Статті в журналах з теми "Exciton-photon interaction"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Exciton-photon interaction".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mareyen, M., F. J. Schütte, and R. Tiebel. "Dynamics of Carrier-Screened Photon-Exciton Interaction." physica status solidi (b) 159, no. 1 (1990): 235–40. http://dx.doi.org/10.1002/pssb.2221590127.
Повний текст джерелаKAIBYSHEV, V. H., and V. V. TRAVNIKOV. "ANOMALOUS ANISOTROPY OF RESONANT RAMAN SCATTERING IN OPEN ZnCdSe/ZnSe NANOWIRES." International Journal of Nanoscience 02, no. 06 (2003): 479–85. http://dx.doi.org/10.1142/s0219581x03001589.
Повний текст джерелаTartakovskii, A. I., V. D. Kulakovskii, Yu I. Koval’, T. B. Borzenko, A. Forchel, and J. P. Reithmaier. "Exciton-photon interaction in low-dimensional semiconductor microcavities." Journal of Experimental and Theoretical Physics 87, no. 4 (1998): 723–30. http://dx.doi.org/10.1134/1.558714.
Повний текст джерелаTredicucci, Alessandro, Yong Chen, Vittorio Pellegrini, et al. "Controlled Exciton-Photon Interaction in Semiconductor Bulk Microcavities." Physical Review Letters 75, no. 21 (1995): 3906–9. http://dx.doi.org/10.1103/physrevlett.75.3906.
Повний текст джерелаCalvo, Jorge, David Zueco, and Luis Martin-Moreno. "Ultrastrong coupling effects in molecular cavity QED." Nanophotonics 9, no. 2 (2020): 277–81. http://dx.doi.org/10.1515/nanoph-2019-0403.
Повний текст джерелаBamba, Motoaki, and Hajime Ishihara. "Breakdown of Fermi's Golden Rule in Exciton–Photon Interaction." Journal of the Physical Society of Japan 78, no. 4 (2009): 043701. http://dx.doi.org/10.1143/jpsj.78.043701.
Повний текст джерелаLi, Bin, Guo-Feng Zhang, Rui-Yun Chen, et al. "Research progress of single quantum-dot spectroscopy and exciton dynamics." Acta Physica Sinica 71, no. 6 (2022): 067802. http://dx.doi.org/10.7498/aps.71.20212050.
Повний текст джерелаJütte, M., H. Stolz, and W. von der Osten. "Coherent exciton–photon interaction and pulse propagation effects of bound exciton states in CdS." physica status solidi (b) 188, no. 1 (1995): 327–34. http://dx.doi.org/10.1002/pssb.2221880130.
Повний текст джерелаKuroki, Yuichiro, Minoru Osada, Ariyuki Kato, Tomoichiro Okamoto, and Masasuke Takata. "Exciton-Phonon Interaction in CuAlS2 Powders." Advanced Materials Research 11-12 (February 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.175.
Повний текст джерелаCao, En, Weihua Lin, Mengtao Sun, Wenjie Liang, and Yuzhi Song. "Exciton-plasmon coupling interactions: from principle to applications." Nanophotonics 7, no. 1 (2018): 145–67. http://dx.doi.org/10.1515/nanoph-2017-0059.
Повний текст джерелаMIZOUCHI, H. "INITIAL CONDITION SENSITIVITY IN LATTICE RELAXATION AND DOMAIN FORMATION AFTER PHOTOEXCITATION." International Journal of Modern Physics B 15, no. 28n30 (2001): 3869–72. http://dx.doi.org/10.1142/s0217979201008871.
Повний текст джерелаNji Nde Aboringong, E., I. Ndifon Ngek, and Alain M. Dikandé. "Periodic exciton–polariton solitons in semiconductor nanowires." Modern Physics Letters B 35, no. 18 (2021): 2150307. http://dx.doi.org/10.1142/s0217984921503073.
Повний текст джерелаSuhai, S. "Theory of exciton–photon interaction in polymers: Polariton spectra of polydiacetylenes." Journal of Chemical Physics 85, no. 1 (1986): 611–15. http://dx.doi.org/10.1063/1.451586.
Повний текст джерелаFujita, Hideaki, Hisao Kondo, Hitoshi Nishimura, Takeyuki Okada, Tsutomu Karasawa, and Teruo Komatsu. "Exciton-phonon interaction in the two-photon absorption process in RbI." Journal of Luminescence 51, no. 4 (1992): 167–73. http://dx.doi.org/10.1016/0022-2313(92)90051-a.
Повний текст джерелаDiguna, Lina Jaya, Yudi Darma, and Muhammad Danang Birowosuto. "The coupling of single-photon exciton–biexciton quantum dot and cavity." Journal of Nonlinear Optical Physics & Materials 26, no. 03 (2017): 1750029. http://dx.doi.org/10.1142/s0218863517500291.
Повний текст джерелаGubin, Mikhail, and Alexei Prokhorov. "Formation of non-classical optical states in spaser systems under control of an external magnetic field." EPJ Web of Conferences 220 (2019): 03017. http://dx.doi.org/10.1051/epjconf/201922003017.
Повний текст джерелаХаджи, П. И., Л. Ю. Надькин та Д. А. Марков. "Закон дисперсии экситон-поляритонов в условиях действия сильной накачки в области M-полосы люминесценции". Физика твердого тела 60, № 4 (2018): 660. http://dx.doi.org/10.21883/ftt.2018.04.45671.224.
Повний текст джерелаKurisu, H., J. Horie, K. Nagoya, S. Yamamoto, and M. Matsuura. "Enhancement of Exciton and Biexciton Luminescence in CuCl QDs on Dielectric Multilayers." International Journal of Modern Physics B 15, no. 28n30 (2001): 3841–44. http://dx.doi.org/10.1142/s0217979201008809.
Повний текст джерелаNarayan, Monishka Rita, and Jai Singh. "Exciton dissociation and design optimization in P3HT:PCBM bulk-heterojunction organic solar cell." Canadian Journal of Physics 92, no. 7/8 (2014): 853–56. http://dx.doi.org/10.1139/cjp-2013-0523.
Повний текст джерелаSodagar, Majid, Milad Khoshnegar, Amin Eftekharian, and Sina Khorasani. "Exciton–photon interaction in a quantum dot embedded in a photonic microcavity." Journal of Physics B: Atomic, Molecular and Optical Physics 42, no. 8 (2009): 085402. http://dx.doi.org/10.1088/0953-4075/42/8/085402.
Повний текст джерелаTredicucci, Alessandro. "Bulk semiconductors and porous silicon: controlled exciton–photon interaction in active microcavities." Physica Scripta T66 (January 1, 1996): 126–29. http://dx.doi.org/10.1088/0031-8949/1996/t66/020.
Повний текст джерелаChahshouri, Fatemeh, Masoud Taleb, Florian K. Diekmann, Kai Rossnagel, and Nahid Talebi. "Interaction of excitons with Cherenkov radiation in WSe2 beyond the non-recoil approximation." Journal of Physics D: Applied Physics 55, no. 14 (2022): 145101. http://dx.doi.org/10.1088/1361-6463/ac453a.
Повний текст джерелаKlochikin, A. A., B. S. Razbirin, T. Amand, et al. "Influence of the LO-photon-plasmon interaction on the exciton luminescence of insulators." Journal of Physics C: Solid State Physics 19, no. 22 (1986): 4237–46. http://dx.doi.org/10.1088/0022-3719/19/22/011.
Повний текст джерелаOpher-Lipson, M., E. Cohen, and L. N. Pfeiffer. "Spectral line splitting due to exciton-photon interaction in GaAs/AlAs multiple quantum wells." Physical Review B 55, no. 20 (1997): 13778–82. http://dx.doi.org/10.1103/physrevb.55.13778.
Повний текст джерелаVACHA, MARTIN, SHOJI TAKEI, KEN-ICHI HASHIZUME, and TOSHIRO TANI. "LOCAL MORPHOLOGY AND SUB-WAVELENGTH REGION SPECTROSCOPY OF MOLECULAR J-AGGREGATES: ONSET OF EXCITON-POLARITON STATES IN INDIVIDUAL AGGREGATE FIBERS." International Journal of Modern Physics B 15, no. 28n30 (2001): 3993–96. http://dx.doi.org/10.1142/s0217979201009189.
Повний текст джерелаStolyarchuk, I. D., and O. A. Shporta. "Optical Studies of the Interactions CdS and CdTe Nanoparticles with a Human Serum Albumin." Фізика і хімія твердого тіла 17, no. 4 (2016): 498–503. http://dx.doi.org/10.15330/pcss.17.4.498-503.
Повний текст джерелаDietrich, Christof P., Anja Steude, Laura Tropf, et al. "An exciton-polariton laser based on biologically produced fluorescent protein." Science Advances 2, no. 8 (2016): e1600666. http://dx.doi.org/10.1126/sciadv.1600666.
Повний текст джерелаBurdov, Vladimir A., and Mikhail I. Vasilevskiy. "Exciton-Photon Interactions in Semiconductor Nanocrystals: Radiative Transitions, Non-Radiative Processes and Environment Effects." Applied Sciences 11, no. 2 (2021): 497. http://dx.doi.org/10.3390/app11020497.
Повний текст джерелаBrotons-Gisbert, Mauro, Juan P. Martínez-Pastor, Guillem C. Ballesteros, Brian D. Gerardot, and Juan F. Sánchez-Royo. "Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes." Nanophotonics 7, no. 1 (2018): 253–67. http://dx.doi.org/10.1515/nanoph-2017-0041.
Повний текст джерелаYuan, Xiao-Jie, Ping Dong, Min Wang, Ming Yang, and Zhuo-Liang Cao. "Remote quantum state preparation and transfer with the interactions of photons and quantum-dot spins." Modern Physics Letters B 28, no. 16 (2014): 1450127. http://dx.doi.org/10.1142/s0217984914501279.
Повний текст джерелаPopov, I. I., I. A. Arkhireev, N. S. Vashurin, et al. "Study of the trion spectral lines broadening in the thin Si(p)/Si(b)/ZnO film caused by the exciton-phonon interaction and other factors." EPJ Web of Conferences 220 (2019): 01009. http://dx.doi.org/10.1051/epjconf/201922001009.
Повний текст джерелаNabiev, I. "Strong light-matter coupling for optical switching through the fluorescence and FRET control." Journal of Physics: Conference Series 2058, no. 1 (2021): 012001. http://dx.doi.org/10.1088/1742-6596/2058/1/012001.
Повний текст джерелаAbbarchi, Marco, Takaaki Mano, Takashi Kuroda, Akihiro Ohtake, and Kazuaki Sakoda. "Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy." Nanomaterials 11, no. 2 (2021): 443. http://dx.doi.org/10.3390/nano11020443.
Повний текст джерелаJames Singh, Konthoujam, Hao-Hsuan Ciou, Ya-Hui Chang, et al. "Optical Mode Tuning of Monolayer Tungsten Diselenide (WSe2) by Integrating with One-Dimensional Photonic Crystal through Exciton–Photon Coupling." Nanomaterials 12, no. 3 (2022): 425. http://dx.doi.org/10.3390/nano12030425.
Повний текст джерелаBendib, A., K. Bendib-Kalache, and C. Deutsch. "Optical breakdown threshold in fused silica with femtosecond laser pulses." Laser and Particle Beams 31, no. 3 (2013): 523–29. http://dx.doi.org/10.1017/s0263034613000396.
Повний текст джерелаAbbarchi, Marco, Takaaki Mano, Takashi Kuroda, and Kazuaki Sakoda. "Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311)A-Oriented Substrates." Nanomaterials 10, no. 9 (2020): 1833. http://dx.doi.org/10.3390/nano10091833.
Повний текст джерелаCorovai, A. V., and P. I. Khadzhi. "Nonlinear interaction of ultrashort light pulses with a thin semiconductor film under conditions of two-photon exciton-biexciton conversion." Quantum Electronics 30, no. 12 (2000): 1091–93. http://dx.doi.org/10.1070/qe2000v030n12abeh001872.
Повний текст джерелаWang, Naien, Yunfei Zou, Lulu Wang, and Li Yu. "Theoretical study on amplifying strong exciton–photon coupling based on surface plasmon in a hybridized perovskite nanowire-metal film-perovskite nanowire structure." Modern Physics Letters B 35, no. 20 (2021): 2150336. http://dx.doi.org/10.1142/s021798492150336x.
Повний текст джерелаKrivenkov, Victor, Pavel Samokhvalov, Ivan S. Vasil'evskii, Nikolai I. Kargin, and Igor Nabiev. "Plasmon–exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions." Nanoscale 13, no. 47 (2021): 19929–35. http://dx.doi.org/10.1039/d1nr06229h.
Повний текст джерелаYan, Xiao-Hong, Yi-Jie Niu, Hong-Xing Xu, and Hong Wei. "Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters." Acta Physica Sinica 71, no. 6 (2022): 067301. http://dx.doi.org/10.7498/aps.71.20211900.
Повний текст джерелаZhang, Z. L., M. Nishioka, C. Weisbuch, and Y. Arakawa. "Demonstration of confined optical field effect in a vertical microcavity by examining the low temperature photon‐exciton interaction in two kinds of quantum wells." Applied Physics Letters 64, no. 9 (1994): 1068–70. http://dx.doi.org/10.1063/1.110934.
Повний текст джерелаNGUYEN, BA AN, and THAI HOA TRAN. "GENERATION OF SQUEEZED EXCITONS IN SEMICONDUCTORS BY COHERENT LIGHT." Modern Physics Letters B 06, no. 07 (1992): 405–10. http://dx.doi.org/10.1142/s0217984992000491.
Повний текст джерелаOGAWA, TETSUO, and SATORU OKUMURA. "BOSONIZATION OF TWO-FERMION COMPOSITES WITH AN ARBITRARY INTERNAL MOTION: APPLICATION TO CORRELATED 1s EXCITON SYSTEMS." International Journal of Modern Physics B 15, no. 28n30 (2001): 3916–19. http://dx.doi.org/10.1142/s0217979201008998.
Повний текст джерелаQian, Chenjiang, Xin Xie, Jingnan Yang, and Xiulai Xu. "A Cratered Photonic Crystal Cavity Mode for Nonlocal Exciton–Photon Interactions." Advanced Quantum Technologies 3, no. 2 (2019): 1900024. http://dx.doi.org/10.1002/qute.201900024.
Повний текст джерелаDAN, NGUYEN TRUNG, NGUYEN BA AN, and LE NGOC MINH. "CHAOTIC DYNAMICS OF HIGH DENSITY PHOTON AND EXCITON SYSTEM." International Journal of Modern Physics B 07, no. 12 (1993): 2325–37. http://dx.doi.org/10.1142/s0217979293002869.
Повний текст джерелаYeo, Inah, Doukyun Kim, Kyu-Tae Lee, et al. "Comparative Chemico-Physical Analyses of Strain-Free GaAs/Al0.3Ga0.7As Quantum Dots Grown by Droplet Epitaxy." Nanomaterials 10, no. 7 (2020): 1301. http://dx.doi.org/10.3390/nano10071301.
Повний текст джерелаLi, Han, Yating Ma, Yizhen Sui, et al. "Valley depolarization in downconversion and upconversion emission of monolayer WS2 at room temperature." Nanophotonics 9, no. 16 (2020): 4809–18. http://dx.doi.org/10.1515/nanoph-2020-0483.
Повний текст джерелаTakeno, Shozo. "Coherent States and Envelope Kinklike Exciton-Photon Coupled Modes in Nonlinear Frenkel Excitons Interacting with Radiation Fields." Journal of the Physical Society of Japan 62, no. 8 (1993): 2894–903. http://dx.doi.org/10.1143/jpsj.62.2894.
Повний текст джерелаGil, Bernard, Guillaume Cassabois, Ramon Cusco, Giorgia Fugallo, and Lluis Artus. "Boron nitride for excitonics, nano photonics, and quantum technologies." Nanophotonics 9, no. 11 (2020): 3483–504. http://dx.doi.org/10.1515/nanoph-2020-0225.
Повний текст джерелаChan, Yang-Hao, Diana Y. Qiu, Felipe H. da Jornada, and Steven G. Louie. "Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions." Proceedings of the National Academy of Sciences 118, no. 25 (2021): e1906938118. http://dx.doi.org/10.1073/pnas.1906938118.
Повний текст джерела