Статті в журналах з теми "Evasive malware"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Evasive malware".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Gruber, Jan, and Felix Freiling. "Fighting Evasive Malware." Datenschutz und Datensicherheit - DuD 46, no. 5 (May 2022): 284–90. http://dx.doi.org/10.1007/s11623-022-1604-9.
Повний текст джерелаEgitmen, Alper, Irfan Bulut, R. Can Aygun, A. Bilge Gunduz, Omer Seyrekbasan, and A. Gokhan Yavuz. "Combat Mobile Evasive Malware via Skip-Gram-Based Malware Detection." Security and Communication Networks 2020 (April 20, 2020): 1–10. http://dx.doi.org/10.1155/2020/6726147.
Повний текст джерелаVidyarthi, Deepti, S. P. Choudhary, Subrata Rakshit, and C. R. S. Kumar. "Malware Detection by Static Checking and Dynamic Analysis of Executables." International Journal of Information Security and Privacy 11, no. 3 (July 2017): 29–41. http://dx.doi.org/10.4018/ijisp.2017070103.
Повний текст джерелаKrishna, T. Shiva Rama. "Malware Detection using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 20, 2021): 1847–53. http://dx.doi.org/10.22214/ijraset.2021.35426.
Повний текст джерелаD'Elia, Daniele Cono, Emilio Coppa, Federico Palmaro, and Lorenzo Cavallaro. "On the Dissection of Evasive Malware." IEEE Transactions on Information Forensics and Security 15 (2020): 2750–65. http://dx.doi.org/10.1109/tifs.2020.2976559.
Повний текст джерелаCara, Fabrizio, Michele Scalas, Giorgio Giacinto, and Davide Maiorca. "On the Feasibility of Adversarial Sample Creation Using the Android System API." Information 11, no. 9 (September 10, 2020): 433. http://dx.doi.org/10.3390/info11090433.
Повний текст джерелаMills, Alan, and Phil Legg. "Investigating Anti-Evasion Malware Triggers Using Automated Sandbox Reconfiguration Techniques." Journal of Cybersecurity and Privacy 1, no. 1 (November 20, 2020): 19–39. http://dx.doi.org/10.3390/jcp1010003.
Повний текст джерелаIlić, Slaviša, Milan Gnjatović, Brankica Popović, and Nemanja Maček. "A pilot comparative analysis of the Cuckoo and Drakvuf sandboxes: An end-user perspective." Vojnotehnicki glasnik 70, no. 2 (2022): 372–92. http://dx.doi.org/10.5937/vojtehg70-36196.
Повний текст джерелаDjufri, Faiz Iman, and Charles Lim. "Revealing and Sharing Malware Profile Using Malware Threat Intelligence Platform." ACMIT Proceedings 6, no. 1 (July 6, 2021): 72–82. http://dx.doi.org/10.33555/acmit.v6i1.100.
Повний текст джерелаKawakoya, Yuhei, Eitaro Shioji, Makoto Iwamura, and Jun Miyoshi. "API Chaser: Taint-Assisted Sandbox for Evasive Malware Analysis." Journal of Information Processing 27 (2019): 297–314. http://dx.doi.org/10.2197/ipsjjip.27.297.
Повний текст джерелаXiao, Kaiming, Cheng Zhu, Junjie Xie, Yun Zhou, Xianqiang Zhu, and Weiming Zhang. "Dynamic Defense against Stealth Malware Propagation in Cyber-Physical Systems: A Game-Theoretical Framework." Entropy 22, no. 8 (August 15, 2020): 894. http://dx.doi.org/10.3390/e22080894.
Повний текст джерелаHemalatha, Jeyaprakash, S. Abijah Roseline, Subbiah Geetha, Seifedine Kadry, and Robertas Damaševičius. "An Efficient DenseNet-Based Deep Learning Model for Malware Detection." Entropy 23, no. 3 (March 15, 2021): 344. http://dx.doi.org/10.3390/e23030344.
Повний текст джерелаBagui, Sikha, and Daniel Benson. "Android Adware Detection Using Machine Learning." International Journal of Cyber Research and Education 3, no. 2 (July 2021): 1–19. http://dx.doi.org/10.4018/ijcre.2021070101.
Повний текст джерелаGalloro, Nicola, Mario Polino, Michele Carminati, Andrea Continella, and Stefano Zanero. "A Systematical and longitudinal study of evasive behaviors in windows malware." Computers & Security 113 (February 2022): 102550. http://dx.doi.org/10.1016/j.cose.2021.102550.
Повний текст джерелаSivaraju, S. S. "An Insight into Deep Learning based Cryptojacking Detection Model." Journal of Trends in Computer Science and Smart Technology 4, no. 3 (September 21, 2022): 175–84. http://dx.doi.org/10.36548/jtcsst.2022.3.006.
Повний текст джерелаNunes, Matthew, Pete Burnap, Philipp Reinecke, and Kaelon Lloyd. "Bane or Boon: Measuring the effect of evasive malware on system call classifiers." Journal of Information Security and Applications 67 (June 2022): 103202. http://dx.doi.org/10.1016/j.jisa.2022.103202.
Повний текст джерелаSharma, Amit, Brij B. Gupta, Awadhesh Kumar Singh, and V. K. Saraswat. "Orchestration of APT malware evasive manoeuvers employed for eluding anti-virus and sandbox defense." Computers & Security 115 (April 2022): 102627. http://dx.doi.org/10.1016/j.cose.2022.102627.
Повний текст джерелаYerima, Suleiman Y., Mohammed K. Alzaylaee, Annette Shajan, and Vinod P. "Deep Learning Techniques for Android Botnet Detection." Electronics 10, no. 4 (February 23, 2021): 519. http://dx.doi.org/10.3390/electronics10040519.
Повний текст джерелаLee, Han Seong, and Hyung-Woo Lee. "Simulated Dynamic C&C Server Based Activated Evidence Aggregation of Evasive Server-Side Polymorphic Mobile Malware on Android." International journal of advanced smart convergence 6, no. 1 (March 31, 2017): 1–8. http://dx.doi.org/10.7236/ijasc.2017.6.1.1.
Повний текст джерелаNdichu, Samuel, Sylvester McOyowo, Henry Okoyo, and Cyrus Wekesa. "A Remote Access Security Model based on Vulnerability Management." International Journal of Information Technology and Computer Science 12, no. 5 (October 8, 2020): 38–51. http://dx.doi.org/10.5815/ijitcs.2020.05.03.
Повний текст джерелаMarques, Rafael Salema, Gregory Epiphaniou, Haider Al-Khateeb, Carsten Maple, Mohammad Hammoudeh, Paulo André Lima De Castro, Ali Dehghantanha, and Kkwang Raymond Choo. "A Flow-based Multi-agent Data Exfiltration Detection Architecture for Ultra-low Latency Networks." ACM Transactions on Internet Technology 21, no. 4 (July 16, 2021): 1–30. http://dx.doi.org/10.1145/3419103.
Повний текст джерелаElsersy, Wael F., Ali Feizollah, and Nor Badrul Anuar. "The rise of obfuscated Android malware and impacts on detection methods." PeerJ Computer Science 8 (March 9, 2022): e907. http://dx.doi.org/10.7717/peerj-cs.907.
Повний текст джерелаAl-Marghilani, A. "Comprehensive Analysis of IoT Malware Evasion Techniques." Engineering, Technology & Applied Science Research 11, no. 4 (August 21, 2021): 7495–500. http://dx.doi.org/10.48084/etasr.4296.
Повний текст джерелаChen, Hongyi, Jinshu Su, Linbo Qiao, and Qin Xin. "Malware Collusion Attack against SVM: Issues and Countermeasures." Applied Sciences 8, no. 10 (September 21, 2018): 1718. http://dx.doi.org/10.3390/app8101718.
Повний текст джерелаAfianian, Amir, Salman Niksefat, Babak Sadeghiyan, and David Baptiste. "Malware Dynamic Analysis Evasion Techniques." ACM Computing Surveys 52, no. 6 (January 21, 2020): 1–28. http://dx.doi.org/10.1145/3365001.
Повний текст джерелаAshawa, Moses, and Sarah Morris. "Analysis of Mobile Malware: A Systematic Review of Evolution and Infection Strategies." Journal of Information Security and Cybercrimes Research 4, no. 2 (December 30, 2021): 103–31. http://dx.doi.org/10.26735/krvi8434.
Повний текст джерелаFedák, Andrej, and Jozef Štulrajter. "Evasion of Antivirus with the Help of Packers." Science & Military 17, no. 1 (2022): 14–22. http://dx.doi.org/10.52651/sam.a.2022.1.14-22.
Повний текст джерелаDai, Yusheng, Hui Li, Yekui Qian, Yunling Guo, and Min Zheng. "Anticoncept Drift Method for Malware Detector Based on Generative Adversarial Network." Security and Communication Networks 2021 (January 19, 2021): 1–12. http://dx.doi.org/10.1155/2021/6644107.
Повний текст джерелаThanh, Cong Truong, and Ivan Zelinka. "A Survey on Artificial Intelligence in Malware as Next-Generation Threats." MENDEL 25, no. 2 (December 20, 2019): 27–34. http://dx.doi.org/10.13164/mendel.2019.2.027.
Повний текст джерелаAboaoja, Faitouri A., Anazida Zainal, Fuad A. Ghaleb, Bander Ali Saleh Al-rimy, Taiseer Abdalla Elfadil Eisa, and Asma Abbas Hassan Elnour. "Malware Detection Issues, Challenges, and Future Directions: A Survey." Applied Sciences 12, no. 17 (August 25, 2022): 8482. http://dx.doi.org/10.3390/app12178482.
Повний текст джерелаDemetrio, Luca, Scott E. Coull, Battista Biggio, Giovanni Lagorio, Alessandro Armando, and Fabio Roli. "Adversarial EXEmples." ACM Transactions on Privacy and Security 24, no. 4 (November 30, 2021): 1–31. http://dx.doi.org/10.1145/3473039.
Повний текст джерелаMao, Zhengyang, Zhiyang Fang, Meijin Li, and Yang Fan. "EvadeRL: Evading PDF Malware Classifiers with Deep Reinforcement Learning." Security and Communication Networks 2022 (April 29, 2022): 1–14. http://dx.doi.org/10.1155/2022/7218800.
Повний текст джерелаAlhaidari, Fahd, Nouran Abu Shaib, Maram Alsafi, Haneen Alharbi, Majd Alawami, Reem Aljindan, Atta-ur Rahman, and Rachid Zagrouba. "ZeVigilante: Detecting Zero-Day Malware Using Machine Learning and Sandboxing Analysis Techniques." Computational Intelligence and Neuroscience 2022 (May 9, 2022): 1–15. http://dx.doi.org/10.1155/2022/1615528.
Повний текст джерелаNawaz, Umair, Muhammad Aleem, and Jerry Chun-Wei Lin. "On the evaluation of android malware detectors against code-obfuscation techniques." PeerJ Computer Science 8 (June 21, 2022): e1002. http://dx.doi.org/10.7717/peerj-cs.1002.
Повний текст джерелаLi, Deqiang, and Qianmu Li. "Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware Detection." IEEE Transactions on Information Forensics and Security 15 (2020): 3886–900. http://dx.doi.org/10.1109/tifs.2020.3003571.
Повний текст джерелаWang, Fangwei, Yuanyuan Lu, Changguang Wang, and Qingru Li. "Binary Black-Box Adversarial Attacks with Evolutionary Learning against IoT Malware Detection." Wireless Communications and Mobile Computing 2021 (August 30, 2021): 1–9. http://dx.doi.org/10.1155/2021/8736946.
Повний текст джерелаLi, Deqiang, Qianmu Li, Yanfang (Fanny) Ye, and Shouhuai Xu. "Arms Race in Adversarial Malware Detection: A Survey." ACM Computing Surveys 55, no. 1 (January 31, 2023): 1–35. http://dx.doi.org/10.1145/3484491.
Повний текст джерелаMoussaileb, Routa, Nora Cuppens, Jean-Louis Lanet, and Hélène Le Bouder. "A Survey on Windows-based Ransomware Taxonomy and Detection Mechanisms." ACM Computing Surveys 54, no. 6 (July 2021): 1–36. http://dx.doi.org/10.1145/3453153.
Повний текст джерелаLi, Qing, Chris Larsen, and Tim van der Horst. "IPv6: A Catalyst and Evasion Tool for Botnets and Malware Delivery Networks." Computer 46, no. 5 (May 2013): 76–82. http://dx.doi.org/10.1109/mc.2012.296.
Повний текст джерелаPham, Duy-Phuc, Duc-Ly Vu, and Fabio Massacci. "Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques." Journal of Computer Virology and Hacking Techniques 15, no. 4 (June 20, 2019): 249–57. http://dx.doi.org/10.1007/s11416-019-00335-w.
Повний текст джерелаSadek, Ibrahim, Penny Chong, Shafiq Ul Rehman, Yuval Elovici, and Alexander Binder. "Memory snapshot dataset of a compromised host with malware using obfuscation evasion techniques." Data in Brief 26 (October 2019): 104437. http://dx.doi.org/10.1016/j.dib.2019.104437.
Повний текст джерелаMenéndez, Héctor D., David Clark, and Earl T. Barr. "Getting Ahead of the Arms Race: Hothousing the Coevolution of VirusTotal with a Packer." Entropy 23, no. 4 (March 26, 2021): 395. http://dx.doi.org/10.3390/e23040395.
Повний текст джерелаNoor, Muzzamil, Haider Abbas, and Waleed Bin Shahid. "Countering cyber threats for industrial applications: An automated approach for malware evasion detection and analysis." Journal of Network and Computer Applications 103 (February 2018): 249–61. http://dx.doi.org/10.1016/j.jnca.2017.10.004.
Повний текст джерелаSong, Chongya, Alexander Pons, and Kang Yen. "AA-HMM: An Anti-Adversarial Hidden Markov Model for Network-Based Intrusion Detection." Applied Sciences 8, no. 12 (November 28, 2018): 2421. http://dx.doi.org/10.3390/app8122421.
Повний текст джерелаHajaj, Chen, Nitay Hason, and Amit Dvir. "Less Is More: Robust and Novel Features for Malicious Domain Detection." Electronics 11, no. 6 (March 21, 2022): 969. http://dx.doi.org/10.3390/electronics11060969.
Повний текст джерелаAfzal, Shehroz, and Jamil Asim. "Systematic Literature Review over IDPS, Classification and Application in its Different Areas." STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH 3, no. 2 (December 31, 2021): 189–223. http://dx.doi.org/10.52700/scir.v3i2.58.
Повний текст джерелаAfzal, Shehroz, and Jamil Asim. "Systematic Literature Review over IDPS, Classification and Application in its Different Areas." STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH 3, no. 2 (December 31, 2021): 189–223. http://dx.doi.org/10.52700/scir.v3i2.58.
Повний текст джерелаDos Santos Fh, Ailton, Ricardo J. Rodríguez, and Eduardo L. Feitosa. "Evasion and Countermeasures Techniques to Detect Dynamic Binary Instrumentation Frameworks." Digital Threats: Research and Practice, August 13, 2021. http://dx.doi.org/10.1145/3480463.
Повний текст джерела"Evasion Attack on Text Classified Training Datasets." International Journal of Engineering and Advanced Technology 8, no. 6S (September 6, 2019): 45–50. http://dx.doi.org/10.35940/ijeat.f1009.0886s19.
Повний текст джерелаNappa, Antonio, Aaron Úbeda-Portugués, Panagiotis Papadopoulos, Matteo Varvello, Juan Tapiador, and Andrea Lanzi. "Scramblesuit: An effective timing side-channels framework for malware sandbox evasion." Journal of Computer Security, August 18, 2022, 1–26. http://dx.doi.org/10.3233/jcs-220005.
Повний текст джерела