessey Bouchard, and Steven Przesmitzki. "Relationships between Vehicle Pricing and Features: Data Driven Analysis of the Chinese Vehicle Market." Energies 13, no. 12 (June 15, 2020): 3088. http://dx.doi.org/10.3390/en13123088.
Повний текст джерелаPetr, Tomáš. "EVALUATING ELECTRICITY CONSUMPTION OF SPECIALISED BATTERY ELECTRIC VEHICLES USING SIMULATION MODEL." ACC Journal 29, no. 1 (2023): 34–43. http://dx.doi.org/10.15240/tul/004/2023-1-003.
Повний текст джерелаMaddumage, W. U., K. Y. Abeyasighe, M. S. M. Perera, R. A. Attalage, and P. Kelly. "Comparing Fuel Consumption and Emission Levels of Hybrid Powertrain Configurations and a Conventional Powertrain in Varied Drive Cycles and Degree of Hybridization." Science & Technique 19, no. 1 (February 5, 2020): 20–33. http://dx.doi.org/10.21122/2227-1031-2020-19-1-20-33.
Повний текст джерелаAngerer, C., B. Mößner, M. Lüst, S. Büchner, F. Sträußl, and M. Lienkamp. "Parameter-adaption for a vehicle dynamics model for the evaluation of powertrain concept designs." MATEC Web of Conferences 272 (2019): 01022. http://dx.doi.org/10.1051/matecconf/201927201022.
Повний текст джерелаGeng, Stefan, Thomas Schulte, and Jürgen Maas. "Model-Based Analysis of Different Equivalent Consumption Minimization Strategies for a Plug-In Hybrid Electric Vehicle." Applied Sciences 12, no. 6 (March 11, 2022): 2905. http://dx.doi.org/10.3390/app12062905.
Повний текст джерелаKönig, Adrian, Sebastian Mayer, Lorenzo Nicoletti, Stephan Tumphart, and Markus Lienkamp. "The Impact of HVAC on the Development of Autonomous and Electric Vehicle Concepts." Energies 15, no. 2 (January 9, 2022): 441. http://dx.doi.org/10.3390/en15020441.
Повний текст джерелаGeng, Stefan, Andreas Meier, and Thomas Schulte. "Model-Based Optimization of a Plug-In Hybrid Electric Powertrain with Multimode Transmission." World Electric Vehicle Journal 9, no. 1 (June 13, 2018): 12. http://dx.doi.org/10.3390/wevj9010012.
Повний текст джерелаShen, Ye, Andreas Viehmann, and Stephan Rinderknecht. "Investigation of the power losses of the hybrid transmission DE-REX based on modeling and measurement." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 14 (February 18, 2019): 3646–57. http://dx.doi.org/10.1177/0954407019829655.
Повний текст джерелаSigle, Sebastian, and Robert Hahn. "Energy Assessment of Different Powertrain Options for Heavy-Duty Vehicles and Energy Implications of Autonomous Driving." Energies 16, no. 18 (September 9, 2023): 6512. http://dx.doi.org/10.3390/en16186512.
Повний текст джерелаДисертації з теми "Explicit Powertrain Consumption Model"
Tamaro, Courtney Alex. "Vehicle powertrain model to predict energy consumption for ecorouting purposes." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71635.
Повний текст джерелаMaster of Science
Karlsson, Karl. "Validation of Bus Specific Powertrain Components in STARS." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10525.
Повний текст джерелаThe possibilities to simulate fuel consumption and optimize a vehicle's powertrain to fit to the customer's needs are great strengths in the competitive bus industry where fuel consumption is one of the main sales arguments. In this master's thesis, bus specific powertrain component models, used to simulate and predict fuel consumption, are validated using measured data collected from buses.
Additionally, a sensitivity analysis is made where it is investigated how errors in the powertrain parameters affect fuel consumption. After model improvements it is concluded that the library components can be used to predict fuel consumption well.
During the work, possible model uncertainties which affect fuel consumption are identified. Hence, this study may serve as foundation for further investigation of these uncertainties.
Carlos, Da Silva Daniel. "Development of a closed-form modeling methodology for the subsystems of electric vehicles : optimization of energy performance." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST014.
Повний текст джерелаTo maximize the contribution of hybrid electric vehicles (HEV) to the decarbonization of the transportation sector, it is essential to maximize their energy performance during the design phase. However, the additional power pathways to propel the vehicle act both as an advantage and an added layer of complexity. Indeed, evaluating the consumption of an HEV requires defining a supervisory control, known as Energy Management Strategy (EMS). Therefore, optimizing the design entails combining a static optimization problem (system's plant) with a time-dependent problem (its control), both of which must be considered in tandem.This plant/control co-optimization is typically tackled through either nesting optimal control algorithms within each iteration of a general optimization algorithm for the plant, or employing convex optimization to simultaneously optimize both layers. However, the former approach is known to be limited by computational constraints, while the latter may impact modeling fidelity due to convexity constraints.As a different perspective, this thesis introduces a methodology for developing explicit models to estimate powertrain energy consumption, referred to in this work as the Explicit Powertrain Consumption Model (EPCM). They are developed using component models to account for power losses, then by introducing a second modeling level to consider the impact of sizing variations on loss estimation. Such a formulation can be used as a computationally efficient objective function of an optimization problem that remains static, while enabling human-explainable analysis for reduced problems.The thesis presents the methodology development while using a Fuel Cell Hybrid Electric Vehicle (FCHEV) as a reference vehicle. Besides modeling components commonly found in electric vehicles, it includes a model for the fuel cell system, while further considering models for the power electronics, often overlooked in vehicle design studies. It first introduces the considered component models, then the models for the sizing variation (i.e., the predictive models), before developing the EPCMs and using them for the co-optimization.The validation of the component models using a Toyota Mirai~II on a roller test bench presents an overall error of less than five percent, while the study to assess the impact of the predictive models on the hydrogen consumption resulted in errors below two percent when compared to reference models. Then, an assessment of the usage of EPCMs explores the assumptions required to ensure an explicit formulation; and the co-optimization of the Mirai~II powertrain shows that an EPCM using an affine EMS can be a fair approximation for the co-optimization at the vehicle's first design stages, while reducing the evaluation time by a factor of 100. This study is further extended with reduced problems to observe the impact of the EM sizing only, then of the hybridization level, resulting in linear and quadratic expressions for the fuel consumption and the optimization constraints, which can be used to quickly derive analyses of the vehicle's energy performance.Although the results show that the current state of the methodology can be used for the co-optimization of FCHEVs, the thesis further explores its improvement points and suggests alternative applications to solidify its validity and relevance
Song, Guanqiao. "Analysis of the energy consumption of the powertrain and the auxiliary systems for battery-electric trucks." Thesis, KTH, Fordonsdynamik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286349.
Повний текст джерелаElektrificering av lastbilen är avgörande för att uppfylla Europeiska Unionens (EUs) strategiska vision att bidra till nettonollutsläpp av växthusgaser för alla sektorer i samhället. Den batterielektriska lastbilen är väldigt effektiv för att reducera utsläppen och är också mer ekonomisk med en lägre Total Cost of Ownership (TCO) jämfört med diesel lastbilar. Således behöver energiförbrukningen för den batterielektriska lastbilen analyseras i detalj, och skillnaderna i den konventionella drivlinan, återhämtning genom regenerativ bromsning under körning och laddning, måste övervägas. Detta examensarbete syftar till att analysera energiförbrukningen för den batterielektriska lastbilen under körning och laddning. För körcykelsimuleringar används the Vehicle Energy Consumption calculation TOol (VECTO) och MATLAB. Olika variationer, såsom nyttolast, rullmotstånd, luftmotstånd och Power Take Off (PTO), beaktas i körcykelsimuleringen. Körcykelsimuleringen verifieras genom att beräkna energibalansen som jämförs med experimentella testresultat utförda på väg. För laddningssimuleringen används MATLAB för att analysera laddningsförlusten med olika batteripaket och laddningshastigheter. Resultaten visas med Sankey diagram och andra illustrativa verktyg. Simuleringsresultaten visar att batteripaketets användbara energi är tillräckligt för att lastbilen ska kunna slutföra den planerade körcykeln. Den största förlusten i drivlinan är kopplat till the Power Electronic Converter (PEC) och den elektriska maskinen. För att öka räckvidden och minska energiförlusten är det ett effektivt sätt att en använda PEC och en elektrisk maskin med högre effektivitet. För laddningssimuleringen kan den nuvarande stationen med Combined Charging System (CCS) standard ladda batteriladdaren med tillräcklig spänning och med rimlig laddningstid. Huvudförlusten under laddningen kommer från laddstationen.
Nordström, Erik. "Advanced Modelling and Energy Efficiency Prediction for Road Vehicles." Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-175358.
Повний текст джерелаManning, Peter Christopher. "Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/49436.
Повний текст джерелаMaster of Science
Tseng, Hsi-Peng, and 曾喜鵬. "An Explicit Model of Residential Mobility and Housing Choice: The Interpretation Based on Housing Consumption disequilibrium and Housing Adjustment." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/87840300027993043603.
Повний текст джерела國立臺北大學
都市計劃研究所
92
Residential mobility and home improvement are behaviors commonly seen in the housing market in Taiwan. Both are household’s strategies for adjusting housing consumption to improve the living quality. However, related researches on the topic are scant in Taiwan. This dissertation, by integrating researches on residential mobility and housing choice, established an analytical model from the perspective of housing consumption disequilibrium to explain the household’s housing adjustment behavior. The model begins by conducting a systematic framework to explain the shocks and channels of household’s disequilibrium in housing consumption, and two inferences were conducted subsequently as follows. The first is to discuss the decision made between moving, improving, and no adjustment by households experiencing different housing consumption disequilibrium; the second is to discuss why and how households move from one place to another within a specific metropolitan area when they have chosen moving as the way for adjusting their housing consumption. Three hypotheses were derived from the theoretical framework, and were tested by three empirical studies. The first empirical study was to estimate the factors that influence the household’s decision on housing adjustment strategies choice by using the multinomial logit model. More specifically, the logit model is used to estimate the household’s choice between moving, improving, and no adjustment. The second empirical study was the estimation of mobility flows and housing tenure choices. The movers within Taipei Metropolitan areas were selected as target for empirical test, and the Probit model was used to estimate and calculate the homeownership probabilities for movers of different moving directions, and the probabilities of moving into Taipei City for movers that changed their housing tenure. The third empirical study is to empirically estimate the effects of reasons for moving on the mover’s joint decisions on housing location and housing tenure choice. The joint decision nature was described within the discrete choice models. The effects of the reasons for moving were analyzed by dividing the movers into three groups according to the moving reasons and incorporated into the logit model structure. The results of three empirical studies proved the three hypotheses in some extent. In conclusion, this dissertation deemed the household’s decision on residential mobility and housing choice a continuous decision-making process with interconnected relationship, and established an analytical model that bridges up the above two on theoretical level. This analytical model not only extends the current research issues on residential mobility, some new viewpoints, for example, the effects of reasons for moving on housing demand, were also brought into the current housing studies. Moreover, the probability models were used to empirically estimate three decisions related to residential mobility and housing adjustment strategies choices in Taiwan. The results both from the establishment of analytical model and empirical studies provided further understanding of the housing consumption adjustment behavior in Taiwan, as well as foundations for future researches on residential mobility and housing choice.
Книги з теми "Explicit Powertrain Consumption Model"
Jappelli, Tullio, and Luigi Pistaferri. The Response of Consumption to Income Risk. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199383146.003.0010.
Повний текст джерелаЧастини книг з теми "Explicit Powertrain Consumption Model"
Chang, Rui, Yang Liu, Yufeng Cao, and Jianqiang Liu. "An Optimal Energy Management Strategy for a Hybrid Train." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 475–84. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_46.
Повний текст джерелаErmini, Luigi. "Testing DHSY as a Restricted Conditional Model of a Trivariate Seasonally Cointegrated System." In Cointigration, Causality, and forecating, 230–55. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198296836.003.0010.
Повний текст джерелаBaranzini, Mauro. "The Accumulation of Capital in a Two-Class Life-Cycle Model in Continuous Time." In A Theory of Wealth Distribution and Accumulation, 155–76. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198233138.003.0006.
Повний текст джерелаRosolem, Letícia Alves dos Santos, Alexandre da Costa Castro, Fernando Deschamps, and Edson Pinheiro de Lima. "Associative Data-Process Model in Manufacturing Systems: Application Case in Automotive Industry." In Advances in Transdisciplinary Engineering. IOS Press, 2021. http://dx.doi.org/10.3233/atde210117.
Повний текст джерелаSánchez-López, Nuria, Andrew T. Hudak, Luigi Boschetti, Carlos A. Silva, Benjamin C. Bright, and E. Louise Loudermilk. "A spatially explicit model of litter accumulation in fire maintained longleaf pine forest ecosystems of the Southeastern USA." In Advances in Forest Fire Research 2022, 1383–89. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_209.
Повний текст джерелаKaraosman, Hakan, and Alessandro Brun. "The Myth of Sustainability in Fashion Supply Chains." In Supply Chain and Logistics Management, 160–88. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0945-6.ch008.
Повний текст джерелаKroncke, Jedidiah J. "Legal Innovation as a Global Public Good." In The Global South and Comparative Constitutional Law, 110–38. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198850403.003.0005.
Повний текст джерелаLinn, Rodman, Scott Goodrick, Sara Brambilla, David Robinson, Michael Brown, Carolyn Sieg, Joseph O’Brien, Russell Parsons, and John Kevin Hiers. "QUIC-Fire: Initial capabilities of a fast-running simulation tool for prescribed fire applications." In Advances in Forest Fire Research 2022, 335–37. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_53.
Повний текст джерелаFranses, Philip Hans. "Are Seasons, Trends, and Cycles always Independent?" In Periodicity and Stochastic Trends In Economic Time Series, 79–91. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198774532.003.0006.
Повний текст джерелаТези доповідей конференцій з теми "Explicit Powertrain Consumption Model"
Zhao, Junfeng, and Junmin Wang. "Model Predictive Control of Integrated Hybrid Electric Powertrains Coupled With Aftertreatment Systems." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5999.
Повний текст джерелаFandakov, Alexander, Paul Tourlonias, Alexander Herzog, Emre Özkan, Ronny Kurt Mehnert, and Marc Sens. "Model-Based Energy Consumption Optimization of a Twin Battery Concept Combining Liquid and Solid-State Electrolyte Cells." In 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0154.
Повний текст джерелаStockar, Stephanie, Cristian Rostiti, Marcello Canova, and Michael Prucka. "A Model Predictive Approach for the Coordination of Powertrain Control Systems." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-9146.
Повний текст джерелаGoodenough, Bryant, Alexander Czarnecki, Darrell Robinette, Jeremy Worm, Phil Latendresse, and John Westman. "Reducing Fuel Consumption on a Heavy-Duty Nonroad Vehicle: Conventional Powertrain Modifications." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0466.
Повний текст джерелаAletras, Nikolaos, Dimitrios Besinas, Georgios Livitsanos, Grigorios Koltsakis, Zissis Samaras, and Leonidas Ntziachristos. "Control Algorithms for xEV Powertrain Efficiency and Thermal Comfort." In 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0142.
Повний текст джерелаHuang, Wei, Yujun Zhang, Duode Qian, and Biqian Hu. "An Operating Point Adjustment Model Using PMP-GWO-Bi-LSTM for RANGE Extended Electric Vehicle." In SAE 2023 Vehicle Powertrain Diversification Technology Forum. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-7020.
Повний текст джерелаWu, Haotian, and Haiyan Zhang. "Model-Based Design and Evaluation of Electric Vehicle Powertrain With Independent Driving Motors." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47980.
Повний текст джерелаPhlips, Patrick. "Simple Hybrid Electric Vehicle Operating and Fuel Consumption Model." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2153.
Повний текст джерелаAngerer, Christian, Sebastian Krapf, Alexander Buß, and Markus Lienkamp. "Holistic Modeling and Optimization of Electric Vehicle Powertrains Considering Longitudinal Performance, Vehicle Dynamics, Costs and Energy Consumption." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85430.
Повний текст джерелаJiang, Y. T., Xinxin Zhao, and J. G. Zhang. "Optimization of Energy Management Strategy for Multi-Mode Hybrid Transmission Based on Condition Prediction." In SAE 2023 Vehicle Powertrain Diversification Technology Forum. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-7032.
Повний текст джерелаЗвіти організацій з теми "Explicit Powertrain Consumption Model"
Golub, Alla, Benjamin Henderson, Thomas Hertel, Steven Rose, Misak Avetisyan, and Brent Sohngen. Effects of GHG Mitigation Policies on Livestock Sectors. GTAP Working Paper, July 2010. http://dx.doi.org/10.21642/gtap.wp62.
Повний текст джерела