Добірка наукової літератури з теми "Exact polynomial"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Exact polynomial".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Exact polynomial"
Guilloux, Antonin, and Julien Marché. "Volume function and Mahler measure of exact polynomials." Compositio Mathematica 157, no. 4 (April 2021): 809–34. http://dx.doi.org/10.1112/s0010437x21007016.
Повний текст джерелаAchter, Jeffrey, and Cassandra Williams. "Local Heuristics and an Exact Formula for Abelian Surfaces Over Finite Fields." Canadian Mathematical Bulletin 58, no. 4 (December 1, 2015): 673–91. http://dx.doi.org/10.4153/cmb-2015-050-8.
Повний текст джерелаBorwein, Peter B. "Exact Inequalities for the Norms of Factors of Polynomials." Canadian Journal of Mathematics 46, no. 4 (August 1, 1994): 687–98. http://dx.doi.org/10.4153/cjm-1994-038-8.
Повний текст джерелаRÜHL, WERNER, and ALEXANDER TURBINER. "EXACT SOLVABILITY OF THE CALOGERO AND SUTHERLAND MODELS." Modern Physics Letters A 10, no. 29 (September 21, 1995): 2213–21. http://dx.doi.org/10.1142/s0217732395002374.
Повний текст джерелаChen, Yi-Chou. "Infinitely Many Eigenfunctions for Polynomial Problems: Exact Results." Journal of Applied Mathematics 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/516159.
Повний текст джерелаPaschos, Vangelis Th. "When polynomial approximation meets exact computation." Annals of Operations Research 271, no. 1 (July 30, 2018): 87–103. http://dx.doi.org/10.1007/s10479-018-2986-9.
Повний текст джерелаBhattacharyya, Rajsekhar, Robert de Mello Koch, and Michael Stephanou. "Exact multi-restricted Schur polynomial correlators." Journal of High Energy Physics 2008, no. 06 (June 27, 2008): 101. http://dx.doi.org/10.1088/1126-6708/2008/06/101.
Повний текст джерелаPaschos, Vangelis Th. "When polynomial approximation meets exact computation." 4OR 13, no. 3 (July 8, 2015): 227–45. http://dx.doi.org/10.1007/s10288-015-0294-7.
Повний текст джерелаZerz, Eva, Viktor Levandovskyy, and Kristina Schindelar. "Exact linear modeling with polynomial coefficients." Multidimensional Systems and Signal Processing 22, no. 1-3 (July 1, 2010): 55–65. http://dx.doi.org/10.1007/s11045-010-0125-0.
Повний текст джерелаMueller, Matthias. "Polynomial Exact-3-SAT-Solving Algorithm." International Journal of Engineering & Technology 9, no. 3 (August 4, 2020): 670. http://dx.doi.org/10.14419/ijet.v9i3.30749.
Повний текст джерелаДисертації з теми "Exact polynomial"
Ouchi, Koji. "Exact polynomial system solving for robust geometric computation." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4805.
Повний текст джерелаNorhazwani, Md Yunos. "Polynomial-Space Exact Algorithms for Traveling Salesman Problem in Degree Bounded Graphs." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225741.
Повний текст джерелаVan-'T-Hof, Pim. "Exploiting structure to cope with NP-hard graph problems : polynomial and exponential time exact algorithms." Thesis, Durham University, 2010. http://etheses.dur.ac.uk/285/.
Повний текст джерелаLazare, Arnaud. "Global optimization of polynomial programs with mixed-integer variables." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY011.
Повний текст джерелаIn this thesis, we are interested in the study of polynomial programs, that is optimization problems for which the objective function and/or the constraints are expressed by multivariate polynomials. These problems have many practical applications and are currently actively studied. Different methods can be used to find either a global or a heuristic solution, using for instance, positive semi-definite relaxations as in the "Moment/Sum of squares" method. But these problems remain very difficult and only small instances are addressed. In the quadratic case, an effective exact solution approach was initially proposed in the QCR method. It is based on a quadratic convex reformulation, which is optimal in terms of continuous relaxation bound.One of the motivations of this thesis is to generalize this approach to the case of polynomial programs. In most of this manuscript, we study optimization problems with binary variables. We propose two families of convex reformulations for these problems: "direct" reformulations and quadratic ones.For direct reformulations, we first focus on linearizations. We introduce the concept of q-linearization, that is a linearization using q additional variables, and we compare the bounds obtained by continuous relaxation for different values of q. Then, we apply convex reformulation to the polynomial problem, by adding additional terms to the objective function, but without adding additional variables or constraints.The second family of convex reformulations aims at extending quadratic convex reformulation to the polynomial case. We propose several new alternative reformulations that we compare to existing methods on instances of the literature. In particular we present the algorithm PQCR to solve unconstrained binary polynomial problems. The PQCR method is able to solve several unsolved instances. In addition to numerical experiments, we also propose a theoretical study to compare the different quadratic reformulations of the literature and then apply a convex reformulation to them.Finally, we consider more general problems and we propose a method to compute convex relaxations for continuous problems
Naldi, Simone. "Exact algorithms for determinantal varieties and semidefinite programming." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0021/document.
Повний текст джерелаIn this thesis we focus on the study of determinantal structures arising in semidefinite programming (SDP), the natural extension of linear programming to the cone of symetric positive semidefinite matrices. While the approximation of a solution of a semidefinite program can be computed efficiently by interior-point algorithms, neither efficient exact algorithms for SDP are available, nor a complete understanding of its theoretical complexity has been achieved. In order to contribute to this central question in convex optimization, we design an exact algorithm for deciding the feasibility of a linear matrix inequality (LMI) $A(x) \succeq 0$. When the spectrahedron $\spec = \{x \in \RR^n \mymid A(x) \succeq 0\}$ is not empty, the output of this algorithm is an algebraic representation of a finite set meeting $\spec$ in at least one point $x^*$: in this case, the point $x^*$ minimizes the rank of the pencil on the spectrahedron. The complexity is essentially quadratic in the degree of the output representation, which meets, experimentally, the algebraic degree of semidefinite programs associated to $A(x)$. This is a guarantee of optimality of this approach in the context of exact algorithms for LMI and SDP. Remarkably, the algorithm does not assume the presence of an interior point in the spectrahedron, and it takes advantage of the existence of low rank solutions of the LMI. In order to reach this main goal, we develop a systematic approach to determinantal varieties associated to linear matrices. Indeed, we prove that deciding the feasibility of a LMI can be performed by computing a sample set of real solutions of determinantal polynomial systems. We solve this problem by designing an exact algorithm for computing at least one point in each real connected component of the locus of rank defects of a pencil $A(x)$. This algorithm admits as input generic linear matrices but takes also advantage of additional structures, and its complexity improves the state of the art in computational real algebraic geometry. Finally, the algorithms developed in this thesis are implemented in a new Maple library called {Spectra}, and results of experiments highlighting the complexity gain are provided
Mehrabdollahei, Mahya. "La mesure de Mahler d’une famille de polynômes exacts." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS170.pdf.
Повний текст джерелаIn this thesis we investigate the sequence of Mahler measures of a family of bivariate regular exact polynomials, called Pd := P0≤i+j≤d xiyj , unbounded in both degree and the genus of the algebraic curve. We obtain a closed formula for the Mahler measure of Pd in termsof special values of the Bloch–Wigner dilogarithm. We approximate m(Pd), for 1 ≤ d ≤ 1000,with arbitrary precision using SageMath. Using 3 different methods we prove that the limitof the sequence of the Mahler measure of this family converges to 92π2 ζ(3). Moreover, we compute the asymptotic expansion of the Mahler measure of Pd which implies that the rate of the convergence is O(log dd2 ). We also prove a generalization of the theorem of the Boyd-Lawton which asserts that the multivariate Mahler measures can be approximated using the lower dimensional Mahler measures. Finally, we prove that the Mahler measure of Pd, for arbitrary d can be written as a linear combination of L-functions associated with an odd primitive Dirichlet character. In addition, we compute explicitly the representation of the Mahler measure of Pd in terms of L-functions, for 1 ≤ d ≤ 6
Toufayli, Laila. "Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00780215.
Повний текст джерелаPotts, Daniel, and Toni Volkmer. "Fast, exact and stable reconstruction of multivariate algebraic polynomials in Chebyshev form." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160992.
Повний текст джерелаValvo, Daniel William. "Repairing Cartesian Codes with Linear Exact Repair Schemes." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98818.
Повний текст джерелаMaster of Science
Distributed storage systems are systems which store a single data file over multiple storage nodes. Each storage node has a certain storage efficiency, the "space" required to store the information on that node. The value of these systems, is their ability to safely store data for extended periods of time. We want to design distributed storage systems such that if one storage node fails, we can recover it from the data in the remaining nodes. Recovering a node from the data stored in the other nodes requires the nodes to communicate data with each other. Ideally, these systems are designed to minimize the bandwidth, the inter-nodal communication required to recover a lost node, as well as maximize the storage efficiency of each node. A great mathematical framework to build these distributed storage systems on is erasure codes. In this paper, we will specifically develop distributed storage systems that use Cartesian codes. We will show that in the right setting, these systems can have a very similar bandwidth to systems build from Reed-Solomon codes, without much loss in storage efficiency.
Mazoit, Frédéric. "Décomposition algorithmique des graphes." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2004. http://tel.archives-ouvertes.fr/tel-00148807.
Повний текст джерелаКниги з теми "Exact polynomial"
Alzofon, Frederick E. Two methods for the exact solution of diffraction problems. Bellingham, WA: SPIE Optical Engineering Press, 2004.
Знайти повний текст джерелаTwo methods for the exact solution of diffraction problems. Bellingham, WA: SPIE Press, 2003.
Знайти повний текст джерелаYan, Liu. Exact integrations of polynomials and symmetric quadrature formulas over arbitrary polyhedral grids. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1997.
Знайти повний текст джерелаExact integrations of polynomials and symmetric quadrature formulas over arbitrary polyhedral grids. Moffett Field, Calif: Ames Research Center, 1997.
Знайти повний текст джерелаЧастини книг з теми "Exact polynomial"
Kratsch, Stefan, and Magnus Wahlström. "Two Edge Modification Problems without Polynomial Kernels." In Parameterized and Exact Computation, 264–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-11269-0_22.
Повний текст джерелаHermelin, Danny, Stefan Kratsch, Karolina Sołtys, Magnus Wahlström, and Xi Wu. "A Completeness Theory for Polynomial (Turing) Kernelization." In Parameterized and Exact Computation, 202–15. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03898-8_18.
Повний текст джерелаGalbiati, G., and F. Maffioli. "Exact Matroid Parity and Polynomial Identities." In Operations Research ’93, 180–89. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-46955-8_47.
Повний текст джерелаChakraborty, Chiranjit, and Rahul Santhanam. "Instance Compression for the Polynomial Hierarchy and beyond." In Parameterized and Exact Computation, 120–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33293-7_13.
Повний текст джерелаAdiga, Abhijin, Jasine Babu, and L. Sunil Chandran. "Polynomial Time and Parameterized Approximation Algorithms for Boxicity." In Parameterized and Exact Computation, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33293-7_14.
Повний текст джерелаFellows, Michael R. "The Lost Continent of Polynomial Time: Preprocessing and Kernelization." In Parameterized and Exact Computation, 276–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11847250_25.
Повний текст джерелаAravind, N. R., R. B. Sandeep, and Naveen Sivadasan. "On Polynomial Kernelization of $$\mathcal {H}$$ -free Edge Deletion." In Parameterized and Exact Computation, 28–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13524-3_3.
Повний текст джерелаJansen, Bart M. P., and Stefan Kratsch. "On Polynomial Kernels for Structural Parameterizations of Odd Cycle Transversal." In Parameterized and Exact Computation, 132–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28050-4_11.
Повний текст джерелаGutin, Gregory, Stefan Kratsch, and Magnus Wahlström. "Polynomial Kernels and User Reductions for the Workflow Satisfiability Problem." In Parameterized and Exact Computation, 208–20. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13524-3_18.
Повний текст джерелаKotek, Tomer, and Johann A. Makowsky. "The exact complexity of the Tutte polynomial." In Handbook of the Tutte Polynomial and Related Topics, 175–93. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429161612-9.
Повний текст джерелаТези доповідей конференцій з теми "Exact polynomial"
Qin, Xiaolin, Yong Feng, Jingwei Chen, and Jingzhong Zhang. "Finding exact minimal polynomial by approximations." In the 2009 conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1577190.1577211.
Повний текст джерелаCastella, Marc. "Exact Inversion of MIMO Nonlinear Polynomial Mixtures." In 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.367115.
Повний текст джерелаLi, Qiang, Wing-Kin Ma, and Qiong Wu. "Hyperspectral Super-Resolution: Exact Recovery In Polynomial Time." In 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450697.
Повний текст джерелаChen, Jing-wei, Yong Feng, Xiao-lin Qin, and Jing-zhong Zhang. "Exact polynomial factorization by approximate high degree algebraic numbers." In the 2009 conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1577190.1577199.
Повний текст джерелаDemirtas, Sefa, Guolong Su, and Alan V. Oppenheim. "Exact and approximate polynomial decomposition methods for signal processing applications." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638689.
Повний текст джерелаBonifaci, Vincenzo, Alberto Marchetti-Spaccamela, Nicole Megow, and Andreas Wiese. "Polynomial-Time Exact Schedulability Tests for Harmonic Real-Time Tasks." In 2013 IEEE 34th Real-Time Systems Symposium (RTSS). IEEE, 2013. http://dx.doi.org/10.1109/rtss.2013.31.
Повний текст джерелаJiang, Albert Xin, and Kevin Leyton-Brown. "Polynomial-time computation of exact correlated equilibrium in compact games." In the 12th ACM conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1993574.1993593.
Повний текст джерелаYunos, N. M., A. Shurbevski, and H. Nagamochi. "Polynomial-space exact algorithm for TSP in degree-5 graphs." In 12th International Symposium on Operations Research and its Applications in Engineering, Technology and Management (ISORA 2015). Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.0608.
Повний текст джерелаTownsend, M. A., and S. Gupta. "Automated Modeling and Rapid Solution of Robot Dynamics Using the Symbolic Polynomial Technique." In ASME 1987 Design Technology Conferences. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/detc1987-0068.
Повний текст джерелаLin, Chuen-Sen, and Bao-Ping Jia. "Use of Resultant in the Dimensional Synthesis of Linkage Components: Motion Generation With Prescribed Timing." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0333.
Повний текст джерелаЗвіти організацій з теми "Exact polynomial"
Zarrieß, Benjamin, and Anni-Yasmin Turhan. Most Specific Generalizations w.r.t. General EL-TBoxes. Technische Universität Dresden, 2013. http://dx.doi.org/10.25368/2022.196.
Повний текст джерела