Статті в журналах з теми "Exotic Transition Metal Oxides"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Exotic Transition Metal Oxides.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Exotic Transition Metal Oxides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Rodenbücher, Christian, and Kristof Szot. "Electronic Phenomena of Transition Metal Oxides." Crystals 11, no. 3 (March 5, 2021): 256. http://dx.doi.org/10.3390/cryst11030256.

Повний текст джерела
Анотація:
Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kushwaha, Pallavi, Veronika Sunko, Philip J. W. Moll, Lewis Bawden, Jonathon M. Riley, Nabhanila Nandi, Helge Rosner, et al. "Nearly free electrons in a 5ddelafossite oxide metal." Science Advances 1, no. 9 (October 2015): e1500692. http://dx.doi.org/10.1126/sciadv.1500692.

Повний текст джерела
Анотація:
Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit–assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5diridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (μΩ-cm), establishing PtCoO2as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion alongkz. Despite being predominantly composed ofd-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14me. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV belowEF, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2as a model nearly-free–electron system in a 5ddelafossite transition-metal oxide.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hattori, Azusa N., Ai I. Osaka, Ken Hattori, Yasuhisa Naitoh, Hisashi Shima, Hiroyuki Akinaga, and Hidekazu Tanaka. "Investigation of Statistical Metal-Insulator Transition Properties of Electronic Domains in Spatially Confined VO2 Nanostructure." Crystals 10, no. 8 (July 22, 2020): 631. http://dx.doi.org/10.3390/cryst10080631.

Повний текст джерела
Анотація:
Functional oxides with strongly correlated electron systems, such as vanadium dioxide, manganite, and so on, show a metal-insulator transition and an insulator-metal transition (MIT and IMT) with a change in conductivity of several orders of magnitude. Since the discovery of phase separation during transition processes, many researchers have been trying to capture a nanoscale electronic domain and investigate its exotic properties. To understand the exotic properties of the nanoscale electronic domain, we studied the MIT and IMT properties for the VO2 electronic domains confined into a 20 nm length scale. The confined domains in VO2 exhibited an intrinsic first-order MIT and IMT with an unusually steep single-step change in the temperature dependent resistivity (R-T) curve. The investigation of the temperature-sweep-rate dependent MIT and IMT properties revealed the statistical transition behavior among the domains. These results are the first demonstration approaching the transition dynamics: the competition between the phase-transition kinetics and experimental temperature-sweep-rate in a nano scale. We proposed a statistical transition model to describe the correlation between the domain behavior and the observable R-T curve, which connect the progression of the MIT and IMT from the macroscopic to microscopic viewpoints.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ALONSO, J. A., M. J. MARTÍNEZ-LOPE, C. DE LA CALLE, J. SÁNCHEZ-BENÍTEZ, M. RETUERTO, A. AGUADERO, and M. T. FERNANDEZ-DÍAZ. "HIGH-PRESSURE SYNTHESIS AND CHARACTERIZATION OF NEW METASTABLE OXIDES." Functional Materials Letters 04, no. 04 (December 2011): 333–36. http://dx.doi.org/10.1142/s1793604711002123.

Повний текст джерела
Анотація:
Many transition-metal oxides in elevated valence states [e.g. Mn(V), Co(IV), Ni(III), Cu(III) ] present a metastable character and, given the difficulty of their synthesis, have been relatively little studied. However, they are very interesting materials presenting strong electronic correlations that are bound to exotic properties such as superconductivity, metal behavior, metal–insulator transitions or colossal magnetoresistance. The metastability of these compounds requires special synthesis conditions such as the application of high pressure. In the last years, we have prepared and investigated a good number of materials belonging to several families such as RNiO3 (R = rare earths), Ba3Mn2O8 , (Ba,Sr)CoO3 , La2(Ni,Co)O4+δ , etc. In the study and correct characterization of these oxides it has been decisive the use of elastic neutron diffraction, most of the times in powder samples. This technique has allowed us to access the structural details typically related to the octahedral tilting in perovskite structures, the oxygen stoichiometry and order–disorder of the oxygen sublattice, the distinction between close elements in the Periodic Table, the resolution of magnetic structures and, in general, the establishment of a correlation between the structure and the properties of interest. This letter is organized around the binomial "high-pressure synthesis" and "characterization by neutron diffraction" and illustrated with some selected examples among the metastable materials above mentioned.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Niu, Xu, Bin-Bin Chen, Ni Zhong, Ping-Hua Xiang, and Chun-Gang Duan. "Topological Hall effect in SrRuO3 thin films and heterostructures." Journal of Physics: Condensed Matter 34, no. 24 (April 14, 2022): 244001. http://dx.doi.org/10.1088/1361-648x/ac60d0.

Повний текст джерела
Анотація:
Abstract Transition metal oxides hold a wide spectrum of fascinating properties endowed by the strong electron correlations. In 4d and 5d oxides, exotic phases can be realized with the involvement of strong spin–orbit coupling (SOC), such as unconventional magnetism and topological superconductivity. Recently, topological Hall effects (THEs) and magnetic skyrmions have been uncovered in SrRuO3 thin films and heterostructures, where the presence of SOC and inversion symmetry breaking at the interface are believed to play a key role. Realization of magnetic skyrmions in oxides not only offers a platform to study topological physics with correlated electrons, but also opens up new possibilities for magnetic oxides using in the low-power spintronic devices. In this review, we discuss recent observations of THE and skyrmions in the SRO film interfaced with various materials, with a focus on the electric tuning of THE. We conclude with a discussion on the directions of future research in this field.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jiang, Xingyu, Yiren Liu, Yipeng Zang, Yuwei Liu, Tianyi Gao, Ningchong Zheng, Zhengbin Gu, Yurong Yang, Di Wu, and Yuefeng Nie. "Uniaxial strain induced anisotropic bandgap engineering in freestanding BiFeO3 films." APL Materials 10, no. 9 (September 1, 2022): 091110. http://dx.doi.org/10.1063/5.0095955.

Повний текст джерела
Анотація:
Strain engineering has been demonstrated to be an effective knob to tune the bandgap in perovskite oxides, which is highly desired for applications in optics, optoelectronics, and ferroelectric photovoltaics. Multiferroic BiFeO3 exhibits great potential in photovoltaic applications and its bandgap engineering is of great interest. However, the mechanism of strain induced bandgap engineering in BiFeO3 remains elusive to date. Here, we perform in situ ellipsometry measurements to investigate the bandgap evolution as a function of uniaxial strain on freestanding BiFeO3 films. Exotic anisotropic bandgap engineering has been observed, where the bandgap increases (decreases) by applying uniaxial tensile strain along the pseudocubic [100]p ([110]p) direction. First-principles calculations indicate that different O6 octahedral rotations under strain are responsible for this phenomenon. Our work demonstrates that the extreme freedom in tuning the strain and symmetry of freestanding films opens a new fertile playground for novel strain-driven phases in transition metal oxides.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yin, Zongyou, Moshe Tordjman, Youngtack Lee, Alon Vardi, Rafi Kalish, and Jesús A. del Alamo. "Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond." Science Advances 4, no. 9 (September 2018): eaau0480. http://dx.doi.org/10.1126/sciadv.aau0480.

Повний текст джерела
Анотація:
High electron affinity transition-metal oxides (TMOs) have gained a central role in two-dimensional (2D) electronics by enabling unprecedented surface charge doping efficiency in numerous exotic 2D solid-state semiconductors. Among them, diamond-based 2D electronics are entering a new era by using TMOs as surface acceptors instead of previous molecular-like unstable acceptors. Similarly, surface-doped diamond with TMOs has recently yielded record sheet hole concentrations (2 × 1014 cm−2) and launched the quest for its implementation in microelectronic devices. Regrettably, field-effect transistor operation based on this surface doping has been so far disappointing due to fundamental material obstacles such as (i) carrier scattering induced by nonhomogeneous morphology of TMO surface acceptor layer, (ii) stoichiometry changes caused by typical transistor fabrication process, and (iii) carrier transport loss due to electronic band energy misalignment. This work proposes and demonstrates a general strategy that synergistically surmounts these three barriers by developing an atomic layer deposition of a hydrogenated MoO3 layer as a novel efficient surface charge acceptor for transistors. It shows high surface uniformity, enhanced immunity to harsh fabrication conditions, and benefits from tunable electronic gap states for improving carrier transfer at interfaces. These breakthroughs permit crucial integration of TMO surface doping into transistor fabrication flows and allow outperforming electronic devices to be reached.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Takahashi, K. S., Y. Tokura, and M. Kawasaki. "Metal–insulator transitions in dimensionality controlled LaxSr1−xVO3 films." APL Materials 10, no. 11 (November 1, 2022): 111114. http://dx.doi.org/10.1063/5.0122864.

Повний текст джерела
Анотація:
Carrier doping into two dimensional (2D) Mott insulators is one of the prospective strategies for exploring exotic quantum phenomena. Although ultra-thin oxide films are one such target, it is vitally important to fabricate well-defined and clean samples to extract intrinsic properties. In this study, we start from establishing the growth of clean SrVO3 films with a low residual resistivity (∼4 × 10−7 Ω cm) and a high mobility (∼103 cm2/V s). By confining them with SrTiO3 barrier layers, the Mott insulator state appears at the thickness below 3 unit cells (u.c.). By the electron doping in the form of La xSr1− xVO3 for such two dimensional systems (2 and 3 u.c), metallic-like phases appear in a narrow x region around x = 0.17, indicating a collapse of the Mott insulator state. This study demonstrates that artificial 2D systems of clean oxides are a promising playground for exploring novel Mott physics in confined systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Merckling, Clement, Islam Ahmed, Tsang Hsuan Tsang, Moloud Kaviani, Jan Genoe, and Stefan De Gendt. "(Invited) Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications." ECS Meeting Abstracts MA2022-01, no. 19 (July 7, 2022): 1060. http://dx.doi.org/10.1149/ma2022-01191060mtgabs.

Повний текст джерела
Анотація:
With the slowing down of Moore’s law, related to conventional scaling of integrated circuits, alternative technologies will require research effort for pushing the limits of new generations of electronic or photonic devices. Perovskite oxides with the ABO3 chemical formula have a very wide range of interesting intrinsic properties such as metal-insulator transition, ferroelectricity, pyroelectricity, piezoelectricity, ferromagnetic and superconductivity. For the integration of such oxides, it is of great interest to combine their properties with traditional electronic, memory and optical devices on the same silicon-based platform. In the context of high-speed chip-to-chip optical interconnects, compact high-resolution beam steering and video-rate RGB hologram generation require the integration of fast and efficient optical modulators on top of silicon CMOS devices. For these applications the integration of high quality electro-optical materials A defect-free material-stack deposition on silicon wafers is hence required. Among the possible materials options, barium titanate (BaTiO3) is one promising candidate due to its large intrinsic Pockels coefficients that can be obtained. In a first part of the talk, we will review the different options to integrate BaTiO3 on Silicon substrate though different templates to control the polarization direction and discuss the influence on the physical, electrical and optical properties. Then in the second section we will discuss the use of perovskites oxide in the field of topological based qubits which is one of the promising methods for realizing fault-tolerant computations. It is recognized that superconductor/topological insulator heterostructure interfaces may be a perfect host for the exotic “Majorana” particles. These have relevant topological protection nature as required for processing information. Therefore, the physics at the superconductor/topological insulator heterostructure interface need to be studied further, starting at the material level. In this work, a candidate material Barium Bismuthate (BBO) is studied utilizing the Oxide Molecular Beam Epitaxy (MBE) process. The perovskite structure provides opportunity for easily tailored functionality through substitutional doping. Incorporation of potassium into the lattice of BBO results in a superconducting phase with Curie temperature as high as ~ 30K. In addition, BBO is according to DFT based studies, predicted to form topological surface states when doped with Fluorine. In our work, we integrate BBO perovskite on Si(001) substrate, using an epitaxially grown strontium titanate (STO) single-crystalline buffer layer and discuss the structural and chemical properties of the heterostructure will be established by utilizing physical characterization techniques such as AFM, and TEM in later stages. This will go hand in hand with the understanding of the ARPES studies and related surface reconstruction of BBO observed by RHEED as a criterion for the high-quality films. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreements No 864483 and 742299)”.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rao, C. N. R. "Transition Metal Oxides." Annual Review of Physical Chemistry 40, no. 1 (October 1989): 291–326. http://dx.doi.org/10.1146/annurev.pc.40.100189.001451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Greenblatt, Martha. "Transition metal oxides." Materials Research Bulletin 31, no. 4 (April 1996): 426–27. http://dx.doi.org/10.1016/0025-5408(96)80020-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lany, Stephan. "Semiconducting transition metal oxides." Journal of Physics: Condensed Matter 27, no. 28 (June 30, 2015): 283203. http://dx.doi.org/10.1088/0953-8984/27/28/283203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

GUO, Xianji. "Pillared layered transition metal oxides." Chinese Science Bulletin 48, no. 2 (2003): 101. http://dx.doi.org/10.1360/03tb9021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Walia, Sumeet, Sivacarendran Balendhran, Hussein Nili, Serge Zhuiykov, Gary Rosengarten, Qing Hua Wang, Madhu Bhaskaran, Sharath Sriram, Michael S. Strano, and Kourosh Kalantar-zadeh. "Transition metal oxides – Thermoelectric properties." Progress in Materials Science 58, no. 8 (October 2013): 1443–89. http://dx.doi.org/10.1016/j.pmatsci.2013.06.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Szotek, Z., W. M. Temmerman, A. Svane, L. Petit, G. M. Stocks, and H. Winter. "Half-metallic transition metal oxides." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 1816–17. http://dx.doi.org/10.1016/j.jmmm.2003.12.818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Moreo, Adriana. "Complexity in transition metal oxides." Journal of Physics and Chemistry of Solids 67, no. 1-3 (January 2006): 32–36. http://dx.doi.org/10.1016/j.jpcs.2005.10.138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhang, Huigang, Hailong Ning, John Busbee, Zihan Shen, Chadd Kiggins, Yuyan Hua, Janna Eaves, et al. "Electroplating lithium transition metal oxides." Science Advances 3, no. 5 (May 2017): e1602427. http://dx.doi.org/10.1126/sciadv.1602427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

He, Tao, and Jian-Nian Yao. "Photochromism in transition-metal oxides." Research on Chemical Intermediates 30, no. 4 (June 1, 2004): 459–88. http://dx.doi.org/10.1163/1568567041280890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Tokura, Y. "Metal-insulator phenomena in 3d transition metal oxides." Physica C: Superconductivity 235-240 (December 1994): 138–41. http://dx.doi.org/10.1016/0921-4534(94)91332-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhou, Wu Zong. "Mesoporous Crystals of Transition Metal Oxides." Solid State Phenomena 140 (October 2008): 37–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.140.37.

Повний текст джерела
Анотація:
Using mesoporous silicas as hard templates and facilitating crystal growth of transition metal oxides inside the pores, some mesoporous crystals can be produced after removing the templates. This paper gives a brief review of the research of mesoporous crystals of transition metal oxides in the last five years, including the technical development and potential applications of the new form of oxides.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wang, Yan, Jin Guo, Tingfeng Wang, Junfeng Shao, Dong Wang, and Ying-Wei Yang. "Mesoporous Transition Metal Oxides for Supercapacitors." Nanomaterials 5, no. 4 (October 14, 2015): 1667–89. http://dx.doi.org/10.3390/nano5041667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Rao, C. N. R., and A. K. Cheetham. "Giant Magnetoresistance in Transition Metal Oxides." Science 272, no. 5260 (April 19, 1996): 369–70. http://dx.doi.org/10.1126/science.272.5260.369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Littrell, Donald M., Daniel H. Bowers, and Bruce J. Tatarchuk. "Hydrazine reduction of transition-metal oxides." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 83, no. 11 (1987): 3271. http://dx.doi.org/10.1039/f19878303271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Nakamura, Keisuke, Yuya Oaki, and Hiroaki Imai. "Monolayered Nanodots of Transition Metal Oxides." Journal of the American Chemical Society 135, no. 11 (March 7, 2013): 4501–8. http://dx.doi.org/10.1021/ja400443a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sawa, Akihito. "Resistive switching in transition metal oxides." Materials Today 11, no. 6 (June 2008): 28–36. http://dx.doi.org/10.1016/s1369-7021(08)70119-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhao, Yongbiao, Jun Zhang, Shuwei Liu, Yuan Gao, Xuyong Yang, Kheng Swee Leck, Agus Putu Abiyasa, et al. "Transition metal oxides on organic semiconductors." Organic Electronics 15, no. 4 (April 2014): 871–77. http://dx.doi.org/10.1016/j.orgel.2014.01.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Attfield, J. Paul. "Charge ordering in transition metal oxides." Solid State Sciences 8, no. 8 (August 2006): 861–67. http://dx.doi.org/10.1016/j.solidstatesciences.2005.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Matsushita, Eiko, and Akifumi Tanase. "Conduction mechanism in transition-metal oxides." Physica B: Condensed Matter 237-238 (July 1997): 21–23. http://dx.doi.org/10.1016/s0921-4526(97)00029-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Fujimori, Atsushi, and Takashi Mizokawa. "Electronic structure of transition-metal oxides." Current Opinion in Solid State and Materials Science 2, no. 1 (February 1997): 18–22. http://dx.doi.org/10.1016/s1359-0286(97)80100-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Encheva, G., B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva, and I. Mitov. "Silica gels containing transition metal oxides." Journal of Non-Crystalline Solids 345-346 (October 2004): 615–19. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Büttgen, N., H. A. Krug von Nidda, W. Kraetschmer, A. Günther, S. Widmann, S. Riegg, A. Krimmel, and A. Loidl. "Quantum Criticality in Transition-Metal Oxides." Journal of Low Temperature Physics 161, no. 1-2 (August 11, 2010): 148–66. http://dx.doi.org/10.1007/s10909-010-0200-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Seike, Tetsuya, and Junichi Nagai. "Electrochromism of 3d transition metal oxides." Solar Energy Materials 22, no. 2-3 (July 1991): 107–17. http://dx.doi.org/10.1016/0165-1633(91)90010-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Goodenough, John B. "Perspective on Engineering Transition-Metal Oxides." Chemistry of Materials 26, no. 1 (September 9, 2013): 820–29. http://dx.doi.org/10.1021/cm402063u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yamamoto, Takafumi, and Hiroshi Kageyama. "Hydride Reductions of Transition Metal Oxides." Chemistry Letters 42, no. 9 (September 5, 2013): 946–53. http://dx.doi.org/10.1246/cl.130581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Mayer, B., St Uhlenbrock, and M. Neumann. "XPS satellites in transition metal oxides." Journal of Electron Spectroscopy and Related Phenomena 81, no. 1 (June 1996): 63–67. http://dx.doi.org/10.1016/0368-2048(96)03030-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Muraoka, Yuji, and Zenji Hiroi. "Photocarrier Injection to Transition Metal Oxides." Journal of the Physical Society of Japan 72, no. 4 (April 15, 2003): 781–84. http://dx.doi.org/10.1143/jpsj.72.781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Tokura, Y. "Orbital Physics in Transition-Metal Oxides." Science 288, no. 5465 (April 21, 2000): 462–68. http://dx.doi.org/10.1126/science.288.5465.462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Raveau, B. "Transition metal oxides: Promising functional materials." Journal of the European Ceramic Society 25, no. 12 (January 2005): 1965–69. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Doumerc, J. P., M. Blangero, M. Pollet, D. Carlier, J. Darriet, R. Berthelot, C. Delmas, and R. Decourt. "Transition-Metal Oxides for Thermoelectric Generation." Journal of Electronic Materials 38, no. 7 (January 10, 2009): 1078–82. http://dx.doi.org/10.1007/s11664-008-0625-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Krivanek, Ondrej L., and James H. Paterson. "Elnes of 3d transition-metal oxides." Ultramicroscopy 32, no. 4 (May 1990): 313–18. http://dx.doi.org/10.1016/0304-3991(90)90077-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Paterson, James H., and Ondrej L. Krivanek. "Elnes of 3d transition-metal oxides." Ultramicroscopy 32, no. 4 (May 1990): 319–25. http://dx.doi.org/10.1016/0304-3991(90)90078-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kumar, Kadakuntla Santhosh, Gulloo Lal Prajapati, Rahul Dagar, Megha Vagadia, Dhanvir Singh Rana, and Masayoshi Tonouchi. "Terahertz Electrodynamics in Transition Metal Oxides." Advanced Optical Materials 8, no. 3 (December 23, 2019): 1900958. http://dx.doi.org/10.1002/adom.201900958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Neyestanaki, A. K., and L. E. Lindfors. "Catalytic Combustion Over Transition Metal Oxides and Platinum-Transition Metal Oxides Supported on Knitted Silica Fibre." Combustion Science and Technology 97, no. 1-3 (April 1994): 121–36. http://dx.doi.org/10.1080/00102209408935371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lucovsky, G., J. G. Hong, C. C. Fulton, Y. Zou, R. J. Nemanich, H. Ade, D. G. Scholm, and J. L. Freeouf. "Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides." physica status solidi (b) 241, no. 10 (August 2004): 2221–35. http://dx.doi.org/10.1002/pssb.200404938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Krug von Nidda, H. A., R. Bulla, N. B�ttgen, M. Heinrich, and A. Loidl. "Heavy fermions in transition metals and transition-metal oxides." European Physical Journal B - Condensed Matter 34, no. 4 (August 1, 2003): 399–407. http://dx.doi.org/10.1140/epjb/e2003-00237-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Bowman, Amy, Mathieu Allix, Denis Pelloquin, and Matthew J. Rosseinsky. "Three-Coordinate Metal Centers in Extended Transition Metal Oxides." Journal of the American Chemical Society 128, no. 39 (October 2006): 12606–7. http://dx.doi.org/10.1021/ja064083g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Koshibae, Wataru. "Theory of Thermopower in Transition Metal Oxides." Journal of the Japan Society of Powder and Powder Metallurgy 59, no. 4 (2012): 190–95. http://dx.doi.org/10.2497/jjspm.59.190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Du Yong-Ping, Liu Hui-Mei, and Wan Xian-Gang. "Novel properties of 5d transition metal oxides." Acta Physica Sinica 64, no. 18 (2015): 187201. http://dx.doi.org/10.7498/aps.64.187201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Sun, Yuanmiao, Gao Chen, Shibo Xi, and Zhichuan J. Xu. "Catalytically Influential Features in Transition Metal Oxides." ACS Catalysis 11, no. 22 (November 2, 2021): 13947–54. http://dx.doi.org/10.1021/acscatal.1c04393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ramanan, A., and P. K. Sharma. "Toward rational synthesis of transition metal oxides." Proceedings / Indian Academy of Sciences 107, no. 3 (June 1995): 171–77. http://dx.doi.org/10.1007/bf02884433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії