Добірка наукової літератури з теми "Exergo-economic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Exergo-economic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Exergo-economic"

1

Aygun, Hakan, Mehmet E. Cilgin, and Onder Turan. "Exergo-economic cost accounting for PW4000 turbofan engine and its components." MATEC Web of Conferences 314 (2020): 02003. http://dx.doi.org/10.1051/matecconf/202031402003.

Повний текст джерела
Анотація:
You The several series of PW4000 high bypass turbofan engine have used so far in many aircrafts. These commercial engines have played a crucial role on passenger and freight transportations. Namely, these engines are closely related to the environment impacts and security of energy supply. In this article, exergoeconomic analysis which is useful tool to investigate existing potential for improvement of the a system efficiency were carried out. The assesment, design and optimization of energy consuming systems are performed by means of these analyses. Therefore, thermo-economic costs were assigned to existing exergetic values of PW400 engine. Also exergo-economic performance parameters were evaluated. Finally, exergoeconomic deputy parameters were examined to understand relations with exergo-economic parameters. Based on the results of exergo-economics analysis, for Fan and exhaust, specific thrust costs are estimated 5.7051 $/hkN and 68.45$/hkN respectively. Also exergo-economics factor of PW4000 is found 7.958 % , while relative cost difference is determined at highest rate with 24.458 % for combustion chamber . With examination relations between economic variables and exergo-economic performance parameters, the change between 0.6 and 1.2 $/kg in the fuel price leads to increase the exhaust and fan specific thrust costs with 82.4701 $/hkN and 5.4332 $/hkN respectively. It is expected that conclusions of this study are helpful to notify exergo-economic impact of PW4000 engine Also, it may be benchmarking for similar gas turbine engines.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vallis, Athanasios G., Theodoros C. Zannis, Evangelos V. Hristoforou, Elias A. Yfantis, Efthimios G. Pariotis, Dimitrios T. Hountalas, and John S. Katsanis. "Design of Container Ship Main Engine Waste Heat Recovery Supercritical CO2 Cycles, Optimum Cycle Selection through Thermo-Economic Optimization with Genetic Algorithm and Its Exergo-Economic and Exergo-Environmental Analysis." Energies 15, no. 15 (July 26, 2022): 5398. http://dx.doi.org/10.3390/en15155398.

Повний текст джерела
Анотація:
In the present study, energy and exergy analyses of a simple supercritical, a split supercritical and a cascade supercritical CO2 cycle are conducted. The bottoming cycles are coupled with the main two-stroke diesel engine of a 6800 TEU container ship. An economic analysis is carried out to calculate the total capital cost of these installations. The functional parameters of these cycles are optimized to minimize the electricity production cost (EPC) using a genetic algorithm. Exergo-economic and exergo-environmental analyses are conducted to calculate the cost of the exergetic streams and various exergo-environmental parameters. A parametric analysis is performed for the optimum bottoming cycle to investigate the impact of ambient conditions on the energetic, exergetic, exergo-economic and exergo-environmental key performance indicators. The theoretical results of the integrated analysis showed that the installation and operation of a waste heat recovery optimized split supercritical CO2 cycle in a 6800 TEU container ship can generate almost 2 MW of additional electric power with a thermal efficiency of 14%, leading to high fuel and CO2 emission savings from auxiliary diesel generators and contributing to economically viable shipping decarbonization.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

WU, S. Y., Y. R. LI, and D. L. ZENG. "EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 517–19. http://dx.doi.org/10.1142/s0217979205028943.

Повний текст джерела
Анотація:
Based on the exergo-economic analysis of low temperature heat exchanger heat transfer and flow process, a new exergo-economic criterion which is defined as the net profit per unit heat flux for cryogenic exergy recovery low temperature heat exchangers is put forward. The application of criterion is illustrated by the evaluation of down-flow, counter-flow and cross-flow low temperature heat exchangers performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alibaba, Massomeh, Razieh Pourdarbani, Mohammad Hasan Khoshgoftar Manesh, Israel Herrera-Miranda, Iván Gallardo-Bernal, and José Luis Hernández-Hernández. "Conventional and Advanced Exergy-Based Analysis of Hybrid Geothermal–Solar Power Plant Based on ORC Cycle." Applied Sciences 10, no. 15 (July 28, 2020): 5206. http://dx.doi.org/10.3390/app10155206.

Повний текст джерела
Анотація:
Today, as fossil fuels are depleted, renewable energy must be used to meet the needs of human beings. One of the renewable energy sources is undoubtedly the solar–geothermal power plant. In this paper, the conventional and advanced, exergo-environmental and exergo-economic analysis of a geothermal–solar hybrid power plant (SGHPP) based on an organic Rankin cycle (ORC) cycle is investigated. In this regard, at first, a conventional analysis was conducted on a standalone geothermal cycle (first mode), as well as a hybrid solar–geothermal cycle (second mode). The results of exergy destruction for simulating the standalone geothermal cycle showed that the ORC turbine with 1050 kW had the highest exergy destruction that was 38% of the total share of destruction. Then, the ORC condenser with 26% of the total share of exergy destruction was in second place. In the hybrid geothermal–solar cycle, the solar panel had the highest environmental impact and about 56% of the total share of exergy destruction. The ORC turbine had about 9% of all exergy destruction. The results of the advanced analysis of exergy in the standalone geothermal cycle showed that the avoidable exergy destruction of the condenser was the highest. In the hybrid geothermal–solar cycle, the solar panel, steam economizer and steam evaporator were ranked first to third from an avoidable exergy destruction perspective. The avoidable exergo-economic destruction of the evaporator and pump were higher than the other components. The hybrid geothermal–solar cycle, steam economizer, solar pane and steam evaporator were ranked first to third, respectively, and they could be modified. The avoidable exergo-environmental destruction of the ORC turbine and the ORC pump were the highest, respectively. In the hybrid geothermal–solar cycle, steam economizers, solar panel and steam evaporators had the highest avoidable exergy destruction, respectively. For the standalone geothermal cycle, the total endogenous exergy destruction and exogenous exergy destruction was 83.61% and 16.39%. Moreover, from an exergo-economic perspective, 89% of the total destruction rate was endogenous and 11% was exogenous. From an exergo-environmental perspective, 88.73% of the destruction rate was endogenous and 11.27% was exogenous. For the hybrid geothermal–solar cycle, the total endogenous and exogenous exergy destruction was 75.08% and 24.92%, respectively. Moreover, 81.82% of the exergo-economic destruction rate was endogenous and 18.82% was exogenous. From an exergo-environmental perspective, 81.19% of the exergy destruction was endogenous and 18.81% was exogenous.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Talluri, Lorenzo, Giampaolo Manfrida, and Lorenzo Ciappi. "Exergo-economic assessment of OTEC power generation." E3S Web of Conferences 238 (2021): 01015. http://dx.doi.org/10.1051/e3sconf/202123801015.

Повний текст джерела
Анотація:
Ocean Thermal Energy Conversion is an important renewable energy technology aimed at harvesting the large energy resources connected to the temperature gradient between shallow and deep ocean waters, mainly in the tropical region. After the first small-size demonstrators, the current technology is focused on the use of Organic Rankine Cycles, which are suitable for operating with very low temperatures of the resource. With respect to other applications of binary cycles, a large fraction of the output power is consumed for harvesting the resource – that is, in the case of OTEC, for pumping the cold and hot water resource. An exergy analysis of the process (including thermodynamic model of the power cycle as well as heat transfer and friction modelling of the primary resource circuit) was developed and applied to determine optimal conditions (for output power and for exergy efficiency). A parametric analysis examining the main design constraints (temperature range of the condenser and mass flow ratio of hot and cold resource flows) is performed. The cost of power equipment is evaluated applying equipment cost correlations, and an exergo-economic analysis is performed. The results allow to calculate the production cost of electricity and its progressive build-up across the conversion process. A sensitivity analysis with respect to the main design variables is performed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Giusti, E., L. Ciappi, P. Ungar, C. Zuffi, D. Fiaschi, G. Manfrida, and L. Talluri. "Exergo-economic and exergo-environmental analysis of a binary geothermal power plant with solar boosting." Journal of Physics: Conference Series 2385, no. 1 (December 1, 2022): 012124. http://dx.doi.org/10.1088/1742-6596/2385/1/012124.

Повний текст джерела
Анотація:
Abstract The exploitation of renewable energies is a solution to the energy, economic and environmental issues related to the massive use of fossil resources. Thus, investing in renewable technologies is essential to achieve the carbon-neutral scenario within 2050. In this framework, geothermal energy may have a key role. In particular, power plants with a closed binary cycle are suitable for harnessing geothermal resources with low and medium enthalpy levels. They are prone to be integrated with other renewable devices to increase the global power output. Geothermal fluid can be drawn constantly from underground throughout the day and seasons. Conversely, the availability and intensity of solar energy depend on weather conditions and the time of year. In Italy, geothermal energy is currently harvested for continuous electricity generation, while solar energy is mainly used for photovoltaic generation. For small-to-medium size plants, rated between 5 and 20 MWe, the geothermal and thermodynamic solar hybridization may lead to relevant benefits for the economic competitiveness regarding separate photovoltaic or thermodynamic solar systems. This article aims to investigate the economic and environmental aspects of geothermal power plants with a closed binary cycle coupled with a topper cycle fed by linear parabolic solar collectors. The system operation in both design and off-design conditions was analysed, and exergo-economic and exergo-environmental simulations were conducted. The application site was selected near Torre Alfina (Italy). It has a water-dominant reservoir with a pressure of 44 bar, a temperature of 140 °C, and content of non-condensable gases (NCGs) approximately equal to 2% by weight. At the design point, the net power is 8.4 MW and the first and second principle efficiencies are 9.31% and 18.45%, respectively. The exergo-economic and exergo-environmental analyses indicate that the components with the highest economic and environmental impact are the condenser, the field of solar collectors, the evaporator, and the low-pressure turbine. The levelized cost of electricity (LCOE) is equal to 14.19 c€/kWh.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kallio, Sonja, and Monica Siroux. "Exergy and Exergy-Economic Approach to Evaluate Hybrid Renewable Energy Systems in Buildings." Energies 16, no. 3 (January 17, 2023): 1029. http://dx.doi.org/10.3390/en16031029.

Повний текст джерела
Анотація:
Hybrid renewable energy systems (HRES) combine two or more renewable energy systems and are an interesting solution for decentralized renewable energy generation. The exergy and exergo-economic approach have proven to be useful methods to analyze hybrid renewable energy systems. The aim of this paper is to present a review of exergy and exergy-economic approaches to evaluate hybrid renewable energy systems in buildings. In the first part of the paper, the methodology of the exergy and exergo-economic analysis is introduced as well as the main performance indicators. The influence of the reference environment is analyzed, and results show that the selection of the reference environment has a high impact on the results of the exergy analysis. In the last part of the paper, different literature studies based on exergy and exergo-economic analysis applied to the photovoltaic-thermal collectors, fuel-fired micro-cogeneration systems and hybrid renewable energy systems are reviewed. It is shown that the dynamic exergy analysis is the best way to evaluate hybrid renewable energy systems if they are operating under a dynamic environment caused by climatic conditions and/or energy demand.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Valencia Ochoa, Guillermo, Jhan Piero Rojas, and Jorge Duarte Forero. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine." Energies 13, no. 1 (January 5, 2020): 267. http://dx.doi.org/10.3390/en13010267.

Повний текст джерела
Анотація:
This manuscript presents an advanced exergo-economic analysis of a waste heat recovery system based on the organic Rankine cycle from the exhaust gases of an internal combustion engine. Different operating conditions were established in order to find the exergy destroyed values in the components and the desegregation of them, as well as the rate of fuel exergy, product exergy, and loss exergy. The component with the highest exergy destroyed values was heat exchanger 1, which is a shell and tube equipment with the highest mean temperature difference in the thermal cycle. However, the values of the fuel cost rate (47.85 USD/GJ) and the product cost rate (197.65 USD/GJ) revealed the organic fluid pump (pump 2) as the device with the main thermo-economic opportunity of improvement, with an exergo-economic factor greater than 91%. In addition, the component with the highest investment costs was the heat exchanger 1 with a value of 2.769 USD/h, which means advanced exergo-economic analysis is a powerful method to identify the correct allocation of the irreversibility and highest cost, and the real potential for improvement is not linked to the interaction between components but to the same component being studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abam, Fidelis I., Tobinson A. Briggs, Ekwe B. Ekwe, and Samuel O. Effiom. "Investigation of intercooler-effectiveness on exergo-economic and exergo-sustainability parameters of modified Brayton cycles." Case Studies in Thermal Engineering 10 (September 2017): 9–18. http://dx.doi.org/10.1016/j.csite.2017.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dolinskii, A. A., B. Kh Draganov, and V. A. Dubrovin. "Optimization of Technical Systems by Exergo-Economic Methods." Heat Transfer Research 36, no. 3 (2005): 229–35. http://dx.doi.org/10.1615/heattransres.v36.i3.60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Exergo-economic"

1

Shamoushaki, Moein. "From economic to exergo-economic modeling of geothermal power plant." Doctoral thesis, 2022. http://hdl.handle.net/2158/1259368.

Повний текст джерела
Анотація:
Economic assessment of power plants is one of the most critical steps before starting the project. Nowadays, investors and governments are looking for energy systems with lower investment costs leading to a shorter payback period. In the present research, economic and exergo-economic analysis of geothermal power plants has been conducted. This study has been divided into four different sections, (I) geothermal well drilling cost model generation, (II) power plant's equipment cost model generation, (III) entire geothermal power plants' economic model generation, and (IV) exergo-economic analysis of three geothermal case studies based on previous sections. QUE$TOR software is applied to calculate the costs of well drilling and power plant equipment, which is a robust and reliable cost estimator tool for well drilling and equipment costs, including a comprehensive cost database. Curve fitting and different optimization approaches have been applied in the models' generation process to reduce the deviations and calibration of obtained coefficients. The well drilling cost models are generated for different regions and countries based on the well number and depth. Also, the power plant's equipment cost models are proposed for the pump, heat exchangers, compressor, air-cooled condenser, and pressure vessel. Generated cost models are the most updated correlations based on the 2020 database. The generated equipment models are implemented in the entire power plants’ economic models generation. Considered models are the total cost rate, plant’s total cost, and power generation cost. The evaluated geothermal configurations are simple Organic Rankine Cycle (ORC), regenerative ORC, single flash, double flash, and flash-binary cycles. The proposed cost models in all sections are compared with other references, and it shows good compatibility with available literature. In the last part of this study, based on the generated well drilling and equipment cost models, exergy and exergo-economic assessment of three different geothermal case studies are performed. The first case is the Kizildere geothermal power plant (in Turkey), a triple-flash cycle coupled with an ORC unit. The second case is the Castelnuovo geothermal power cycle planned to construct in the Tuscany region, Italy. It is composed of an ORC cycle with a district heating system and total reinjection of non-condensable gases. And the last case is a improved scheme of Castelnuovo cycle with adding LiBr-H2O absorption chiller and Polymer Electrolyte Membrane (PEM) electrolyzer to generate more products.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Exergo-economic"

1

Srinath, Poloju, and Kirti Tewari. "The Environmental, Enviro-Economic, Economic, Exergo-Economic, Analysis PVT Non-metallic Solar Water Heater." In Lecture Notes in Mechanical Engineering, 237–49. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2188-9_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Atilgan, Ramazan, Onder Turan, and Hakan Aydin. "Exergo-Economic Analysis of an Experimental Aircraft Turboprop Engine Under Low Torque Condition." In Springer Proceedings in Physics, 329–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05521-3_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mousafarash, Ali, and Pouria Ahmadi. "Exergy and Exergo-Economic Based Analysis of a Gas Turbine Power Generation System." In Progress in Sustainable Energy Technologies Vol II, 97–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07977-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hashemian, Nasim, Alireza Noorpoor, and Majid Amidpour. "A Biomass Assisted Solar-Based Multi-generation Plant with Hydrogen and Freshwater Production: Sustainability, Advanced Exergy and Advanced Exergo-Economic Assessments." In Green Energy and Technology, 107–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90720-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tiwari, Gopal Nath, Praveen Kumar Srivastava, Akhoury Sudhir Kumar Sinha, and Arvind Tiwari. "The CO2 Mitigation and Exergo and Environ- Economics Analysis of Bio-gas Integrated Semi- Transparent Photo-voltaic Thermal (Bi-iSPVT) System for Indian Composite Climate." In Solar Thermal Systems: Thermal Analysis and its Application, 363–84. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050950122010018.

Повний текст джерела
Анотація:
It is to be noted that biogas production is drastically reduced in cold climatic conditions, especially in winter, due to a drop in ambient air temperature, which is much below an optimum temperature of about 37℃ for fermentation of slurry. Many methods, such as hot charging, passive/active for slurry heating, have been tested, and it has been found that the passive heating method is neither practical nor self-sustained. In order to make bio-gas heating self-sustained, economical, and friendly to ecology and the environment, a new approach of Bi-iSPVT has been adopted. Based on the finding, we have made an attempt to analyze the system in terms of CO2 mitigation, energy matrices, and environ- and exergo-economics to have a clean environment and sustainable climate. An analysis has been performed by using embodied energy, the annual overall thermal exergy of the system for ecological balance for the good health of human beings. It has been found that an energy payback time (EPBT) for a sustainable Bi-iSPVT system is about 1.67years, along with an exergo-economic parameter (Rex) of 0.1016 kWh/₹0.1016 𝑘𝑊ℎ/₹.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ponce-Rocha, Jaime David, Martín Picón-Núñez, Ana Carvalho, Andreia Santos, Fernando I. Gómez-Castro, and Ricardo Morales-Rodríguez. "A design and optimization framework for (bio-) chemical process based on exergo-economic and environmental aspects." In 31st European Symposium on Computer Aided Process Engineering, 1897–902. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-88506-5.50294-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Exergo-economic"

1

Fiaschi, Daniele, Giampaolo Manfrida, Pietro Ungar, and Lorenzo Talluri. "Development of an exergo-economic and exergo-environmental tool for power plant assessment: evaluation of a geothermal case study." In 34th International Conference on Efficiency, Cost, Optimization, Simulation and Environment Impact of Energy Systems. Tokyo, Japan: ECOS 2021 Program Organizers, 2022. http://dx.doi.org/10.52202/062738-0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fagbenle, Richard Olayiwola, Sunday Sam Adefila, Sunday Oyedepo, and Moradeyo Odunfa. "Exergy, Exergoeconomic and Exergoenvironomic Analyses of Selected Gas Turbine Power Plants in Nigeria." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40311.

Повний текст джерела
Анотація:
Energy supply trends as well as environmental regulations and climate change issues have made it necessary to closely scrutinize the way energy is utilized. Efficient energy utilization thus requires paying more attention to accurate and advanced thermodynamic analysis of thermal systems. Hence, methods aimed at evaluating the performances of energy systems take into account the Energy, Environment and Economics. Therefore, the first and second law of thermodynamics combined with economics and environmental impact represents a very powerful tool for the systematic study and optimization of energy systems. In this study, a thermodynamic analysis of eleven selected gas turbine power plants in Nigeria was carried out using the first and second laws of thermodynamics, economic and environmental impact concepts. Exergetic, exergo-economic and exergo-environmental analyses were conducted using operating data obtained from the power plants to determine the exergy destruction and exergy efficiency of each major component of the gas turbine in each power plant. The exergy analysis confirmed that the combustion chamber is the most exergy destructive component compared to other cycle components as expected. The percentage exergy destruction in combustion chamber varied between 86.05 and 94.6%. Increasing the gas turbine inlet temperature (GTIT), the exergy destruction of this component can be reduced. Exergo-economic analysis showed that the cost of exergy destruction is high in the combustion chamber and by increasing the GTIT effectively decreases this cost. The exergy costing analysis revealed that the unit cost of electricity produced in the plants ranged from cents 1.88/kWh (₦2.99/kWh) to cents 5.65/kWh (₦8.98/kWh). Exergo-environmental analysis showed that the CO2 emissions varied between 100.18 to 408.78 kgCO2/MWh while cost rate of environmental impact varied from 40.18 $/h (N6, 388.62/h) to 276.97 $/h (N44, 038.23/h). The results further showed that CO2 emissions and cost of environmental impact decrease with increasing GTIT.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fiaschi, Daniele, Giampaolo Manfrida, Moein Shamoushaki, and Lorenzo Talluri. "Energy, exergy and exergo-economic assessment of a geothermal power plant with NCGs reinjection." In 34th International Conference on Efficiency, Cost, Optimization, Simulation and Environment Impact of Energy Systems. Tokyo, Japan: ECOS 2021 Program Organizers, 2022. http://dx.doi.org/10.52202/062738-0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jeong, Y., and B. Py. "Theoretical Background and Case Study for the Exergo-Economic Optimization of a Large-scale Electricity Storage System Using Supercritical Carbon Dioxide." In Tranactions - 2019 Winter Meeting. AMNS, 2019. http://dx.doi.org/10.13182/t30853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

O¨zdemir, Mehmed Rafet, Ali Kos¸ar, Orc¸un Demir, Cemre O¨zenel, and Og˘uzhan Bahc¸ivan. "Thermal Hydraulic, Exergy and Exergy-Economic Analysis of Micro Heat Sinks at High Flow Rates." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25239.

Повний текст джерела
Анотація:
Recently, micro/nanofabrication technology has been used to develop a number of microfluidic systems. With its integration to microfluidic devices, microchannels and micro scale pin fin heat sinks find applications in many areas such as drug delivery and propulsion in biochemical reaction chambers and micro mixing. Many research efforts have been performed to reveal thermal and hydrodynamic performances of microchannel based micro fluidic devices. In the current study, it is aimed to extend the knowledge on this field by investigating heat and fluid flow in micro heat sinks at high flow rates. Moreover, thermodynamic and thermo-economic aspects were also considered. De-ionized water was used as the coolant in the system. Flow rates were measured over pressures of 20–80 psi. A serpentine heater was deposited at the back of the micro pin fin devices to enable the delivery of heat to these devices. Two micro-pin fin devices each having different geometrical properties (Circular based and Hydrofoil based) were used in this study. In addition, the performances (thermal-hydraulic, exergy, exergo-economic) were also experimentally obtained for a plain microchannel device. Thermal resistances, exergy efficiencies and thermo-economic parameters were obtained from the devices and their performances were assessed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

El-Damaty, Waleed, and Mohamed Gadalla. "Exergoeconomic Analysis of Intercooled, Reheated and Recuperated Gas Turbine Cycles With Air Film Blade Cooling." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88483.

Повний текст джерела
Анотація:
For many years, thermodynamic analysis was considered to be the principal tool that is used to predict the performance of a power plant. Recently, the environmental effect and the cost of power plants have been considered as important as the thermodynamic performance in design of power plants. Thus, researchers started to adopt a relevantly new approach called the exergoeconomic analysis which combines the thermodynamic technicalities as well as the economic analysis to design power plants. The exergoeconomic analysis provides crucial information that helps in foreseeing not only the thermodynamic performance but also all economic variables related to power plants. Increasing the efficiency of the power plant has been the major concern in power plants. Thus, the global approach of reaching high turbine inlet temperatures to improve the efficiency of power plants, has exposed the turbine blades to some serious problems. Thereby, cooling the turbine blades has become an important aspect that needs to be taken care of during the power plant operation. In this paper, a cooled gas turbine with intercooler, recuperator and reheater is adopted where it is incorporated with a cooling system. An exergoeconomic analysis accompanied by a sensitivity analysis was performed on the gas turbine cycle to determine the exergo-economic factor and the relative cost difference in addition to study the effect of different variables on the gas turbine thermal and exergetic efficiency, net specific work and the total cost rate. Average cost theory approach was adopted from various thermo-economic methodologies to determine the cost calculation during this investigation. The results showed a reduction in the total coolant mass flow rate in the base case where no cooling systems are integrated from 3.349 kg/s to 3.01 kg/s, 2.995 kg/s and 2.977 kg/s in the case of integrating the cooling systems triple stage Maisotsenko desiccant, triple stage precooling Maisotsenko desiccant and triple stage extra cooling Maisotsenko desiccant, respectively. Accordingly, the thermal efficiency has increased to reach 52.69%, 52.89% and 53.12% by the integration of TS-MD, TS-PMD and TS-EMD cooling systems, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Naik, Ravin G., Chirayu M. Shah, and Arvind S. Mohite. "Simulation and Optimization of Combined Cycle Power Cycles Through HRSG’s Heat Exchangers Arrangement and Parameters for Exergy and Cost." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86753.

Повний текст джерела
Анотація:
To produce the power with higher overall efficiency and reasonable cost is ultimate aim for the power industries in the power deficient scenario. Though combined cycle power plant is most efficient way to produce the power in today’s world, rapidly increasing fuel prices motivates to define a strategy for cost-effective optimization of this system. The heat recovery steam generator is one of the equipment which is custom made for combined cycle power plant. So, here the particular interest is to optimize the combined power cycle performance through optimum design of heat recovery steam generator. The case of combined cycle power plant re-powered from the existing Rankine cycle based power plant is considered to be simulated and optimized. Various possible configuration and arrangements for heat recovery steam generator has been examined to produce the steam for steam turbine. Arrangement of heat exchangers of heat recovery steam generator is optimized for bottoming cycle’s power through what-if analysis. Steady state model has been developed using heat and mass balance equations for various subsystems to simulate the performance of combined power cycles. To evaluate the performance of combined power cycles and its subsystems in the view of second law of thermodynamics, exergy analysis has been performed and exergetic efficiency has been determined. Exergy concepts provide the deep insight into the losses through subsystems and actual performance. If the sole objective of optimization of heat recovery steam generator is to increase the exergetic efficiency or minimizing the exergy losses then it leads to the very high cost of power which is not acceptable. The exergo-economic analysis has been carried to find the cost flow from each subsystem involved to the combined power cycles. Thus the second law of thermodynamics combined with economics represents a very powerful tool for the systematic study and optimization of combined power cycles. Optimization studies have been carried out to evaluate the values of decision parameters of heat recovery steam generator for optimum exergetic efficiency and product cost. Genetic algorithm has been utilized for multi-objective optimization of this complex and nonlinear system. Pareto fronts generated by this study represent the set of best solutions and thus providing a support to the decision-making.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії