Статті в журналах з теми "Ethylene Systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Ethylene Systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Ethylene Systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zemlyanskaya, Elena V., Nadya A. Omelyanchuk, Elena V. Ubogoeva, and Victoria V. Mironova. "Deciphering Auxin-Ethylene Crosstalk at a Systems Level." International Journal of Molecular Sciences 19, no. 12 (December 14, 2018): 4060. http://dx.doi.org/10.3390/ijms19124060.

Повний текст джерела
Анотація:
The auxin and ethylene pathways cooperatively regulate a variety of developmental processes in plants. Growth responses to ethylene are largely dependent on auxin, the key regulator of plant morphogenesis. Auxin, in turn, is capable of inducing ethylene biosynthesis and signaling, making the interaction of these hormones reciprocal. Recent studies discovered a number of molecular events underlying auxin-ethylene crosstalk. In this review, we summarize the results of fine-scale and large-scale experiments on the interactions between the auxin and ethylene pathways in Arabidopsis. We integrate knowledge on molecular crosstalk events, their tissue specificity, and associated phenotypic responses to decipher the crosstalk mechanisms at a systems level. We also discuss the prospects of applying systems biology approaches to study the mechanisms of crosstalk between plant hormones.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gubrium, E. K., D. G. Clark, H. J. Klee, T. A. Nell, and J. E. Barrett. "Analysis of Horticultural Performance of Ethylene-insensitive Petunias and Tomatoes." HortScience 32, no. 3 (June 1997): 499D—499. http://dx.doi.org/10.21273/hortsci.32.3.499d.

Повний текст джерела
Анотація:
We are studying the horticultural performance of two model plant systems that carry a mutant gene that confers ethylene-insensitivity: Never Ripe tomatoes and petunia plants transformed with the mutant etr1-1 gene isolated from Arabidopsis thaliana. Having two model systems to compare side-by-side allows us to determine with greater certainty ethylene's role at different developmental stages. Presence of the mutant etr1-1 gene in transgenic petunias was determined using three techniques: PCR analysis, the seedling triple response assay (inhibition of stem elongation, radial swelling of stem and roots, and an exaggerated apical hook when grown in the dark and in the presence of ethylene), and the flower wilting response to pollination, which is known to be induced by ethylene. Flowers from ethylene-insensitive petunias took almost four times as long to wilt after pollination as wild-type plants. It is well known that fruit ripening in Never Ripe tomato is inhibited, and a similar delayed fruit ripening phenotype is observed in petunia plants transformed with etr1-1. In an effort to maintain ethylene-insensitive petunia plants by vegetative propagation, we observed that the rate of adventitious root formation was much lower with transgenic plants than in wild-type plants. In subsequent experiments on adventitious root formation in Never Ripe tomato, we observed the same result. Therefore, while ethylene-insensitive tomato and petunia plants appear phenotypically normal for many characters, other factors are altered by the presence of this mutation. The fact that these changes are present in two model systems helps to define the role of ethylene perception in plant growth and reproduction.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Faingol'd, E. E., S. L. Saratovskikh, A. N. Panin, O. N. Babkina, I. V. Zharkov, N. O. Garifullin, G. V. Shilov, and N. M. Bravaya. "Ethylene/propylene and ethylene/propylene/5-ethylidene-2-norbornene copolymerizations on metallocene/(2,6-tBu2PhO-)AliBu2 catalyst systems." Polymer 220 (April 2021): 123559. http://dx.doi.org/10.1016/j.polymer.2021.123559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Samuel, T., and G. S. Laddha. "The ternary systems with ethylene glycol." Journal of Applied Chemistry 9, no. 4 (May 4, 2007): 246–48. http://dx.doi.org/10.1002/jctb.5010090409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hernández, Luis González, Andrés Rodríguez Díaz, and Juan Luis de Benito González. "Different Curing Systems for Ethylene-Propylene Elastomers." Rubber Chemistry and Technology 65, no. 5 (November 1, 1992): 869–78. http://dx.doi.org/10.5254/1.3538647.

Повний текст джерела
Анотація:
Abstract The scope of this paper is to review peroxide curing of ethylene-propylene elastomers, where apart from crosslinking, other reactions occur, such as chain scission, which account for the drop in physical properties. The results are compared with an alternative crosslinking system which is being assessed in our laboratory. With the new curing agent the chain-scission reaction is not present and the physical properties of the vulcanizates are improved. The effects of the different crosslinking systems on the reaction transitions are studied with the aid of dynamic mechanical analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hammouda, B., D. Ho, and S. Kline. "SANS from Poly(ethylene oxide)/Water Systems." Macromolecules 35, no. 22 (October 2002): 8578–85. http://dx.doi.org/10.1021/ma011657n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GRAY, F., J. MACCALLUM, and C. VINCENT. "Poly(ethylene oxide) - LiCF3SO3 - polystyrene electrolyte systems." Solid State Ionics 18-19 (January 1986): 282–86. http://dx.doi.org/10.1016/0167-2738(86)90127-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xiao, Min, and Margaret W. Frey. "Study of cellulose/ethylene diamine/salt systems." Cellulose 16, no. 3 (February 28, 2009): 381–91. http://dx.doi.org/10.1007/s10570-009-9284-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bogdanov, B., and M. Mihailov. "Melting of water/poly(ethylene oxide) systems." Journal of Polymer Science: Polymer Physics Edition 23, no. 10 (October 1985): 2149–58. http://dx.doi.org/10.1002/pol.1985.180231011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Michiels, Wilfried, and Antonio Muñoz-Escalona. "Mixed cocatalyst systems in metallocene ethylene polymerization." Macromolecular Symposia 97, no. 1 (July 1995): 171–83. http://dx.doi.org/10.1002/masy.19950970118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Britton, Laurence G. "Loss case histories in pressurized ethylene systems." Process Safety Progress 13, no. 3 (July 1994): 128–38. http://dx.doi.org/10.1002/prs.680130305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

de Loos, Th W., W. Poot, and J. de Swaan Arons. "Fluid phase equilibria in the binary systems ethylene + n-triacontane and ethylene + squalane." Fluid Phase Equilibria 29 (October 1986): 505–14. http://dx.doi.org/10.1016/0378-3812(86)85049-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Janssen, S., K. Schmitt, M. Blanke, M. L. Bauersfeld, J. Wöllenstein, and W. Lang. "Ethylene detection in fruit supply chains." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2017 (June 13, 2014): 20130311. http://dx.doi.org/10.1098/rsta.2013.0311.

Повний текст джерела
Анотація:
Ethylene is a gaseous ripening phytohormone of fruits and plants. Presently, ethylene is primarily measured with stationary equipment in laboratories. Applying in situ measurement at the point of natural ethylene generation has been hampered by the lack of portable units designed to detect ethylene at necessary resolutions of a few parts per billion. Moreover, high humidity inside controlled atmosphere stores or containers complicates the realization of gas sensing systems that are sufficiently sensitive, reliable, robust and cost efficient. In particular, three measurement principles have shown promising potential for fruit supply chains and were used to develop independent mobile devices: non-dispersive infrared spectroscopy, miniaturized gas chromatography and electrochemical measurement. In this paper, the measurement systems for ethylene are compared with regard to the needs in fruit logistics; i.e. sensitivity, selectivity, long-term stability, facilitation of automated measurement and suitability for mobile application. Resolutions of 20–10 ppb can be achieved in mobile applications with state-of-the-art equipment, operating with the three methods described in the following. The prices of these systems are in a range below €10 000.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Soares, Caroline Giacomelli, Samira Bernardino Ramos do Prado, Sónia C. S. Andrade, and João Paulo Fabi. "Systems Biology Applied to the Study of Papaya Fruit Ripening: The Influence of Ethylene on Pulp Softening." Cells 10, no. 9 (September 7, 2021): 2339. http://dx.doi.org/10.3390/cells10092339.

Повний текст джерела
Анотація:
Papaya is a fleshy fruit that undergoes fast ethylene-induced modifications. The fruit becomes edible, but the fast pulp softening is the main factor that limits the post-harvest period. Papaya fast pulp softening occurs due to cell wall disassembling coordinated by ethylene triggering that massively expresses pectinases. In this work, RNA-seq analysis of ethylene-treated and non-treated papayas enabled a wide transcriptome overview that indicated the role of ethylene during ripening at the gene expression level. Several families of transcription factors (AP2/ERF, NAC, and MADS-box) were differentially expressed. ACO, ACS, and SAM-Mtase genes were upregulated, indicating a high rate of ethylene biosynthesis after ethylene treatment. The correlation among gene expression and physiological data demonstrated ethylene treatment can indeed simulate ripening, and regulation of changes in fruit color, aroma, and flavor could be attributed to the coordinated expression of several related genes. Especially about pulp firmness, the identification of 157 expressed genes related to cell wall metabolism demonstrated that pulp softening is accomplished by a coordinated action of several different cell wall-related enzymes. The mechanism is different from other commercially important fruits, such as strawberry, tomato, kiwifruit, and apple. The observed behavior of this new transcriptomic data confirms ethylene triggering is the main event that elicits fast pulp softening in papayas.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kanimoli, S., and K. Kumar. "Studies on nitrogenase activity of diazotrophic isolates from different rice production systems." Journal of Applied and Natural Science 8, no. 1 (March 1, 2016): 284–89. http://dx.doi.org/10.31018/jans.v8i1.787.

Повний текст джерела
Анотація:
The present study was carried out to evaluate the nitrogen fixing ability of diazotrophs isolated from the rhizosphere soils of rice which were grown in three different rice growing systems. A total of hundred and ten isolates obtained were subjected to Acetylene Reduction Assay (ARA) and ninety eight isolates recorded significant amount of nitrogenase activity in a range of 185.73 to 3794.55 nmoles of ethylene mg of protein-1 h-1. The highest nitrogenase activity was recorded by Derxia (3794.55 nmoles of ethylene mg of protein-1 h-1) isolated from Trichy (lowland). Among the three different rice production systems, isolates obtained from lowland rice (Derxia – 3794.5 nmoles of ethylene mg of protein-1 h-1) recorded higher nitrogenase activity followed by Aerobic (Pseudomonas - 2194.89 nmoles of ethylene mg of protein-1 h-1) and SRI (Azotobacter - 1971.85 nmoles of ethylene mg of protein-1 h-1) rice isolates. The results revealed marked variation in the ARA of the diazotrophic isolates obtained from lowland, SRI and Aerobic rice. The nitrogenase activity of diazotrophs from rice fields have been reported earlier but the nitrogenase activity of diazotrophs from three different rice production systems from various parts of Tamil Nadu is reported for the first time from India.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zhang, L. W., G. J. Chen, C. Y. Sun, S. S. Fan, Y. M. Ding, X. L. Wang, and L. Y. Yang. "The partition coefficients of ethylene between hydrate and vapor for methane + ethylene + water and methane + ethylene + SDS + water systems." Chemical Engineering Science 60, no. 19 (September 2005): 5356–62. http://dx.doi.org/10.1016/j.ces.2005.05.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Huddleston, Jonathan G., Terita K. Looney, Grant A. Broker, Scott T. Griffin, Scott K. Spear, and Robin D. Rogers. "Comparative Behavior of Poly(ethylene glycol) Hydrogels and Poly(ethylene glycol) Aqueous Biphasic Systems." Industrial & Engineering Chemistry Research 42, no. 24 (November 2003): 6088–95. http://dx.doi.org/10.1021/ie030351x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Khamiyev, M. J. "Zr-BASED HETEROGENİZED CATALYTİC SYSTEMS FOR OLİGOMERİZATİON OF ETHYLENE TO OLEFİNS AND OİL FRACTİONS." Azerbaijan Chemical Journal, no. 4 (December 12, 2019): 105–14. http://dx.doi.org/10.32737/0005-2531-2019-4-105-114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Esteban, Jesús, Miguel Ladero, and Félix García-Ochoa. "Liquid–liquid equilibria for the systems ethylene carbonate + ethylene glycol + glycerol; ethylene carbonate + glycerol carbonate + glycerol and ethylene carbonate + ethylene glycol + glycerol carbonate + glycerol at catalytic reacting temperatures." Chemical Engineering Research and Design 94 (February 2015): 440–48. http://dx.doi.org/10.1016/j.cherd.2014.08.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Burns, Jacqueline K. "1-Methylcyclopropene Applications in Preharvest Systems: Focus on Citrus." HortScience 43, no. 1 (February 2008): 112–14. http://dx.doi.org/10.21273/hortsci.43.1.112.

Повний текст джерела
Анотація:
1-Methylcyclopropene (1-MCP) is a gaseous ethylene-binding inhibitor used to control or delay ethylene-related postharvest effects in a range of horticultural commodities. The potential for preharvest applications of 1-MCP to prevent unwanted defoliation using ethephon to loosen mature citrus fruit is presented. Although there was no difference in mature fruit loosening by ethephon + 1-MCP treatments, 1-MCP reduced defoliation caused by ethephon. The gaseous nature of 1-MCP is an impediment to uniform application and consistent efficacy. A sprayable 1-MCP formulation would be of great value for preharvest use in many horticultural crops.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Golden, K. D., and O. J. Williams. "Ethylene Oxide in Plant Biological Systems: A Review." Asian Journal of Biological Sciences 7, no. 4 (June 15, 2014): 144–50. http://dx.doi.org/10.3923/ajbs.2014.144.150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Krasilnikov, V. N., V. V. Antsygina, and G. V. Bazuev. "Glycolic alcoholates formation in MmCuOn-ethylene glycol systems." Materials Research Bulletin 31, no. 5 (May 1996): 565–72. http://dx.doi.org/10.1016/s0025-5408(96)00030-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hatakeyma, Tatsuko, Hazuki Kasuga, Masaru Tanaka, and Hyoe Hatakeyama. "Cold crystallization of poly(ethylene glycol)–water systems." Thermochimica Acta 465, no. 1-2 (December 2007): 59–66. http://dx.doi.org/10.1016/j.tca.2007.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

McGinnis, B. "Degradation of ethylene glycol in photo Fenton systems." Water Research 34, no. 8 (June 2000): 2346–54. http://dx.doi.org/10.1016/s0043-1354(99)00387-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

McKenna, Timothy F. "Solubility and crystallinity data for ethylene/polyethylene systems." European Polymer Journal 34, no. 9 (September 1998): 1255–60. http://dx.doi.org/10.1016/s0014-3057(97)00251-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Pragliola, Stefania, Chiara Costabile, and Vincenzo Venditto. "Ethylene/1,3-butadiene cyclocopolymerization catalyzed by zirconocene systems." European Polymer Journal 58 (September 2014): 157–63. http://dx.doi.org/10.1016/j.eurpolymj.2014.06.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hachiya, N., Y. Birukawa, T. H. Quan, and Y. Takizawa. "Genotoxicity of ethylene dibromide in different assay systems." Mutation Research/Environmental Mutagenesis and Related Subjects 272, no. 3 (December 1992): 255. http://dx.doi.org/10.1016/0165-1161(92)91552-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Reddy, S. "Homogeneous metallocene-methylaluminoxane catalyst systems for ethylene polymerization." Progress in Polymer Science 20, no. 2 (1995): 309–67. http://dx.doi.org/10.1016/0079-6700(94)00035-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Justino, Jorge, A. Romão Dias, José Ascenso, Maria M. Marques, and Peter J. T. Tait. "Polymerization of ethylene using metallocene and aluminoxane systems." Polymer International 44, no. 4 (December 1997): 407–12. http://dx.doi.org/10.1002/(sici)1097-0126(199712)44:4<407::aid-pi844>3.0.co;2-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Özdemir, Cemile, and Ali Güner. "Solution thermodynamics of poly(ethylene glycol)/water systems." Journal of Applied Polymer Science 101, no. 1 (2006): 203–16. http://dx.doi.org/10.1002/app.23191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Panayotov, Ivan M., Nadya Belcheva, Rayna Stamenova, Christo Tsvetanov, Nikolai Lambov, Stanislav Tsankov, and Johannes Smid. "Crosslinked poly(ethylene oxide) for drug release systems." Macromolecular Symposia 103, no. 1 (January 1996): 193–211. http://dx.doi.org/10.1002/masy.19961030119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Katla, Venkataramana, Shizhen Du, Carl Redshaw, and Wen-Hua Sun. "Chromium Complex Pre-Catalysts in Ethylene Oligomerization/Polymerization." Review of Catalysts 1, no. 1 (March 20, 2014): 1–14. http://dx.doi.org/10.18488/journal.96.2014.11.1.14.

Повний текст джерела
Анотація:
Recent progress of chromium complex pre-catalysts in ethylene oligomerization and polymerization is reviewed herein. As well as the well-established trimerization of ethylene by chromium catalytic systems, such pre-catalysts have more generally been explored for ethylene oligomerization. Furthermore, chromium complex pre-catalysts have been found to exhibit high activity during ethylene polymerization. The catalytic activities can be influenced by the nature of ligands present, which can provide useful knowledge in determining structure-activity relationships. This review provides collective references concerned with the design of complex pre-catalysts with a view to ethylene reactivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Babenko, Ilya A., Viktor A. Bezborodov, and Alexey I. Vilms. "CATALYTIC CONVERSION OF ETHYLENE ON SYSTEMS BASED ON THRICHLOROTRIS-(TETRAHYDROFURANATE)CHROMIUM(III) WITH SOS-TYPE LIGANDS IN COMBINATION WITH VARIOUS ORGANOALUMINUM COCATALYSTS." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 64, no. 4 (April 11, 2021): 85–91. http://dx.doi.org/10.6060/ivkkt.20216404.6333.

Повний текст джерела
Анотація:
This work presents the results of studying the behavior of catalytic systems formed on the basis of trichlorotris-(tetrahydrofuranate)chromium(III) in the presence of sulfur-containing tridentate SOS-type ligands and activated by various organoaluminum compounds. In the formation of catalytic systems, the following compounds were used: SOS-type ligands - bis-(2-methylthioethyl) ether, bis-(2-ethylthioethyl) ether and bis-(2-phenylthioethyl) ether, organoaluminum compounds - triethylaluminum, triisobutylaluminum, tributylaluminum and methylaluminoxane. In the course of test experiments aimed at choosing an activator at a temperature of 40 °C and an ethylene pressure of 2 MPa, the best results were obtained for triethylaluminum. Therefore, further experiments on the catalytic conversion of ethylene were carried out only with this activator. To study the effect of the reaction temperature and ethylene pressure in the reaction zone, catalytic systems of the trichlorotris-(tetrahydrofuranate)chromium(III)/ligand/triethylaluminum composition were studied in the temperature range from 40 to 80 °C and an ethylene pressure of 2 - 3 MPa with a molar ratio of components Cr : L : AlEt3 = 1 : 1 : 20. As a result of studies, it was shown that in all cases when using tridentate ligands of the SOS type, the catalytic systems formed by us showed a tendency not only to polymerization, but also to oligomerization of ethylene. The best results in the field of ethylene oligomerization into hexenes were shown by the system of the composition trichlorotris-(tetrahydrofuranate)chromium(III) / bis-(2-methylthioethyl) ether/triethylaluminum, in which the content of the hexene fraction is 54 - 55 wt.%, while the selectivity to hexene-1 reaches 88 - 89%.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Clark, David G., and Kathleen B. Evensen. "347 ETHYLENE-INDUCED GENE EXPRESSION DURING FLOWER PETAL ABSCISSION OF ZONAL GERANIUM." HortScience 29, no. 5 (May 1994): 480d—480. http://dx.doi.org/10.21273/hortsci.29.5.480d.

Повний текст джерела
Анотація:
Ethylene-regulated gene expression is being studied in several plant systems, but the exact mechanism of ethylene action during plant development and senescence is poorly understood. When geranium (Pelargonium Xhortorum) flowers are exposed to 1 μ1/L of ethylene gas for 1 hour, petals begin to abscise within 60-90 minutes from the start of treatment, The rapidity of the response implies that it must be very direct. We now demonstrate that ethylene acts at the level of message accumulation. We have constructed a cDNA library from mRNA isolated from ethylene-treated geranium gynoecia. Ethylene-induced clones have been isolated by differential screening of this library with cDNA probes synthesized from ethylene-treated and untreated geranium gynoecia mRNA. Identification and characterization of these clones will be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zhao, Liang, Weimin Zhong, and Wenli Du. "Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty." Processes 7, no. 10 (October 15, 2019): 744. http://dx.doi.org/10.3390/pr7100744.

Повний текст джерела
Анотація:
In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is a powerful tool to bring benefits and save energy for ethylene plants. However, the uncertainty of device efficiencies and the fluctuation of the process demands cause great difficulties to traditional mathematical programming methods, which could result in suboptimal or infeasible solution. The growing data-driven optimization approaches offer new techniques to eliminate uncertainty in the process system engineering community. A data-driven robust optimization (DDRO) methodology is proposed to deal with uncertainty in the optimization of steam system in an ethylene plant. A hybrid model of extraction–exhausting steam turbine is developed, and its coefficients are considered as uncertain parameters. A deterministic mixed integer linear programming model of the steam system is formulated based on the model of the components to minimize the operating cost of the ethylene plant. The uncertain parameter set of the proposed model is derived from the historical data, and the Dirichlet process mixture model is employed to capture the features for the construction of the uncertainty set. In combination with the derived uncertainty set, a data-driven conic quadratic mixed-integer programming model is reformulated for the optimization of the steam system under uncertainty. An actual case study is utilized to validate the performance of the proposed DDRO method.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Musaev, Sayfullo, and Gulnoz Samiyeva. "Study of the morphology of shoe sole composites based on domestic suspension polyvinyl chloride and ethylene-vinyl acetate copolymer." E3S Web of Conferences 390 (2023): 05018. http://dx.doi.org/10.1051/e3sconf/202339005018.

Повний текст джерела
Анотація:
The paper studies the surface morphology of the initial polymers and the mixture using a scanning electron microscope SEM - EVO MA 10 (Zeiss, Germany). The X-ray phase analysis was carried out on a Panalytical Empyrean diffractometer. It has been proven that polymer mixtures based on domestic suspension polyvinyl chloride and ethylene-vinyl acetate copolymer, obtained by the method of "thermomechanical" mixing, are two-phase systems consisting of a phase of polyvinyl chloride and an ethylene- vinyl acetate copolymer. It was concluded that suspension polyvinyl chloride is fundamental in this system, which determines the main deformation-strength properties of the mixture. In the process of mixing a certain ratio of copolymer and thermoplastic, two-phase systems are formed, that is, mechanical mixtures of technologically compatible polymers with very close values of solubility parameters are formed. It has been determined that polymer mixtures based on domestic suspension polyvinyl chloride and an ethylene-vinyl acetate copolymer, obtained by the method of "thermomechanical" mixing, are two-phase systems consisting of a phase of polyvinyl chloride and an ethylene-vinyl acetate copolymer.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Robinson, D., and CA McCoy. "Ethylene glycol toxicity." Critical Care Nurse 9, no. 6 (July 1, 1989): 70–74. http://dx.doi.org/10.4037/ccn1989.9.6.70.

Повний текст джерела
Анотація:
Ingestion of ethylene glycol is a rare occurrence, but it is an attractive agent for intoxication and suicide. Treatment is aimed at rapid excretion of the EG, prevention of the formation of metabolites, and the prevention and treatment of renal failure. Prior to discharge, Mr K revealed that he had drunk the antifreeze because he was despondent about his work situation. He had a short, but intensive trajectory that followed the three-system-involvement classic to EG poisoning, with the renal system most severely affected. Mr K was discharged from the hospital one week after admission and referred to appropriate community resources for counseling. The critical care nurse plays a key role in alleviating the hazards of this complex disorder through complete and ongoing assessment of all systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

TAKAHASHI, Masato, Nobuyuki HARASAWA, and Hirohisa YOSHIDA. "Isothermal crystallization of poly(ethylene oxide) in poly(ethylene oxide)/poly(methyl methacrylate) blend systems." KOBUNSHI RONBUNSHU 47, no. 5 (1990): 455–58. http://dx.doi.org/10.1295/koron.47.455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Poole, MC, and DC Joyce. "A simple and reliable ethylene gassing system for plant studies." Australian Journal of Experimental Agriculture 33, no. 4 (1993): 507. http://dx.doi.org/10.1071/ea9930507.

Повний текст джерела
Анотація:
An ethylene permeation system was tested in a study of flower abscission of Verticordia nitens (Lindley) Endl. Various concentrations of ethylene in air were generated by passing air, at a flow rate of 2 L/min, through chambers containing various lengths of polyvinyl chloride (PVC) tubing pressurised (50 kPa) with ethylene. Ethylene permeating through lengths of PVC tubing of 1.5, 15, 150, and 1500 cm (8 mm internal diameter, 1.5 mm wall thickness) gave ethylene concentrations in the outflow airstreams of 0.12, 0.99, 7.8, and 100 �L/L, respectively. Increasing the ethylene pressure in 150-cm-long tubing linearly increased the permeation of ethylene (0.07 �L/L. kPa). A log-linear abscission response of V. nitens flowers to increasing ethylene concentration was demonstrated using this system. Use of silicone tubing (8-mm internal diameter, 1.5-mm wall thickness) resulted in an ethylene flux 75 times that of the same length of PVC tubing. Higher flux through silicone tubing should allow development of ethylene permeation gassing systems suitable for use in fruit ripening and degreening rooms.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

He, Chuanjiu, Fred Davies*, Ronald Lacey, and Que Ngo. "Hypobaria Affects Gas Exchange, Ethylene Evolution and Growth of Lettuce in NASA Advanced Life Support Systems (ALS)." HortScience 39, no. 4 (July 2004): 794A—794. http://dx.doi.org/10.21273/hortsci.39.4.794a.

Повний текст джерела
Анотація:
Elevated levels of ethylene occur in enclosed crop production systems and in space-flight environments—leading to adverse plant growth and sterility. There are engineering advantages in growing plants at hypobaric (reduced atmospheric pressure) conditions in biomass production for extraterrestrial base or spaceflight environments. Objectives of this research were to characterize the influence of hypobaria on gas exchange and ethylene evolution of lettuce (Lactuca sativa L. cv. Buttercrunch). Lettuce was grown under variable total gas pressures [50 and 101 kPa (ambient)]. The six chambered, modular low plant growth (LPPG) system has a Rosemount industrial process gas chromatograph (GC) for determining gas concentrations of oxygen (O2), carbon dioxide (CO2) and nitrogen (N). With the LPPG system, changes in CO2 can be tracked during the light and dark periods on a whole canopy basis, and transpirate collected as a measurement of transpiration. During short growth periods of up to seven days, growth was comparable between low and ambient pressure. However, there was a tendency for leaf tip burn under ambient pressure, in part because of higher ethylene levels. Tip burn increased under high light (600 vs. 300 μmol·m-1·s-1) and high CO2 (600 vs. 100 Pa). The CO2 assimilation rate and dark respiration tended to be higher under ambient conditions. High humidity (100%) reduced CO2 assimilation rate compared to 70% RH. Ethylene was increased by high light (600 vs. 300 μmol·m-1·s-1) and high CO2 (600 vs. 100 Pa). Ethylene was higher under ambient than low pressure. Enhanced plant growth under low pressure may be attributed to reduced ethylene production and decreased dark respiration (lower night consumption of metabolites).
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Duan, You Rong, W. S. Liu, J. Liu, and Z. R. Zhang. "A Study on PELGE Nanoparticles as Controlled Drug Delivery Systems for Intravenous." Key Engineering Materials 288-289 (June 2005): 163–66. http://dx.doi.org/10.4028/www.scientific.net/kem.288-289.163.

Повний текст джерела
Анотація:
The objective of this study was to evaluate the in vivo characteristics of poly (ethylene glycol)-poly (lacticacid-co-glycolicacid)-poly (ethylene- glycol) (PELGE) copolymers as drug carriers. In order to test this circulation time, mitoxantrone (DHAQ) was used as a model drug in this study. DHAQ nanoparticles (DHAQ-NP) were prepared, subsequently the DHAQ-NP were evaluated by measuring the drug concentration in plasma after intravenous administration via the tail vein of mice. The circulation time of the DHAQ-NP were tested. The results showed prolonged mitoxantrone (DHAQ) residence in systemic blood circulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Mannu, Alberto, Maria Enrica Di Pietro, and Andrea Mele. "Band-Gap Energies of Choline Chloride and Triphenylmethylphosphoniumbromide-Based Systems." Molecules 25, no. 7 (March 25, 2020): 1495. http://dx.doi.org/10.3390/molecules25071495.

Повний текст джерела
Анотація:
UV–VIS spectroscopy analysis of six mixtures containing choline chloride or triphenylmethylphosphonium bromide as the hydrogen bond acceptor (HBA) and different hydrogen bond donors (HBDs, nickel sulphate, imidazole, d-glucose, ethylene glycol, and glycerol) allowed to determine the indirect and direct band-gap energies through the Tauc plot method. Band-gap energies were compared to those relative to known choline chloride-containing deep band-gap systems. The measurements reported here confirmed the tendency of alcohols or Lewis acids to increment band-gap energy when employed as HBDs. Indirect band-gap energy of 3.74 eV was obtained in the case of the triphenylmethylphosphonium bromide/ethylene glycol system, which represents the smallest transition energy ever reported to date for such kind of systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wu, You-Ting, Zi-Qiang Zhu, and Le-He Mei. "Interfacial Tension of Poly(ethylene glycol) + Salt + Water Systems." Journal of Chemical & Engineering Data 41, no. 5 (January 1996): 1032–35. http://dx.doi.org/10.1021/je960044g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Haruki, Masashi, Yuboku Takakura, Hiroaki Sugiura, Shin-ichi Kihara, and Shigeki Takishima. "Phase behavior for the supercritical ethylene+hexane+polyethylene systems." Journal of Supercritical Fluids 44, no. 3 (April 2008): 284–93. http://dx.doi.org/10.1016/j.supflu.2007.09.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Frey, Margaret W., Lei Li, Min Xiao, and Troy Gould. "Dissolution of cellulose in ethylene diamine/salt solvent systems." Cellulose 13, no. 2 (March 18, 2006): 147–55. http://dx.doi.org/10.1007/s10570-006-9062-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhang, Ling-Wei, Qiang Huang, Chang-Yu Sun, Qing-Lan Ma, and Guang-Jin Chen. "Hydrate Formation Conditions of Methane + Ethylene + Tetrahydrofuran + Water Systems." Journal of Chemical & Engineering Data 51, no. 2 (March 2006): 419–22. http://dx.doi.org/10.1021/je050342q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Khan, Fareha Zafar, Kenichi Kakinuki, and Kotohiro Nomura. "Copolymerization of Ethylene withtert-Butylethylene UsingNonbridgedHalf-Titanocene-Cocatalyst Systems." Macromolecules 42, no. 11 (June 9, 2009): 3767–73. http://dx.doi.org/10.1021/ma900510d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wang, L., P. Y. Zhang, L. F. Feng, B. Ji, Y. L. Yuan, J. Pan, C. Y. Ye, S. Jiang, and L. X. Feng. "ESR studies on vanadocene/cocatalyst systems for ethylene polymerization." Journal of Applied Polymer Science 79, no. 7 (2000): 1188–94. http://dx.doi.org/10.1002/1097-4628(20010214)79:7<1188::aid-app50>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Acosta, J. L., L. Gonz�lez, C. Del Rio, C. Ojeda, and A. Rodr�guez. "Elastomeric conducting systems based on ethylene-propylene-norbornene composites." Journal of Applied Polymer Science 79, no. 12 (2001): 2136–45. http://dx.doi.org/10.1002/1097-4628(20010321)79:12<2136::aid-app1021>3.0.co;2-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Mahajan, Kamal, Elizabeth A. Lofgren, and Saleh A. Jabarin. "Development of active barrier systems for poly(ethylene terephthalate)." Journal of Applied Polymer Science 129, no. 4 (January 15, 2013): 2196–207. http://dx.doi.org/10.1002/app.38930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії