Добірка наукової літератури з теми "EV INFRASTRUCTURE"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "EV INFRASTRUCTURE".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "EV INFRASTRUCTURE"

1

Khan, Hafiz Anwar Ullah, Sara Price, Charalampos Avraam, and Yury Dvorkin. "Inequitable access to EV charging infrastructure." Electricity Journal 35, no. 3 (April 2022): 107096. http://dx.doi.org/10.1016/j.tej.2022.107096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

IKEYA, Tomohiko. "Activities and Issues of EV Charge Infrastructure Preparation Towards EV Popularization." Journal of The Institute of Electrical Engineers of Japan 133, no. 1 (2013): 10–12. http://dx.doi.org/10.1541/ieejjournal.133.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Qiushuo, Yong Xiao, Shuaishuai Zhao, Xianwen Zhu, Zongyi Wang, Zisheng Liu, Ling Wang, Xiangwu Yan, and Yan Wang. "Performance Status Evaluation of an Electric Vehicle Charging Infrastructure Based on the Fuzzy Comprehensive Evaluation Method." World Electric Vehicle Journal 10, no. 2 (May 30, 2019): 35. http://dx.doi.org/10.3390/wevj10020035.

Повний текст джерела
Анотація:
Performance status evaluation is essential for the safe running of electric vehicle (EV) charging infrastructure. With the development of the EV industry, the EV charging infrastructure industry has advanced considerably. Safe and reliable operation of the charging infrastructure is important for the development of EVs. As such, we propose a comprehensive evaluation method to assess the performance condition of an EV charging infrastructure. First, based on the analysis of the existing EV charging principles, we established an evaluation index system for EV charging infrastructure. Second, the subjective weight, objective weight, and comprehensive weight of the index system were determined through analytic hierarchy processes (AHP) and the entropy weight method. Then, we used fuzzy comprehensive evaluation to appraise the performance of the charging infrastructure through expert investigation. Finally, based on the actual data from an EV charger, the performance conditions of the EV charging infrastructure were evaluated to demonstrate the feasibility of the method and the reliability of the index system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kore, Hemant Harishchandra, and Saroj Koul. "Electric vehicle charging infrastructure: positioning in India." Management of Environmental Quality: An International Journal 33, no. 3 (February 9, 2022): 776–99. http://dx.doi.org/10.1108/meq-10-2021-0234.

Повний текст джерела
Анотація:
PurposeThe study identifies the challenges of developing the “electric vehicle (EV)” charging infrastructure in India, having an ambitious target of 30% EV adoption by 2030.Design/methodology/approachFirst, a systematic literature review determined EV adoption and challenges in the EV charging infrastructure development globally and specifically in India. Secondly, a focussed group study in which 10 domain experts were consulted to identify additional challenges in India's EV adoption involving EV charging infrastructure.FindingsAccordingly, 11 significant challenges of EV charging infrastructure development in India have been identified–seven through the comparative analysis of the literature review and four from the focussed group study. Secondary data provides insight into the situation around developed countries and in developing countries, specifically in India. Finally, the Government of India's measures and priorities to facilitate such a development are emphasised.Research limitations/implicationsThe study can help policymakers/researchers understand the gaps and align measures to address the challenges. A focussed group study may have its limitations due to the perception of the experts.Originality/valueThe systematic literature review of 43 articles using comparative analysis and subsequently a focussed group study of experts to verify and add challenges has made the study unique.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Almutairi, Abdulaziz. "Impact Assessment of Diverse EV Charging Infrastructures on Overall Service Reliability." Sustainability 14, no. 20 (October 16, 2022): 13295. http://dx.doi.org/10.3390/su142013295.

Повний текст джерела
Анотація:
A higher penetration of EVs may pose several challenges to the power systems, including reliability issues. To analyze the impact of EVs on the reliability of power systems, a detailed EV charging infrastructure is considered in this study. All possible charging locations (home, workplace, public locations, and commercial fast chargers) and different charging levels (level 1, level 2, and DC fast charging) are considered, and seven charging infrastructures are determined first. Then, the reliability impact of each charging infrastructure is determined using the two widely used reliability indices, i.e., the loss of load expectation (LOLE) and the loss of energy expectation (LOEE). The impact of mixed charging infrastructure portfolios is also analyzed by considering two different cases, which included the equal share of all charging infrastructure and charging infrastructure share based on consumer preferences. The performance is analyzed on a well-known reliability test system (Roy Billinton Test System) and different penetration levels of EVs are considered in each case. Test results have shown that fast-charging stations have the worst reliability impact. In addition, it was also observed that mixed charging portfolios have lower reliability impacts despite having a fair share of fast-charging stations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Clampitt, Colleen, and Syed Adeel Ahmed. "ELECTRIC VEHICLE SALES AND INFRASTRUCTURE ANALYSIS." Performance Improvement Journal 61, no. 1 (January 1, 2022): 10–18. http://dx.doi.org/10.56811/pfi-21-0045.

Повний текст джерела
Анотація:
ELECTRIC VEHICLES (EV) are a popular choice for many people looking to reduce their carbon footprint, reduce their reliance on oil, avoid fueling stations, or who just want to own the next step in technology. There are questions, however, about how prepared the United States is for an EV owning populace. Before everyone can own an EV, there needs to be enough infrastructure to support the growing numbers of EVs. This paper will examine the current growth of EVs in Louisiana and use that information to determine if Louisiana has enough infrastructure in place to meet the growing demand.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CALATAYUD MARTÍ, PILAR, JULIAN ROMERO CHAVARRO, MARIO MONTAGUD AGUAR, LUCIA ARCOS USERO, MARTA GARCÍA PELLICER, and ALFREDO QUIJANO LÓPEZ. "THREE-LEVEL METHODOLOGY FOR SECURE AND EFFICIENT GRID INTEGRATION OF ELECTRIC VEHICLE." DYNA 96, no. 3 (May 1, 2021): 264–69. http://dx.doi.org/10.6036/10013.

Повний текст джерела
Анотація:
The secure integration of electric vehicle (EV) plays a key role in the energy transition through a resilient and decarbonised economy. However, a massive EV penetration means a rise in electricity demand with negative consequences to the distribution systems (voltage drops, branches congestion, etc) if the charging infrastructure is not cybersecure and does not perform smart charging mechanisms. Furthermore, these new infrastructures and their operating procedures provide new chances to cyberattacks to be performed, aimed at either exploiting those grid vulnerabilities or acquiring some user’s private information. Therefore, to ease the secure integration of EV charging infrastructures in the future network, this paper presents a three-level actuation methodology for charging infrastructures, which includes active management of EV supply equipment (EVSE) to allow dynamic control of charges, installation of ancillary protection systems, planning of EVSE’s location within the distribution system and cybersecure management of the whole infrastructure. The presented methodology is based on a thorough analysis of the possible cyberattacks that may occur during the transactions of the charging process, as well as tests carried out on a real pilot, which demonstrate the possible impacts that an uncontrolled charging of the EV can have on the distribution network, thus identifying the vulnerabilities of the distribution network. Keywords: Smart Grid, electrification, electric vehicle, charging station, Charge point operator, cybersecurity, smart charging.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kong, Qing, Michael Fowler, Evgueniy Entchev, Hajo Ribberink, and Robert McCallum. "The Role of Charging Infrastructure in Electric Vehicle Implementation within Smart Grids." Energies 11, no. 12 (December 1, 2018): 3362. http://dx.doi.org/10.3390/en11123362.

Повний текст джерела
Анотація:
In the integration of electric vehicle (EV) fleets into the smart grid context, charging infrastructure serves as the interlinkage between EV fleets and the power grid and, as such, affects the impacts of EV operation on the smart grid. In this study, the impacts of charging infrastructure on the effectiveness of different EV operational modes were simulated using a multi-component modelling approach, which accounts for both stochastic EV fleet charging behaviors as well as optimal energy vector dispatch operation. Moreover, a campus microgrid case study was presented to demonstrate the various design factors and impacts of charging infrastructure implementation affecting EV fleet adoption and operation. Based on results from the study, it was shown that charging infrastructure should be adopted in excess of the minimum required to satisfy EV charging for driving needs. In addressing uncontrolled charging behaviors, additional charging infrastructure improves EV owner convenience and reduces queuing duration. Meanwhile, controlled charging strategies benefit from increased resilience against uncertain charging behavior and operate more optimally in systems subject to time-of-use (TOU) electricity pricing. Lastly, it was demonstrated that successful vehicle-to-grid (V2G) implementation requires charging infrastructure to emulate the availability and fast response characteristics of stationary energy storage systems, which translates to excess charging port availability, long EV plug-in durations, and bi-directional power flow capabilities well beyond the level 2 charging standard.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dharmakeerthi, C. H., and Mithulananthan Nadarajah. "Stability Cogitated Electric Vehicle Charging Infrastructure Planning." International Journal of Smart Grid and Sustainable Energy Technologies 1, no. 1 (December 17, 2019): 10–14. http://dx.doi.org/10.36040/ijsgset.v1i1.180.

Повний текст джерела
Анотація:
Electrification of the transportation is taking place at an accelerated rate. Even though, electric vehicles (EV) evidently bring numerous environmental and economic benefits, their impact on power systems should not be overlooked. It has been identified that EV load characteristics can significantly affect power system voltage stability and small signal stability. Hence, it is important to consider mitigating of stability impacts right from the planning stage of bulk EV charging stations. However, unavailability of suitable stability evaluating indexes that could fit into planning algorithms is a hindrance. This study proposes two computationally efficient indexes to compare stability status in different planning options. The developed indexes have been tested, verified and utilized in a multi objective planning algorithm to identify a comprehensive solution, which satisfies the grid operator, EV customer and the charging facility investor optimally.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Helmus, Jurjen, Mike Lees, and Robert van den Hoed. "Understanding Complexity in Charging Infrastructure through the Lens of Social Supply–Demand Systems." World Electric Vehicle Journal 13, no. 3 (February 24, 2022): 44. http://dx.doi.org/10.3390/wevj13030044.

Повний текст джерела
Анотація:
Since the first release of modern electric vehicles, researchers and policy makers have shown interest in the deployment and utilization of charging infrastructure. Despite the sheer volume of literature, limited attention has been paid to the characteristics and variance of charging behavior of EV users. In this research, we answer the question: which scientific approaches can help us to understand the dynamics of charging behavior in charging infrastructures, in order to provide recommendations regarding a more effective deployment and utilization of these infrastructures. To do so, we propose a conceptual model for charging infrastructure as a social supply–demand system and apply complex system properties. Using this conceptual model, we estimate the rate complexity, using three developed ratios that relate to the (1) necessity of sharing resources, (2) probabilities of queuing, and (3) cascading impact of transactions on others. Based on a qualitative assessment of these ratios, we propose that public charging infrastructure can be characterized as a complex system. Based on our findings, we provide four recommendations to policy makers for taking efforts to reduce complexity during deployment and measure interactions between EV users using systemic metrics. We further point researchers and policy makers to agent-based simulation models that capture interactions between EV users and the use complex network analysis to reveal weak spots in charging networks or compare the charging infrastructure layouts of across cities worldwide.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "EV INFRASTRUCTURE"

1

Huang, Yingfen. "EV Charging Station Infrastructure." Digital Commons at Loyola Marymount University and Loyola Law School, 2017. https://digitalcommons.lmu.edu/etd/397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Svensson, Dahlin Marcus. "Battery supported charging infrastructure for electric vehicles : And its impact on the overall electricity infrastructure." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264104.

Повний текст джерела
Анотація:
The Paris Agreement was formed in 2015 to reduce the environmental impact and limit the increase in temperature to 2°C compared to pre-industrial levels. It is believed that an electrification of the transport sector will reduce its negative environmental impact. To reach the goals set by the Paris Agreement we are in need of quick development towards an electrified fleet of vehicles. Despite this urgency electric vehicles (EVs) have failed to reach the majority of the market, instead it has stuck in the chasm between the early adopters and the early majority of the markets. This is due to three main challenges; EVs are relatively expensive compared to conventional petrol- and diesel-powered vehicles, EVs have an inadequate driving range, and the access to a functional charging infrastructure is limited. This thesis focuses on the third challenge regarding charging infrastructure. The charging infrastructure is dependent on the existing electricity distribution infrastructure, i.e. the grid. It is rather time-consuming and costly to strengthen the grid, which is deemed necessary for enabling a roll-out of a charging infrastructure that meets the needs of current and near-future EV operators. This research provides an alternative way of approaching the issues. Instead of strengthening the grid by digging up old cables it looks into the opportunities of incorporating stationary battery storages as a buffer between the EV charging stations and the grid connection point. This battery solution can reduce the power outtake and smoothen out the load from EV charging, thus limiting the impact of EV charging from a grid perspective. The research assesses what type of pathways this solution could follow to successfully drive the adoption of EVs. Furthermore, the study tries to understand how these solutions could be designed to deliver the necessary values regarding EV charging and reducing the overall power outtake from grid connection points. The thesis is carried out by analyzing collected quantitative and qualitative data through the lens of three main theories. These are transition theory, theory on eco-innovations, and theory on the diffusion of innovations. The thesis finds that the two pathways for a battery supported charging infrastructure that will be most efficient in speeding up the adoption rate of EVs is within a workplace and public charging setting in city and urban environments. For both pathways it is expected that a centralized concept, with one battery solution connected to several charging points, will be most feasible in the short-term, which is important as the need for developments are very urgent. The workplace charging will provide 3,6 kW AC-charging while the public charging provides 150 kW DC-charging. The solution is expected to be cost-efficient for specific locations, especially for public charging in city environments with strained grid infrastructures. The study provides an initial assessment for the city of Stockholm which indicates that the power outtake can be reduced by 63,5–112,2 MW in 2030. This means that the current grid infrastructure could support a larger number of EVs, thus reducing the greenhouse-gas emissions from the transport sector and bringing us closer to reaching the goals set by the Paris Agreement.
Parisavtalet utformades år 2015 för att reducera vår klimatpåverkan och begränsa temperaturökningen till 2°C jämfört med nivåerna som rådde innan den industriella revolutionen. Förhoppningen är att en elektrifiering av transportsektorn kan reducera dess negativa klimatpåverkan. För att nå målen i Parisavtalet behövs en snabb omställning mot en elektrifiering av fordonsflottan. Trots situationens brådskande karaktär har elbilar fastnat i en klyfta mellan den begränsade tidiga marknaden och den sena marknaden, vilken utgör majoriteten av kunderna. Det finns tre primära anledningar till detta; elbilar är dyra jämfört med bensin- och dieseldrivna bilar, räckvidden för elbilar är otillräcklig, och det råder begränsad tillgång till en funktionell laddinfrastruktur. Den här studien fokuserar på den tredje anledningen kring otillräcklig laddinfrastruktur. Laddinfrastrukturen är beroende av det existerande elnätet och dess distributionskapacitet. En förstärkning av elnätet är i många fall nödvändig för att möjliggöra en utrullning av en laddinfrastruktur som möter dagens och morgondagens behov. Istället för att förstärka elnätet genom att gräva ner tjockare kablar så fokuserar denna studie på en alternativ lösning kring laddinfrastruktur sammankopplat med stationära batterilager. Batterilagret agerar som en buffert mellan anslutningspunkten till elnätet och laddningspunkten för elbilar. Genom att reducera effektuttaget och jämna ut lastkurvan för elbilsladdning kan en batterilösning begränsa den negativa påverkan det förväntas ha på elnätet. Studien undersöker vilka vägar denna batterilösning kan ta för att öka antalet elbilar i fordonsflottan. Efter att ha förstått vilka dessa lösningsvägar är så analyserar studien hur dessa lösningar kan vara uppbyggda för att erbjuda de efterfrågade och nödvändiga värdena för elbilsladdning och elnätets fortsatta funktionalitet. Studien bygger på analys av kvalitativa och kvantitativa data. Analysen utförs genom att applicera koncept hämtade från teorier kring teknologiska övergångar, miljöinnovationer och spridning av innovationer. De två lösningsområden som förväntas vara mest effektiva i att driva en ökning av antalet elbilar i Sverige är arbetsplatsladdning samt offentlig laddning i stadsmiljöer. En lösning med ett centraliserat batterisystem där en batterilösning är kopplat till flera laddstationer antas vara mest genomförbar på kort sikt, vilket anses vara centralt på grund av utmaningarnas brådskande karaktär. För arbetsplatsladdning tillhandahålls 3,6 kW AC-laddning och för offentlig laddning tillhandahålls 150 kW DC-laddning. Lösningarna förväntas vara kostnadseffektiva for specifika platser och användarprofiler, speciellt för offentlig laddning i stadsområden med ansträngda elnät. En initial uppskattning visar att en laddinfrastruktur kopplat till stationära batterilager inom de två lösningsområdena kan minska Stockholms effektuttag för elbilsladdning med 63,5–112,2 MW år 2030. Detta betyder att dagens elnät kan tillgodose ett ökat antal elbilar, vilka genererar färre utsläpp av växthusgaser och ger oss en bättre chans att nå Parisavtalets mål.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brew, Anton, and Olivia Zetterberg. "Exploring the Potential of Crowdfunding for EV-Charging Infrastructure Development : A Strategy for Collaborative Financing of EV Charging Points in Sweden." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279504.

Повний текст джерела
Анотація:
All over the world, raising concerns about energy conservation and the environmental impacts of greenhouse gas emissions has promoted the development of a sustainable mobility transition. Successful electric vehicle (EV) deployment plays a vital role in this manner but is still facing obstacles, where public charging infrastructure is one of them. Additionally, digitization is transforming and introducing new industries worldwide, contributing with new constructs to be used in the evolving transition. Simultaneously, technology is surpassing the competition, and is one of the most potent transformational force affecting customer relations in the energy sector, leading to customers anticipating more from the power utility companies. To attain a long-termsustainable competitive advantage, firms have to retain, sustain, and nurture their customer base. To do so, corporations have comprehended the value of embracing customer-centric incentives, enabling them to capture more indirect business values. Furthermore, this thesis was done in collaboration with a power utility company, referred to as ‘Org X’ or ‘the CPO’. Influenced by the reasoning above, it investigated the opportunity to create indirect business values through a demand-driven roll-out of the national charging infrastructure with the use of crowdfunding. This was achieved by adopting an exploratory methodology approach, where a mixed inductive-deductive design was used. A multi-method qualitative data collection was made; consisting mainly of semi-structured-, and unstructured interviews with experts in the field. Thus, a profound perspective of the EV-charging market landscape was attained, which enabled adequate reasoning when proposing a strategy approach for the cause. Additionally, quantitative secondary data was used to develop a tool for an initial location evaluation, that is part of the recommended approach. This tool was also used to enhance the understanding of the national EV-charging market landscape, the customer segments, as well the potential market for a co-creating platform. The findings suggest that the perceived readiness level of crowdfunding charging infrastructure varies depending on what aspect that is being accommodated. A platform that connects stakeholders is encouraged by actors in the field, but crowdfunding through solely end-users is questioned as close proximity to the end-user’s location is a key-factor regarding motivation to fund a charging point. A ‘Tier based framework’, that facilitates this transition was therefore developed and evaluated. Additionally, the framework was considered in the market analysis case study, which further included a recommended implementation and communication approach. If used accordingly, this framework could bring both indirect- and direct business values to the power utility company in question, as well as the involved stakeholders.
Oro över energieffektiviseringar och miljökonsekvenser från utsläpp av växthusgaser världen över har främjat utvecklingen av ett hållbart energisystem. En framgångsrik marknadspenetration av elbilar (EVs) har en viktig roll i denna aspekt, men står fortfarande inför hinder där publik laddningsinfrastruktur är en del av problemet. Digitaliseringen leder till transformation och nya industrier vilket bidrar med ytterligare konstruktioner som används i övergången till ett mer hållbart samhälle. Samtidigt driver teknikutvecklingen till ökad konkurrens och har en kraftfull påverkan på vad kunderna förväntar sig från företagen. För att uppnå mer långsiktigt hållbara konkurrensfördelar måste företag sträva efter att behålla, upprätthålla och ta hand sin kundbas. Företag börjar förstå det ökade värde som finns i att utöva mer kundcentrerade incitament och strategier, vilket potentiellt bidrar till mer indirekta affärsvärden. Denna uppsats är i samarbete med ett Svenskt energiföretag, följaktligen refererat till som 'Org X' eller 'CPO'. Baserat på resonemanget ovan, har möjligheten att skapa indirekta affärsvärden genom verkställandet av en mer efterfrågedriven utveckling av den nationella elbilsladdning infrastruktur med hjälp av crowdfunding undersökts. Detta uppnåddes genom att använda ett utforskat tillvägagångssätt, där en blandad induktiv-deduktiv design användes. En kvalitativ datainsamling gjordes på flera sätt; huvudsakligen bestående av semistrukturerade och ostrukturerade intervjuer med experter inom området. Således uppnåddes ett djupgående perspektiv på av elbilsladdning marknaden vilket möjliggjorde sakliga resonemang kring den presenterade och rekommenderade strategin. Ytterligare användes kvantitativ sekundärdata för att utveckla ett verktyg för en initial plats bedömning, vilket är en del av den rekommenderade strategin. Detta verktyg användes dessutom för att öka förståelsen för den nationella elbilsladdning marknaden, kundsegmenten, liksom den potentiella marknaden för en samskapande plattform. Resultaten tyder på att den upplevda beredskapsnivån att crowdfunda laddningsinfrastruktur varierar beroende på plats och kundgrupp. En plattform som ansluter intressenter uppmuntras av aktörer på marknaden, men crowdfunding genom enbart slutanvändare ifrågasätts då närhet till slutanvändarens läge är en nyckelfaktor när det gäller motivationen att medverka i finansieringen. Därav har ett tier based framework utvecklats och presenterats, som bör underlätta transformationen mot en mer kunddriven affärsmöjlighet. Dessutom beaktades ramverket i fallstudien för marknadsanalysen, som ytterligare inkluderade en rekommenderad strategi för implementering och kommunikation. Om den används i enlighet bör ramverket ge både indirekta och direkta affärsvärden till det aktuella energi företaget, liksom till berörda intressenter.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Greene, Briun. "How to Develop the Electric Vehicle Charging Station Infrastructure in China." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437409084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jensen, Olga. "Disruption of the current utility business by utilizing EV charging infrastructure to unlock grid flexibility : Possibilities for Blockchain technology." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246118.

Повний текст джерела
Анотація:
Den europeiska energisektorn genomgår numera en viktig övergång från en centraliserad elkraftförsörjning till distribuerad elproduktion från förnybara källor. Dessutom leder utfasningen av fossila bränslen till en ökning av antalet elfordon (här EV). Höga penetrationsnivåer för både EV och förnybara energin på distributionsnivån kan orsaka ytterligare belastning på elnätet, vilket kan leda till avbrott i strömförsörjningen och försämring av strömkvaliteten. I detta examensarbete undersöktes möjligheterna att lösa detta problem i Tyskland. Den föreslagna lösningen är ett förvaltningssystem för EV-laddning och lokal förnybar elproduktion/-koppling i realtid. Tre användningsfall utvecklades för att analysera denna lösning. Det första användningsfallet ”hyresgästernas el” är baserat på den nya tyska förordningen som infördes 2017 och främjar att använda solenergi ”bakom” elmätaren i flerbostadshyrehus. I detta fall, genom att erbjuda en EV-laddningstjänst, kan hyresvärden uppnå en högre konsumtionsnivå under solskenstimmarna när hyresgästerna är på jobbet, och därmed få en bättre ersättning. Betalningsperioden för en 11 kW laddsstation, som skulle användas tillsammans med en PV av 26 kWp, beräknades vara cirka 5 år om laddstationen är upptagen 30-40 % av den möjliga dagsljustiden. Om laddstationenen har installerats på grund av andra ändamål kan ”hyresgästernas el”-modellen bli en extra inkomstkälla. De andra två användningsfallen beror på möiligheten att införa en ”minskad elnätavgift”. Här måste man nämna att insatser att föra EV-laddningen på tid och plats för förnybar elproduktion måste motiveras. Numera är elpriset fast i Tyskland för småförbrukare som betyder att det inte finns någon orsak för en beteendeförändring av EV-förare. En minskad elnätsavgift kunde bli en åtgärd  för att främja ”EV-laddning + lokal förnybar elproduktion”-kopplingen; den kan beviljas av en distributionssystemoperatör (DSO) ifall denna EV-laddning skulle hjälpa att undvika stockningar och avkortning i elnätet. Det andra användningsfallet innebär att införa en sådan minskad elnätavgift för EV-laddning med lokal sol- (PV) eller vindel, som inför dynamisk prissättning. I det här fallet ska lokala elproducenter behöva säjla el till lokala laddstationer på ett peer-to-peer (P2P) sätt. Enligt gällande regelverk är ren P2P-handel inte möjlig; den skulle behöva inrättning av lokala energimarknader och ytterligare balansering. Vad man kan göra kallas direktmarknadsföring, vilket är en elmarknadsmodell som utförs av en aggregator. Användningen av blockchain som ett verktyg skulle bli välgörande för båda fallen eftersom det skulle tilllåta  realtids - främja ”EV-laddning + lokal förnybar elproduktion”-kopplingen med dynamisk prissättning. Ifall man gör P2P-handel möjligt, skulle blockchain också bli användbar för betalningar, medan införandet av blockchainbaserade betalningar konstaterades att inte vara genomförbart under den direktmarknadsföringsmodell som existerar idag. Det tredje användningsfallet innebär “självkonsumption”/”framme”-elmätaren, när PV / (vindkraftverk)-ägaren och EV-ägeren är samma person; så när hen laddar sin bil samtidigt med elploduktionen, skulle hen inte behöva betala för kilowattimmar och, beroende på distansen mellan de två elanslutningspunkterna, skulle hen därmed kunna få rabatt på elnätavgiften. För det här fallet konstaterades det att enligt den nuvarande direktmarknadsföringsmodellen, där aggregatorn och laddstationsleverantören tillhör samma företag, skulle ett sådant användningsfall tveklöst kunna genomföras på grund av gemensam bokföring. Ett sådant fall kan bli ett attraktivt erbjudande, särskilt för PV-ägare som inte får inmatningsavgiften. P2P-handelns slutsatser liknar det tidigare användningsfallet. För det andra och tredje användningsfället upptäcktes det att i den situationen då P2P-handel är möjlig, skulle EV-laddningen inte uppfylla "försäljningsbehovet" för producenter eftersom den inte är fullt förutsägbar. Därför måste urvalet av P2P-köpare utvidgas till stationära konsumenter; d.v.s. att bredda det föreslagna systemets funktionaliteter från bara EV-laddning till fullständig P2P-handel. Eftersom EV-laddningen skulle behöva göras i realtid, vara flexibel för laddningsförhållanden, uppfylls behov av flera andelsägare och att vara manipulationssäkert, föreslås distribuerad ledgerteknik (DLT) som implementeringsverktyg. Av två olika DLT, Ethereum och IOTA, drogs slutsatsen att teknikurvalet för att implementera det föreslagna systemet beror på implementeringstiden. Från och med idag ligger Ethereum i ett högre stadium i utvecklingen , vilket prioriterar Ethereum för omedelbar implementering. Samtidigt är IOTA en mycket lovande teknik i ett lägre löptidstillstånd. När de löser ett antal kontroversiella problem blir IOTA ett värdefullt verktyg.
Currently the European energy sector is undergoing a significant transition from a conventional centralized power supply to distributed renewable generation sources (DRES). Moreover, the target of decarbonisation is leading to an increase in numbers of electric vehicles (EVs). High penetration levels of both EVs and renewable generation on the distribution grid level without proper management cause an additional stress on the grid, that could lead to interruptions in the power supply and deterioration of power quality. In this thesis possibilities for tackling this problem were investigated in the German context. The proposed solution is a management system to couple EV charging and local renewable generation in real time. Three use cases were developed to assess this idea. The first use case, tenant electricity, is based on the new German regulation introduced in 2017 which encourages using PV electricity behind the meter in multi-apartment rental accommodation. In this case, adding an EV charging service would help the landlord achieve higher consumption levels during the sunshine hours when the regular tenants are at work, and get better remuneration. It was calculated that the payback period of an 11-kW charging station used together with a PV of 26 kWp would be approximately 5 years if the charging station is occupied 30-40% of the possible daylight time. In case installation of a charging station also serves other purposes, the tenant electricity model could become an additional revenue stream.  The other two cases are dependent on the possibility of introducing a “reduced grid fee”. Here it needs to be mentioned that bringing EVs to charge at the time and place of renewable generation should be incentivised. Currently in Germany electricity tariffs are flat, giving the driver no reason to switch his/her behaviour. A reduced grid fee could be one measure to encourage EV-DRES coupling; it could be granted by the DSO (distribution system operator) in case such a charging could help reducing congestion or avoiding curtailment. The second use case presents such a reduced grid fee for EV charging with local PV (photovoltaics) or wind, introducing dynamic pricing. This case would need local producers to sell electricity to local charging stations in a peer-to-peer (P2P) manner. Under current regulations, pure P2P trading is not possible; it would involve the need for local energy markets and additional balancing. What could be done, is direct marketing, performed by an aggregator. The usage of blockchain as a tool would be beneficial for both cases because it would enable real-time PV-DRES coupling with dynamic pricing. If P2P trading is made possible, blockchain would be also useful for payments, whereas introducing blockchain-based payments was not found feasible for the direct marketing model that exists today. The third use-case involves “self-consumption” in front of the meter, where the PV owner and the EV driver is the same person, so when charging at the same time of PV production, he/she would not need to pay for the kilowatt-hours and, depending on the distance between the two connection points, might get a discount on the grid fee. For this case it was found that under the current direct marketing model, where the aggregator and the charging station supplier would belong to the same company, such case could be easily implemented due to common accounting. Such a case could become an attractive offer especially for PV owners that do not receive the feed-in tariff. P2P trading implications are similar to the previous use-case. It was found out for the second and third use cases that in the situation when P2P trading is made possible, only EV charging would not satisfy the “selling need” for producers as it is not fully predictable. Therefore, the range of buyers need to be broadened to stationary consumers, which would mean expanding the proposed system’s functionality from EV charging to all the P2P trading. Since such charging would need to be made in real time, flexible for changing conditions, satisfying the needs of multiple parties and tamper proof, the distributed ledger technology (DLT) is proposed as the implementation tool. Out of different DLTs, Ethereum and IOTA, it was concluded that the choice of the technology to implement such a system depends on the implementation timing. As of today, Ethereum is at a higher maturity stage, giving it the priority for immediate implementation. At the same time, IOTA is a very promising technology at a lower maturity state; at the time they solve a number of controversial issues they have, the technology would be a valuable tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Singh, Viraj. "How can California Best Promote Electric Vehicle Adoption? The Effect of Public Charging Station Availability on EV Adoption." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/pomona_theses/204.

Повний текст джерела
Анотація:
To promote higher air quality and reduce greenhouse gas emissions, the Californian government is investing heavily in developing public charging infrastructure to meet its electric vehicle adoption goal of five million zero-emission vehicles on the road by 2030. This thesis investigates the effect of public charging infrastructure availability on electric vehicle adoption at the zip code level in California. The analysis considers other factors that may influence electric vehicle adoption such as education level, income, commute time, gas prices, and public transportation rate. The findings suggest that public charging infrastructure availability does significantly positively correlate with electric vehicle registrations. Linear regressions were run using data from the U.S Department of Energy Alternative Fuels Data Center, IHS Markit vehicle registration data, and the US Census Bureau. The findings support continued investment in public charging infrastructure as a means of promoting electric vehicle adoption.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Zhen. "INVESTIGATION OF CHARGING INFRASTRUCTURE FOR ELECTRIC VEHICLES : - A case study of Beijing." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263917.

Повний текст джерела
Анотація:
Promoting the use of electric vehicles (EVs) has become an important measure to solve the environmental issue in China. In Beijing, the number of EVs has increased rapidly during recent years. In parallel, an extensive charging infrastructure has been deployed. However, most charging infrastructure operators find it difficult to make a profit by only providing charging services due to the lack of a sound business model. This thesis aims to investigate the current status of charging infrastructure for electric vehicles in urban Beijing and the business models of Beijing’s main charging infrastructure operators. Furthermore, based on the empirical findings, the weaknesses in the business models are identified. Beijing was chosen as case study in which the three main operators were studied in order to identify their business models in terms of value proposition, value creation and value capture. Questionnaire and interview as data collection methods were used to collect qualitative data. The study has shown that owing to the market demand and governmental promotion, the charging infrastructure industry retains its rapid development in Beijing. Moreover, the study indicates that the EV users’ most important demands on the charging services are: safety, convenience, speed, and stability during charging. The services need to be delivered at a reasonable price, and this is the development orientation for the charging operators. The business models of the three main charging infrastructure operators are almost identical, as all of them both manufacture and deploy charging piles as well as deliver charging services. They create and capture value by providing charging piles and service as well as various services based on mobile apps. Furthermore, through the investigation and analysis of their business models, five weaknesses in the business model have been identified: the slow pace of technology adoption, high initial investment requirements, few revenue streams, high cost for both internal personnel and external contractors, and insufficient information from App/mobile platform.
Att främja användningen av elbilar har blivit en viktig åtgärd för att lösa miljöproblemet i Kina. I Peking har antalet elbilar ökat snabbt de senaste åren. Parallellt har en utbyggnad av laddningsinfrastruktur skett. De flesta laddningsinfrastrukturoperatörer har dock svårt att göra vinst genom att endast tillhandahålla laddningstjänster på grund av bristen på en sund affärsmodell. Denna avhandling syftar till att undersöka den nuvarande situationen för laddningsinfrastrukturen för elbilar i Peking samt affärsmodellerna hos Pekings främsta laddningsinfrastrukturoperatörer. Enligt de empiriska resultaten identifieras svagheterna i affärsmodellerna. Peking valdes som fallstudie där de tre huvudoperatörerna studerades för att identifiera deras affärsmodeller i fråga om värderbjudande, värdeskapande och värdefångst. Frågeformulär och intervju som datainsamlingsmetoder användes för att samla in kvalitativa data. Studien har visat att, på grund av efterfrågan på marknaden och statens främjande behåller laddningsinfrastrukturbranschen sin snabba utveckling i Peking. Dessutom visar studien att elbilanvändarnas viktigaste krav på laddningstjänsterna är: säkerhet, bekvämlighet, hastighet och stabilitet under laddning. Tjänsterna måste levereras till ett rimligt pris, och detta är utvecklingsorienteringen för laddningsoperatörerna. Affärsmodellerna för de tre huvudoperatörerna är nästan identiska, eftersom alla tillverkar och distribuerar laddstolpar samt levererar laddningstjänster. De skapar värde genom att tillhandahålla laddningspolar och service samt olika tjänster baserade på mobilapp. Vidare, har fem svagheter identifierats genom undersökningen och analysen av affärsmodellerna: den långsamma teknikspridningen, höga initiala investeringskrav, få inkomstströmmar och höga kostnader för både intern personal och externa entreprenörer samt otillräcklig information från app / mobil plattform.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lönnqvist, Malin. "Optimization of a charging system for electric vehicles : A case study in Magangué, Colombia." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281778.

Повний текст джерела
Анотація:
To reduce the emissions from the transport sector, the electric vehicle (EV) is a promising alternative to the internal combustion engine vehicle (ICEV). An important aspect of implementing new transport systems in terms of EVs is the charging strategy, as many energy sources with different limitations can be utilized. Although various studies have investigated charging strategies for electric cars, there is a lack of optimized charging strategies for electric boats with specific considerations for these cases. In Colombia, the river transport sector plays an important role in areas with lack of access to other transport alternatives. This study presents an optimization of the charging strategy for an electric boat that is planned to traffic the Magdalena River in the region of Magangué, Colombia. The objective of the optimization model is to minimize the electricity bill while maintaining a desired transport service. The study considers solar photovoltaics (PV), the electric grid and battery storage for charging, and compares different battery sizes in a scenario analysis. Furthermore, the impact of the instability of the grid is included in terms of a sensitivity analysis of grid blackouts, together with varying battery investment costs. The results show that PV is a recommended investment as it lowers the charging cost and gives positive results in terms of economic feasibility. To further increase the economic feasibility, lower the charging costs and improve the reliability of the system, it is suggested to invest in energy storage. The techno-economic feasibility of storage is heavily affected by battery investment costs and number of grid blackouts affecting the boat charging. If the investment cost is low and the number of blackouts is high, a large storage is a suggested solution.
För att minska utsläppen från transportsektorn är elfordon (EV) ett lovande alternativ till förbränningsmotorfordon (ICEV). En viktig aspekt vid implementering av nya transportsystem för EV:s är val av laddningsstrategi, eftersom många energikällor med olika begränsningar kan användas. Även om flertalet studier har undersökt laddningsstrategier för elbilar, saknas optimerade laddningsstrategier för elbåtar och som beaktar de specifika förhållandena för dessa fall. I Colombia spelar flodtransportsektorn en viktig roll i områden med brist på tillgång till andra transportalternativ. Denna studie presenterar en optimering av laddningsstrategin för en elbåt som är planerad att trafikera floden Magdalena i regionen Magangué, Colombia. Syftet med optimeringsmodellen är att minimera elräkningen samtidigt som en önskad transporttjänst bibehålls. Studien omfattar solceller (PV), elnätet och batterilagring för laddning, och jämför olika batteristorlekar i en scenarioanalys. Vidare inkluderas effekterna av elnätets instabilitet genom en känslighetsanalys av strömavbrott, tillsammans med varierande kostnader för batteriinvesteringar. Resultaten visar att PV är en rekommenderad investering eftersom den sänker laddningskostnaden och ger positiva resultat när det gäller ekonomisk lönsamhet. För att ytterligare öka den ekonomiska lönsamheten, sänka laddningskostnaderna och förbättra systemets tillförlitlighet föreslås det att investera i energilagring. Den teknisk-ekonomiska genomförbarheten för lagring påverkas starkt av kostnader för batteriinvesteringar och antalet strömavbrott som påverkar båtladdningen. Om investeringskostnaden är låg och antalet strömavbrott är högt är energilagring med stor kapacitet en föreslagen lösning.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Algvere, Caroline. "Designing Electric Vehicle Charging Station Information." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415168.

Повний текст джерела
Анотація:
The electric vehicle industry is under rapid development and the fleet of chargeable cars in society is increasing fast. As a result, a high demand for public chargers has emerged. Simultaneous to the expansion of the electric vehicle fleet and charging infrastructure the power grid is occasionally highly strained. Additionally, factors like cities expanding and the digitization of society also have a large effect on the power grid. This master's thesis investigates the characteristics of electric vehicle users and presents a prototype of an information display for electric vehicle charging stations. The design is is based on the user studies and founded in theory about sustainable user behaviour with the goal of encouraging behaviours that minimize the strain on the local power grid of Uppsala. It concerns the research topic of how to design for sustainable behaviour and address research questions of how to design electric vehicle charging station information to communicate multiple charging alternatives to a broad variety of users. The work reveals that electric vehicle users suffer from the charging infrastructure being underdeveloped, feel frustration towards payment solutions available and lack information regarding electric vehicle use. Also, electric vehicle user's common passion for tech and environmental consciousness are revealed in the study. These facts are used as the foundation for the mobile application design prototype suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hönninger, Jan. "Smart City concepts and their approach on sustainability, transportation and tourism – Waterborne transportation, an opportunity for sustainability?" Thesis, Umeå universitet, Institutionen för geografi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-182461.

Повний текст джерела
Анотація:
Due to urbanization and the population of cities producing up to 75% of emission, Smart City concepts, looking at sustainability and more efficiency within the city, with the help of IoT and ICT based technology, are seen as an opportunity to act future-oriented, today. Construction and transportation are seen as the main contributors on the way of change from energy consumption to energy production. Enhancing infrastructure to improve the quality of all sorts of public transportation is thus of utter importance to governance, interested in Smart City concepts. Looking at the literature, waterborne transportation has not received much scientific attention in the context of being implemented into Smart City initiatives. This systematic literature research draws logical conclusions from the researched literature. The research concludes with a research agenda for future research to deepen the knowledge in the explanatory field of waterborne transportation making use of Smart City technologies. The main findings of this thesis are: First, waterborne transportation poses a threat to the environment and impacts sustainability of water bodies, as well as the environment surrounding them. Second, Smart City technologies can successfully be implemented in waterborne transportation when carefully planned. Barriers for the implementation of Smart City concepts can be lack of knowledge, investment, data security and readiness of infrastructure. These can be overcome through the help of collaboration and knowledge sharing among the involved stakeholders. Third, the image of the industry can be shifted, as well as its direct impact and the indirect use of waterborne transportation can be made more sustainable and ecosystem friendly. This transition attracts further customers, who otherwise were not willing to use waterborne transportation. In order to make waterborne transportation more sustainable and part of the Smart City movement, knowledge needs to be deepened and awareness about the topic needs to be spread. Its use of Smart City technologies needs to be further investigated, looking at specific types and tailored solutions for them, as well as how beneficial such an investment can be for governments and companies regarding ecological costs and their image. This thesis mainly aims to help scholars, interested in further research to deepen the knowledge on waterborne transportation in a sustainability context, but also companies and governance, looking to make waterborne transportation more sustainable.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "EV INFRASTRUCTURE"

1

van den Broek, Fabian, Erik Poll, and Bárbara Vieira. "Securing the Information Infrastructure for EV Charging." In Wireless and Satellite Systems, 61–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25479-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gupta, Rudraksh S., Arjun Tyagi, and Sanjeev Anand. "Optimal Planning of EV Charging Infrastructure in Distribution System." In Lecture Notes in Electrical Engineering, 657–67. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0969-8_69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bolduc, April. "Trends in Electric Vehicles, Distribution Systems, EV Charging Infrastructure, and Microgrids." In Electric Vehicle Integration in a Smart Microgrid Environment, 1–6. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Janbein, Taleb, Erik Hoevenaars, Thomas Weil, and Bernd Bohnet. "SkELInG – Scalable EV charging system with central infrastructure and DC distribution grid." In Proceedings, 533–42. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29943-9_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sendek-Matysiak, Ewelina. "The Condition of EV Infrastructure in the World - Analysis for Years 2005–2016." In Lecture Notes in Networks and Systems, 55–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98615-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rather, Zeeshan Hayaat, Sheikh Safiullah, Asadur Rahman, and Shameem Ahmad Lone. "Technical Feasibility of EV Infrastructure with Renewable Power Integration: A Case Study at NIT Srinagar." In Intelligent Manufacturing and Energy Sustainability, 441–49. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8497-6_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barauskas, Andrius, Agnė Brilingaitė, Linas Bukauskas, Vaida Čeikutė, Alminas Čivilis, and Simonas Šaltenis. "Semi-synthetic Data and Testbed for Long-Distance E-Vehicle Routing." In New Trends in Database and Information Systems, 61–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85082-1_6.

Повний текст джерела
Анотація:
AbstractElectric and autonomous mobility will increasingly rely on advanced route planning algorithms. Robust testing of these algorithms is dependent on the availability of large realistic data sets. Such data sets should capture realistic time-varying traffic patterns and corresponding travel-time and energy-use predictions. Ideally, time-varying availability of charging infrastructure and vehicle-specific charging-power curves should be included in the data to support advanced planning.We contribute with a modular testbed architecture including a semi-synthetic data generator that uses a state-of-the-art traffic simulator, real traffic distribution patterns, EV-specific data, and elevation data to generate time-dependent travel-time and energy-use weights in a road-network graph. The experimental study demonstrates that the testbed can reproduce travel-time and energy-use patterns for long-distance trips similar to commercially available services.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuhn, Marc, Caroline Stern, Vanessa Reit, and Benjamin Österle. "Special Session: Killing Two Birds with One Stone: “All that Glitters is not Gold”: Performance of EV-Charging Infrastructure from a European User Perspective: An Abstract." In Developments in Marketing Science: Proceedings of the Academy of Marketing Science, 117–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89883-0_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jarvis, Padraigh, Laura Climent, and Alejandro Arbelaez. "Smart and Sustainable Scheduling of Charging Events for Electric Buses." In Springer Proceedings in Political Science and International Relations, 121–29. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-18161-0_8.

Повний текст джерела
Анотація:
AbstractThe Irish transportation sector currently accounts for more than 30% of the energy related CO2 emissions of the country. Therefore, in order to reach the sustainable goals, the Irish government is working on multiple incentives to promote Electric Vehicles (EV) and infrastructure to decarbonize the sector, e.g., free domestic charging points, tool reductions, and the implementation of electric Buses (eBuses) in the medium to long term. In particular, eBuses operate with rechargeable batteries with a capacity to store approximately 300 kWh (and up to 600 kWh), equivalent to around 29.9 L of diesel, while reaching approx. 200 km. In order to ensure a proper transition from regular diesel buses to eBuses, charging times must be coordinated to ensure each bus has adequate energy to complete their operational route. In this work, we present a framework for an efficient management of renewable energies to charge a fleet of eBuses without perturbing the quality of service. Our framework starts by building a deep learning model for wind power forecasting to predict clean energy time windows, i.e., periods of time when the production of clean energy exceeds the demand of the country. Then, the optimization phase schedules charging events to reduce the use of non-clean energy to recharge eBuses while passengers are embarking or disembarking. The proposed framework is capable of overcoming the unstable and chaotic nature of wind power generation to operate the fleet without perturbing the quality of service. As expected, the size of the batteries does have a positive impact on the percentage of clean energy required to operate large fleets of eBuses. Methods developed in this paper help to mitigate potentially inaccuracies derived the prediction models. Our extensive empirical validation with real instances from Ireland suggests that our solutions can significantly reduce non-clean energy consumed on large datasets.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nakarmi, Upama, and Mahshid Rahnamay-Naeini. "An Influence-Based Model for Smart City’s Interdependent Infrastructures: Application in Pricing Design for EV Charging Infrastructures." In Communications in Computer and Information Science, 111–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02907-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "EV INFRASTRUCTURE"

1

Nicolae, Badea, and Badea George Vlad. "Low Emission Infrastructure for Powered EVs." In 2019 Electric Vehicles International Conference (EV). IEEE, 2019. http://dx.doi.org/10.1109/ev.2019.8893135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O'Connell, Lawrence G. "Developing the EV Charging Infrastructure." In Alternative Fuels Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/952769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dhianeshwar, Anitha, Prabhjot Kaur, and Sreehari Nagarajan. "EV: Communication Infrastructure Management System." In 2016 First International Conference on Sustainable Green Buildings and Communities (SGBC). IEEE, 2016. http://dx.doi.org/10.1109/sgbc.2016.7936090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hashmi, Md U., M. Meraj Alam, O. L. V. Ramarozatovo, and M. Shadab Alam. "WEcharge: democratizing EV charging infrastructure." In CIRED Porto Workshop 2022: E-mobility and power distribution systems. Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.0871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Paganini, Fernando, Emiliano Espindola, Diego Marvid, and Andres Ferragut. "Optimization of spatial infrastructure for EV charging." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9993162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schwarz, T. M., J. Maasmann, J. Hiry, and C. Rehtanz. "LOAD PREDICTION TOOL FOR EV CHARGING INFRASTRUCTURE." In CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.2168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karkaria, Vispi Nevile, Ankur Karnadikar, Sarang Joshi, S. B. Abrish Aaditya, and P. B. Karandikar. "EV Charging Infrastructure Development Using Machine Learning." In 2023 4th International Conference for Emerging Technology (INCET). IEEE, 2023. http://dx.doi.org/10.1109/incet57972.2023.10170627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Palaniappan, Arul, Purnima Bhukya, Sai Kiran Chitti, and Jerry Gao. "Data-Driven Analysis of EV Energy Prediction and Planning of EV Charging Infrastructure." In 2023 IEEE Ninth International Conference on Big Data Computing Service and Applications (BigDataService). IEEE, 2023. http://dx.doi.org/10.1109/bigdataservice58306.2023.00009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, T., E. E. F. Ballantyne, and D. A. Stone. "Fully integrated EV energy storage using transport infrastructure." In 2019 International Conference on Clean Electrical Power (ICCEP). IEEE, 2019. http://dx.doi.org/10.1109/iccep.2019.8890133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Hyung-Joon, Jae-won Jung, Ankhzaya Baatarbileg, Tae-hyung Kim, Kyu-ho Park, and Gae-myung Lee. "Study on EV charging infrastructure in Jeju Island." In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA). IEEE, 2018. http://dx.doi.org/10.1109/icrega.2018.8337572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "EV INFRASTRUCTURE"

1

Karner, Donald, Thomas Garetson, and Jim Francfort. EV Charging Infrastructure Roadmap. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1369380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Elgqvist, Emma M., and Josiah Pohl. Evaluating Utility Costs Savings for EV Charging Infrastructure. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1573965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

O'Neil, Lori Ross, Thomas Carroll, Entesar Abdelhadi, Mark Watson, Carol Hammer, and Maria Psarakis. Sample Cybersecurity Clauses for EV Charging Infrastructure Procurements. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1994508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

O'Neil, Lori Ross, Thomas Carroll, Entesar Abdelhadi, Mark Watson, Carol Hammer, and Maria Psarakis. Sample Cybersecurity Clauses for EV Charging Infrastructure Procurements. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1994508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yusgiantoro, Luky A., Akhmad Hanan, Budi P. Sunariyanto, and Mayora B. Swastika. Mapping Indonesia’s EV Potential in Global EV Supply Chain. Purnomo Yusgiantoro Center, June 2021. http://dx.doi.org/10.33116/br.004.

Повний текст джерела
Анотація:
• Energy transition in the transportation sector is indicated by the gradual shifting from the use of internal combustion engine (ICE) vehicles to electric vehicles (EVs) globally. • The transportation sector consumed 43% of total global energy and emitted 16.2% of total global emissions in 2020. Similarly, the transportation sector in Indonesia consumed 45% of the total energy and contributed to 13.6% of CO2 emission in 2019. • Global EV development and utilization are increasing exponentially, especially in developed countries, and there were 10 million EVs in 2020 worldwide. • China has successfully dominated global EVs, both in EV utilization and manufacturing with 45% global EVs Stock and 77% global EV batteries production. • Geopolitically, the abundance of Indonesian nickel reserves provides Indonesia a great opportunity to be one of the main players in EV battery manufacturing. • With an annual average growth of 6%, the projected motorized vehicles growth in Indonesia will reach 214 million in 2030. The right government policies would make Indonesia become the Southeast Asia EV market hub as Indonesia has the largest automotive sales and production market among ASEAN countries. • Measurable and realistic national EV development targets and plans supported by executing policies such as fiscal incentives and hardware standardization, sufficient EV charging infrastructure, and other supporting infrastructures are key elements that drive successful EV development in several countries. • Insufficient domestic industries and technology, and the absence of policies that comprehensively cover the customers and producers directly to support EV development and utilization in Indonesia, resulting in the achieved number of EVs and EV infrastructures in Indonesia are far from the updated target or even the initial target (RUEN, 2017).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Yu, and Hen-Geul Yeh. Electrical Vehicle Charging Infrastructure Design and Operations. Mineta Transportation Institute, July 2023. http://dx.doi.org/10.31979/mti.2023.2240.

Повний текст джерела
Анотація:
California aims to achieve five million zero-emission vehicles (ZEVs) on the road by 2030 and 250,000 electrical vehicle (EV) charging stations by 2025. To reduce barriers in this process, the research team developed a simulation-based system for EV charging infrastructure design and operations. The increasing power demand due to the growing EV market requires advanced charging infrastructures and operating strategies. This study will deliver two modules in charging station design and operations, including a vehicle charging schedule and an infrastructure planning module for the solar-powered charging station. The objectives are to increase customers’ satisfaction, reduce the power grid burden, and maximize the profitability of charging stations using state-of-the-art global optimization techniques, machine-learning-based solar power prediction, and model predictive control (MPC). The proposed research has broad societal impacts and significant intellectual merits. First, it meets the demand for green transportation by increasing the number of EV users and reducing the transportation sector’s impacts on climate change. Second, an optimal scheduling tool enables fast charging of EVs and thus improves the mobility of passengers. Third, the designed planning tools enable an optimal design of charging stations equipped with a solar panel and battery energy storage system (BESS) to benefit nationwide transportation system development.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ai, Ning. Integrated Approaches to EV Charging Infrastructure and Transit System Planning. Tampa, FL: University of South Florida, July 2016. http://dx.doi.org/10.5038/cutr-nctr-rr-2016-06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Konstantinou, Theodora, Donghui Chen, Konstantinos Flaris, Kyubyung Kang, Dan Daehyun Koo, Jonathon Sinton, Konstantina Gkritza, and Samuel Labi. A Strategic Assessment of Needs and Opportunities for the Wider Adoption of Electric Vehicles in Indiana. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317376.

Повний текст джерела
Анотація:
The primary objective of this study was to assess the challenges and opportunities associated with the provision of appropriate infrastructure to support electric vehicle (EV) operations and electrification across Indiana. A secondary objective of this study was to develop a strategic plan for INDOT that outlines new business opportunities for developing EV charging stations. To achieve these objectives, the project team assessed current and emerging trends in EV operations, particularly EV charging infrastructure and EV demand forecasting. They also examined opportunities for the strategic deployment of EV charging stations by identifying EV infrastructure deficit areas; investigated the impact of EV adoption on highway revenue and the feasibility of new revenue structures; and evaluated strategic partnerships and business models. The agent-based simulation model developed for future long distance EV trip scenarios enables INDOT to identify EV energy deficient areas for current and future energy charging demand scenarios, and it can support Indiana’s strategic plans for EV charging infrastructure development. The results of the revenue impact analysis can inform INDOT’s revenue model. The estimations of the recovery EV fee, the VMT fee, and pay-as-you-charge fee that break-even the fuel tax revenue loss can be used by INDOT in pilot programs to capture users’ perspectives and estimate appropriate fee rates and structures. The insights obtained from the stakeholder interviews can be used to enhance preparedness for increasing EV adoption rates across vehicle classes and to strengthen the engagement of different entities in the provision of charging infrastructure.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Borlaug, Brennan, Eric Wood, Matt Moniot, D. Y. Lee, Yanbo Ge, Fan Yang, and Zhaocai Liu. Modeling U.S. Light-Duty Demand for EV Charging Infrastructure in 2030. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1992645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ju, Ha Kyun, Tae Rim Kim, Kyubyung Kang, Dan Daehyun Koo, Konstantina Gkritza, and Samuel Labi. A Strategic Assessment of Needs and Opportunities for the Wider Adoption of Electric Vehicles in Indiana. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317590.

Повний текст джерела
Анотація:
INDOT plans to invest nearly $100 million to build a statewide electric vehicle (EV) charging network as part of the National Electric Vehicle Infrastructure Formula Program. SPR-4509 Phase-I identified energy EV charging deserts in Indiana for long-distance trips. SPR-4509 Phase-II further examines the charging stations' impact on EV long-distance trips in Indiana. Using an agent-based simulation model, the number of charges, vehicle miles traveled, energy used during the trip, and energy used during charging were estimated for nine different cases. High EV daily charging demand areas in Indiana were shown in ArcGIS based on multiple scenarios of different charging station construction phases and EV market penetration rates. The study findings can inform the state’s EV charging plan development.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії