Статті в журналах з теми "Excitations de charge"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Excitations de charge.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Excitations de charge".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Dressel, M., N. Drichko, and S. Kaiser. "Collective charge-order excitations." Physica C: Superconductivity and its Applications 470 (December 2010): S589—S591. http://dx.doi.org/10.1016/j.physc.2009.10.116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sagawa, Hiroyuki. "Single and Double Charge Exchange Excitations of Spin-Isospin Mode." EPJ Web of Conferences 223 (2019): 01053. http://dx.doi.org/10.1051/epjconf/201922301053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the sum rules of double Gamow-Teller (DGT) excitations through double spin-isospin operator (σt­)2 In general, 2+states in the granddaughter nuclei have dominant transition strength in DGT excitations and 0+states are weak, except in T = 1 mother nuclei in which 0+strength is competitive with 2+strength. A possibility to extract the unit cross section for the DGT transition strength is pointed out in the (#x03C3;t­)2 excitation of double isobaric analog state (DIAS) in T = 1 nuclei.
3

Freeman, P. G., S. M. Hayden, C. D. Frost, D. Prabhakaran, and A. T. Boothroyd. "Magnetic excitations of charge-ordered." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 760–62. http://dx.doi.org/10.1016/j.jmmm.2006.10.488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thalmeier, P., and A. N. Yaresko. "Magnetic excitations in charge ordered." European Physical Journal B 14, no. 3 (2000): 495. http://dx.doi.org/10.1007/s100510051058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thalmeier, P., and A. N. Yaresko. "Magnetic excitations in charge ordered." European Physical Journal B 14, no. 3 (March 2000): 495–508. http://dx.doi.org/10.1007/pl00011054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moore, Barry, Haitao Sun, Niranjan Govind, Karol Kowalski, and Jochen Autschbach. "Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited." Journal of Chemical Theory and Computation 11, no. 7 (June 17, 2015): 3305–20. http://dx.doi.org/10.1021/acs.jctc.5b00335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Senaratne, Ruwan, Danyel Cavazos-Cavazos, Sheng Wang, Feng He, Ya-Ting Chang, Aashish Kafle, Han Pu, Xi-Wen Guan, and Randall G. Hulet. "Spin-charge separation in a one-dimensional Fermi gas with tunable interactions." Science 376, no. 6599 (June 17, 2022): 1305–8. http://dx.doi.org/10.1126/science.abn1719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultracold atoms confined to periodic potentials have proven to be a powerful tool for quantum simulation of complex many-body systems. We confine fermions to one dimension to realize the Tomonaga-Luttinger liquid model, which describes the highly collective nature of their low-energy excitations. We use Bragg spectroscopy to directly excite either the spin or charge waves for various strengths of repulsive interaction. We observe that the velocity of the spin and charge excitations shift in opposite directions with increasing interaction, a hallmark of spin-charge separation. The excitation spectra are in quantitative agreement with the exact solution of the Yang-Gaudin model and the Tomonaga-Luttinger liquid theory. Furthermore, we identify effects of nonlinear corrections to this theory that arise from band curvature and back-scattering.
8

Kushwaha, Manvir S. "Charge density excitations in semiconductor superlattices." Journal of Applied Physics 62, no. 5 (September 1987): 1895–901. http://dx.doi.org/10.1063/1.339577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bakhshaei, Elaheh, and Alessandro Bombini. "Three-charge superstrata with internal excitations." Classical and Quantum Gravity 36, no. 5 (February 4, 2019): 055001. http://dx.doi.org/10.1088/1361-6382/ab01bc.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Björnsson, P., M. Rübhausen, J. Bäckström, M. Käll, S. Eriksson, J. Eriksen, and L. Börjesson. "Lattice and charge excitations inLa1−xSrxMnO3." Physical Review B 61, no. 2 (January 1, 2000): 1193–97. http://dx.doi.org/10.1103/physrevb.61.1193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hasan, M. Z., E. D. Isaacs, Z. X. Shen, and L. L. Miller. "Charge excitations in a quantum antiferromagnet." Physica C: Superconductivity and its Applications 364-365 (November 2001): 618–21. http://dx.doi.org/10.1016/s0921-4534(01)00864-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Manousakis, Efstratios. "Collective charge excitations along cell membranes." Physics Letters A 342, no. 5-6 (July 2005): 443–47. http://dx.doi.org/10.1016/j.physleta.2005.05.087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Degiorgi, L., F. B. B. Anders, and G. Grüner. "Charge excitations in heavy electron metals." European Physical Journal B 19, no. 2 (February 2001): 167–70. http://dx.doi.org/10.1007/s100510170324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhang, Weilu, Shangfei Wu, Shigeru Kasahara, Takasada Shibauchi, Yuji Matsuda, and Girsh Blumberg. "Quadrupolar charge dynamics in the nonmagnetic FeSe1−xSx superconductors." Proceedings of the National Academy of Sciences 118, no. 20 (May 12, 2021): e2020585118. http://dx.doi.org/10.1073/pnas.2020585118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic FeSe1−xSx superconductor. We observe two types of long-wavelength XY symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at TS(x), a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the XY symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward TS(x). The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration xcr≈0.16, while the pseudogap size decreases with the suppression of TS(x). We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed.
15

Mijoule, Claude, Jean-Marie Leclercq, Michel Comeau, Sándor Fliszár, and Maud Picard. "Charge distributions and chemical effects. XLVII. Density matrix contribution to the charge distribution in hydrocarbons, arising from singly excited configurations in CI calculations." Canadian Journal of Chemistry 70, no. 1 (January 1, 1992): 68–73. http://dx.doi.org/10.1139/v92-013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The involvement of excited configurations in Mulliken charge analyses is examined for ethylene and acetylene, using an optimized 4-31G basis. The net charges of carbon, −346.4 × 10−3 (C2H4) and −335.3 × 10−3 e (C2H2) at the SCF level, are reduced to −269.9 × 10−3 and −271.2 × 10−3 e, respectively. Double excitations appear to contribute little to these corrections. In acetylene, three single σ → σ* type excitations are responsible for ~83% of the charge correction whereas, as expected, the role of π → π* type excitations is small. Similarly, four σ → σ* configurations account for ~76% of the correction in ethylene. These effects are particularly important in comparisons with alkanes, whose charges are relatively little affected by CI corrections. Theoretical charges obtained from CI calculations appear to converge toward their empirical counterparts in a generalization of Mulliken's scheme, which allows for an uneven partitioning of CH overlap populations. Keywords: charge density, configuration interaction.
16

Yang, Bing, Cai-rong Zhang, Yu Wang, Mei-ling Zhang, Zi-jiang Liu, You-zhi Wu, and Hong-shan Chen. "Theoretical study on organic photovoltaic heterojunction FTAZ/IDCIC." Chinese Journal of Chemical Physics 36, no. 2 (April 1, 2023): 199. http://dx.doi.org/10.1063/1674-0068/cjcp2109160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.
17

Prelovšek, P., and Z. Lenarčič. "Charge relaxation and recombination in photo-excited Mott insulators." International Journal of Modern Physics B 30, no. 13 (May 19, 2016): 1642015. http://dx.doi.org/10.1142/s0217979216420157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent femtosecond pump-probe experiments on Mott insulators reveal charge recombination, which is in picosecond range, i.e., much faster than in clean bandgap semiconductors although excitation gaps in Mott insulators are even larger. The charge response in photo-excited insulators can be generally divided in femtosecond transient relaxation of charge excitations, which are holons and doublons, and a second slower, but still very fast, holon–doublon (HD) recombination. We present a theory of the recombination rate of the excited HD pairs, based on the two-dimensional (2D) model relevant for cuprates, which shows that such fast processes can be explained even quantitatively with the multi-magnon emission. We show that the condition for the exponential decay as observed in the experiment is the existence of the exciton, i.e., the bound HD pair. Its recombination rate is exponentially dependent on the charge gap and on the magnon energy, while the ultrafast process can be traced back to strong charge-spin coupling. We comment also fast recombination times in the one-dimensional (1D) Mott insulators, as e.g., organic salts. The recombination rate in the latter cases can be explained with the stronger coupling with phonon excitations.
18

Teuber, S., T. Döppner, M. Schumacher, J. Tiggesbäumker, and K. H. Meiwes-Broer. "Excitation of Heavy Metal Clusters by Strong fs Laser Pulses." Australian Journal of Physics 52, no. 3 (1999): 555. http://dx.doi.org/10.1071/ph99046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The excitation of neutral platinum and lead clusters by intense femtosecond laser pulses is studied by time-of-flight spectroscopy. Clusters are completely destroyed when interacting in the high intensity region of the laser focus. Moreover, highly charged atomic ions with up to 20 charges are detected under special pulse conditions. The atomic ion distribution shows a pronounced dependence on the chosen pulse width, suggesting that multi-plasmon excitations are responsible for the high charge states measured. The Coulomb explosion of a metal sphere is simulated under tunneling ionisation conditions. The calculated optical response of such a cluster within the framework of the random phase approximation agrees well with the experimental observations.
19

Nagasaki, Keisuke, Yoshihisa Inoue, and Tadashi Mori. "Contrasting Behaviour of Exciplex Ensembles in the Diastereodifferentiating Paternò–Büchi Reaction of Chiral Cyanobenzoate with Naphthyl- and Phenylethenes on Direct or Charge-Transfer Excitation." Australian Journal of Chemistry 68, no. 11 (2015): 1693. http://dx.doi.org/10.1071/ch15404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The diastereodifferentiating Paternò–Büchi reaction of chiral cyanobenzoate with 1-(1-naphthyl)-1-phenylethene was compared with those with 1,1-diphenylethene on direct and charge-transfer excitations. By desymmetrization of the donor, four diastereomeric oxetane products were formed on photolysis in excellent combined yields. Increase in donor strength induced a stronger charge-transfer interaction both in ground and excited states. Thus, the difference in diastereoselectivities with two different excitation modes (i.e. direct versus charge-transfer) became less significant with a naphthyl derivative as donor. A subtle change of donor–acceptor interaction was shown to have profound effect on the nature of the excited-state complexes and thus the product (stereo)selectivities. Despite a small temperature dependence, an Eyring-type study on the diastereoselectivities confirmed that the excited charge-transfer complex is an excited species distinct from the conventional exciplex.
20

Loos, Pierre-François, Massimiliano Comin, Xavier Blase, and Denis Jacquemin. "Reference Energies for Intramolecular Charge-Transfer Excitations." Journal of Chemical Theory and Computation 17, no. 6 (May 6, 2021): 3666–86. http://dx.doi.org/10.1021/acs.jctc.1c00226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Russell, F. Michael, and Juan F. R. Archilla. "Ballistic Charge Transport by Mobile Nonlinear Excitations." physica status solidi (RRL) – Rapid Research Letters 16, no. 3 (October 7, 2021): 2100420. http://dx.doi.org/10.1002/pssr.202100420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sokolov, V. I., V. A. Pustovarov, V. N. Churmanov, V. Yu Ivanov, A. Ye Yermakov, M. A. Uimin, N. B. Gruzdev, P. S. Sokolov, A. N. Baranov, and A. S. Moskvin. "Low-energy charge transfer excitations in NiO." IOP Conference Series: Materials Science and Engineering 38 (August 20, 2012): 012007. http://dx.doi.org/10.1088/1757-899x/38/1/012007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Heldmann, K., W. G. Teich, and G. Mahler. "Charge-transfer excitations on a linear chain." Physical Review B 44, no. 8 (August 15, 1991): 3829–34. http://dx.doi.org/10.1103/physrevb.44.3829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Soos, Z. G., R. H. Harding, and S. Ramasesha. "Charge-Transfer Excitations In Partly-Inoic Complexes." Molecular Crystals and Liquid Crystals 125, no. 1 (April 1985): 59–70. http://dx.doi.org/10.1080/00268948508080087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lyons, K. B., P. E. Sulewski, P. A. Fleury, H. L. Carter, A. S. Cooper, G. P. Espinosa, Z. Fisk, and S. W. Cheong. "High-energy spin and charge excitations inLa2CuO4." Physical Review B 39, no. 13 (May 1, 1989): 9693–96. http://dx.doi.org/10.1103/physrevb.39.9693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dobry, A., A. Greco, R. Migoni, and M. Stachiotti. "Nonlinear lattice excitations in charge-fluctuating systems." Physical Review B 47, no. 9 (March 1, 1993): 5442–45. http://dx.doi.org/10.1103/physrevb.47.5442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ivanov, D. A., and Patrick A. Lee. "Bipolaronic charge excitations int−Jtwo-leg ladders." Physical Review B 57, no. 4 (January 15, 1998): 2118–26. http://dx.doi.org/10.1103/physrevb.57.2118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Dadachanji, Z., R. W. Godby, R. J. Needs, and P. B. Littlewood. "Charge-transfer excitations in the cuprate superconductors." Physical Review B 52, no. 22 (December 1, 1995): 16204–7. http://dx.doi.org/10.1103/physrevb.52.16204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Jones, Keith, Nikita Kirnosov, Keeper L. Sharkey, and Ludwik Adamowicz. "Charge asymmetry and rovibrational excitations of HD+." Molecular Physics 114, no. 13 (April 27, 2016): 2052–73. http://dx.doi.org/10.1080/00268976.2016.1177666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Watanabe, Daiki, Kaori Sugii, Masaaki Shimozawa, Yoshitaka Suzuki, Takeshi Yajima, Hajime Ishikawa, Zenji Hiroi, Takasada Shibauchi, Yuji Matsuda, and Minoru Yamashita. "Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite." Proceedings of the National Academy of Sciences 113, no. 31 (July 20, 2016): 8653–57. http://dx.doi.org/10.1073/pnas.1524076113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.
31

Luo, Suichu, John R. Dunlap, and David C. Joy. "Modulation electron energy loss spectroscopy and its application of quantitative analysis." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 454–55. http://dx.doi.org/10.1017/s0424820100148101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electron energy loss spectroscopy (EELS) gives an inportant insight into the variety of excitations a sample may undergo when irradiated by an electron beam. The focus of this work was to simulate electronic excitations within the energy range from a few to several hundred eV. Our recently developed modulation scheme, combines both convolution and deconvolution techniques, to provide quantitative information about elementary inelastic scattering processes without knowledge of sample parameters such as thickness or optical constants.In the low energy loss region of the spectrum the primary excitation mechanisms include interband transitions, and surface and bulk plasmons. In general these individual excitation events overlap in the spectrum. A FFT convolution procedure was developed where the basic inelastic processes may be represented by the dielectric theory . The dielectric function ε is used to describe both single excitations and collective excitations, where Here ωp2=4πNe2/m is the bulk plasmon frequency, N is number of free electrons per unit volume, e and m are the charge and mass of the electron respectively and ω0 is a constant which is finite for a bound state but zero for a free electron.
32

Novoselov, Alexander, та Oleg Pavlovsky. "Critical charge in gapped graphene: The role of screening of the interaction potential by σ-orbitals". International Journal of Modern Physics B 31, № 09 (10 квітня 2017): 1750068. http://dx.doi.org/10.1142/s0217979217500680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to its unique structure, graphene provides a condensed-matter model of particle physics phenomena. One is the critical charge which is highly interested. The investigation of critical charge in gapped graphene is performed within single particle approach by means of Dirac equation integration. The screened Coulomb interaction between charged defect and graphene electron excitations is investigated. Two kinds of mass gap generation and various values of substrate dielectric permittivities are considered. It is shown that the critical charge phenomenon can be observed even with quite small charges for physically motivated parameters.
33

Rana, Rakesh, D. S. Rana, K. R. Mavani, I. Kawayama, H. Murakami, and M. Tonouchi. "Charge density wave excitations in stripe-type charge ordered Pr0.5Sr0.5MnO3 manganite." Applied Physics Letters 101, no. 25 (December 17, 2012): 252401. http://dx.doi.org/10.1063/1.4772474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Tohyama, Takami, and Kenji Tsutsui. "Spectral weight of resonant inelastic X-ray scattering in doped cuprates: Effect of core-hole lifetime." International Journal of Modern Physics B 32, no. 17 (July 9, 2018): 1840017. http://dx.doi.org/10.1142/s0217979218400179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We examine the effect of core-hole lifetime on the spectral weight of resonant inelastic X-ray scattering (RIXS) in hole-doped cuprates. We calculate the spectral weight by using the exact diagonalization technique for a 4 × 4 doped Hubbard lattice and find that the spin-flip channel detecting single-magnon excitation is less sensitive to the core-hole lifetime while in the non-spin-flip channel the spectral weight is strongly dependent on the lifetime. In the latter, charge and two-magnon excitations predominately contribute to RIXS for short and long core-hole lifetimes, respectively. For a realistic value of the core-hole lifetime in cuprates, both the charge and two-magnon excitations are expected to contribute to the non-spin-flip channel in RIXS when the incident-photon energy is tuned to the main peak of X-ray absorption spectrum.
35

Vijayan, Jayadev, Pimonpan Sompet, Guillaume Salomon, Joannis Koepsell, Sarah Hirthe, Annabelle Bohrdt, Fabian Grusdt, Immanuel Bloch, and Christian Gross. "Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains." Science 367, no. 6474 (January 9, 2020): 186–89. http://dx.doi.org/10.1126/science.aay2354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.
36

Li, Jiachen, Ye Jin, Neil Qiang Su, and Weitao Yang. "Combining localized orbital scaling correction and Bethe–Salpeter equation for accurate excitation energies." Journal of Chemical Physics 156, no. 15 (April 21, 2022): 154101. http://dx.doi.org/10.1063/5.0087498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We applied localized orbital scaling correction (LOSC) in Bethe–Salpeter equation (BSE) to predict accurate excitation energies for molecules. LOSC systematically eliminates the delocalization error in the density functional approximation and is capable of approximating quasiparticle (QP) energies with accuracy similar to or better than GW Green’s function approach and with much less computational cost. The QP energies from LOSC, instead of commonly used G0 W0 and ev GW, are directly used in BSE. We show that the BSE/LOSC approach greatly outperforms the commonly used BSE/ G0 W0 approach for predicting excitations with different characters. For the calculations of Truhlar–Gagliardi test set containing valence, charge transfer, and Rydberg excitations, BSE/LOSC with the Tamm–Dancoff approximation provides a comparable accuracy to time-dependent density functional theory (TDDFT) and BSE/ev GW. For the calculations of Stein CT test set and Rydberg excitations of atoms, BSE/LOSC considerably outperforms both BSE/ G0 W0 and TDDFT approaches with a reduced starting point dependence. BSE/LOSC is, thus, a promising and efficient approach to calculate excitation energies for molecular systems.
37

Hasan, M. Z., Y. D. Chuang, Y. Li, P. A. Montano, Z. Hussain, G. Dhalenne, A. Revcolevschi, H. Eisaki, N. Motoyama, and S. Uchida. "Correlated Charge Excitations in Quasi-Low-Dimensional Mott Insulators." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3519–24. http://dx.doi.org/10.1142/s0217979203021320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report momentum dependence of charge excitations across the effective Mott gap in quasi-low dimensional model cuprates with different effective dimensionalities ( CuGeO 3 and SrCuO 2), using high resolution inelastic X-ray scattering by working near a resonance. Particle-hole pair excitations at the gap edge in these compounds are found to be strongly dependent on the effective dimensionality of the lattice and the strength of electron–electron Coulomb interaction.
38

Liu, Qing Liong, Shu Wei Wang, Li Lv, and Xiao Jing Wang. "Investigation of Photo-Induced C-H Bond Activating by CpRh(CO)2 Complex Using Density Functional Theory." Advanced Materials Research 279 (July 2011): 170–73. http://dx.doi.org/10.4028/www.scientific.net/amr.279.170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The charge transfer and structural distortions that occurred in the complex CpRh(CO)2 upon excitation with an light irradiation were studied by density functional theory (DFT). The calculations showed that the electrons transferred from Cp to CO ligands with the transition of CpRh(CO)2 from ground state to the first excited state. Accompanying with this transfer process, CpM(CO)2 became distorted and the linear bond of M-CO became bent upon excitation. The second excitation is the strongest excitation which is identified to be metal to ligand CO charge transfer (MLCT) excitations. We also found the lowest excited state has little effect for the M-CO bond photoactivation while the photodissociation of CO from CpM(CO)2 can be achieved in the second excited state.
39

Zoppi, Laura, and Kim K. Baldridge. "From charge-transfer excitations to charge-transport phenomena in organic molecular crystals." International Journal of Quantum Chemistry 118, no. 1 (June 7, 2017): e25413. http://dx.doi.org/10.1002/qua.25413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Sunami, Keishi, Ryosuke Takehara, Kazuya Miyagawa, Hiroshi Okamoto, and Kazushi Kanoda. "Topological Excitations in Neutral–Ionic Transition Systems." Symmetry 14, no. 5 (May 1, 2022): 925. http://dx.doi.org/10.3390/sym14050925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The existence and physical properties of topological excitations in ferroelectrics, especially mobile topological boundaries in one dimension, are of profound interest. Notably, topological excitations emerging in association with the neutral–ionic (NI) phase transition are theoretically suggested to carry fractional charges and cause anomalous charge transport. In recent years, we experimentally demonstrated mobile topological excitations in a quasi-one-dimensional (1D) ferroelectric, tetrathiafulvalene-p-chloranil [TTF-CA; TTF (C6H4S4) and CA (C6Cl4O2)], which shows the NI transition, using NMR, NQR, and electrical resistivity measurements. Thermally activated topological excitations carry charges and spins in the NI crossover region and in the ionic phase with a dimer liquid. Moreover, free solitons show a binding transition upon a space-inversion symmetry-breaking ferroelectric order. In this article, we review the recent progress in the study of mobile topological excitations emerging in TTF-CA, along with earlier reports that intensively studied these phenomena, aiming to provide the foundations of the physics of electrical conductivity and magnetism carried by topological excitations in the 1D ferroelectric.
41

Moritomo, Y., and Yoshinori Tokura. "Charge-Transfer Type Excitations in Layered Cupric Halides." Japanese Journal of Applied Physics 32, S3 (January 1, 1993): 344. http://dx.doi.org/10.7567/jjaps.32s3.344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

LORENZANA, J., and L. YU. "LOCALIZED (POLARONIC) CHARGE-TRANSFER EXCITATIONS IN CuO2 LAYERS." Modern Physics Letters B 05, no. 22 (September 20, 1991): 1515–23. http://dx.doi.org/10.1142/s0217984991001817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We show that the recently found polarons and excitons of charge-transfer origin in the 1D p−d model of high temperature superconductors can also occur in 2D. We use a 2D spinless model which is expected to qualitatively describe the charge degrees of freedom of the p−d model in the limit of infinite on-site Coulomb repulsion on both Cu and O. The Cu-O repulsion Upd is treated by an unrestricted Hartree-Fock scheme. We found that in addition to polarons and excitons, other nonlinear excitations like bipolarons and clustering of carriers (phase separation) arise as well. Since the energies of all these excitations are very close to each other at the mean field level, no definite statement can be made about the true ground state.
43

Kawakami, N., and A. Okiji. "Charge excitations in the one-dimensional Hubbard model." Physical Review B 40, no. 10 (October 1, 1989): 7066–72. http://dx.doi.org/10.1103/physrevb.40.7066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zope, Rajendra R., Marco Olguin, and Tunna Baruah. "Charge transfer excitations in cofacial fullerene-porphyrin complexes." Journal of Chemical Physics 137, no. 8 (August 28, 2012): 084317. http://dx.doi.org/10.1063/1.4739272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Chaix, L., G. Ghiringhelli, Y. Y. Peng, M. Hashimoto, B. Moritz, K. Kummer, N. B. Brookes та ін. "Dispersive charge density wave excitations in Bi2Sr2CaCu2O8+δ". Nature Physics 13, № 10 (12 червня 2017): 952–56. http://dx.doi.org/10.1038/nphys4157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Holinsworth, Brian S., Nathan C. Harms, Shiyu Fan, Dipanjan Mazumdar, Arun Gupta, Stephen A. McGill, and Janice L. Musfeldt. "Magnetic field control of charge excitations in CoFe2O4." APL Materials 6, no. 6 (June 2018): 066110. http://dx.doi.org/10.1063/1.5021792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Rübhausen, M., P. Guptasarma, D. G. Hinks та M. V. Klein. "Spin and charge excitations in optimally dopedBi2Sr2CaCu2O8−δ". Physical Review B 58, № 6 (1 серпня 1998): 3462–67. http://dx.doi.org/10.1103/physrevb.58.3462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Akbari-Moghanjoughi, M. "Wavefunction of plasmon excitations with space charge effects." Physics of Plasmas 26, no. 2 (February 2019): 022110. http://dx.doi.org/10.1063/1.5087201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mori, M., and K. Yonemitsu. "Anisotropic collective excitations around various charge ordering states." Journal of Physics and Chemistry of Solids 62, no. 1-2 (January 2001): 409–11. http://dx.doi.org/10.1016/s0022-3697(00)00177-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Apalkov, V. M., and E. I. Rashba. "Elementary excitations of charge-conjugate incompressible quantum liquids." Solid State Communications 95, no. 7 (August 1995): 421–24. http://dx.doi.org/10.1016/0038-1098(95)00303-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії