Зміст
Добірка наукової літератури з теми "Estimation des valeurs initiales"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Estimation des valeurs initiales".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Estimation des valeurs initiales"
RULQUIN, H., R. VERITE, and J. GUINARD-FLAMENT. "Acides aminés digestibles dans l’intestin. Le système AADI et les recommandations d’apport pour la vache laitière." INRAE Productions Animales 14, no. 4 (August 17, 2001): 265–74. http://dx.doi.org/10.20870/productions-animales.2001.14.4.3749.
Повний текст джерелаPoiré, François. "L’interrogation totale en français et les domaines prosodiques intermédiaires." Revue québécoise de linguistique 31, no. 2 (October 28, 2004): 27–40. http://dx.doi.org/10.7202/009309ar.
Повний текст джерелаAbdellaoui, Benyounes, Abdalaziz Merzouk, Yannick Pépin, M’Hamed Aberkan, and Jean Albergel. "Simulation du bilan hydro–sédimentaire d’un barrage collinaire en zone marneuse méditerranéenne (Cas du barrage Saboun, Maroc)." Revue des sciences de l'eau 22, no. 4 (October 22, 2009): 487–504. http://dx.doi.org/10.7202/038327ar.
Повний текст джерелаDeschamps, Bruno. "Sur les bonnes valeurs initiales de la suite de Lucas–Lehmer." Journal of Number Theory 130, no. 12 (December 2010): 2658–70. http://dx.doi.org/10.1016/j.jnt.2010.06.006.
Повний текст джерелаOliveira, Pedro, Carole Coufort-Saudejaud, Marion Alliet, and Christine Frances. "Procédé de traitement des eaux usées par boues activées : lien entre les propriétés morphologiques des flocs et l’âge de boue." Revue des sciences de l’eau 30, no. 1 (June 8, 2017): 29–32. http://dx.doi.org/10.7202/1040060ar.
Повний текст джерелаKhoder, Wassim. "Recalage de la navigation inertielle hybride par le filtrage de Kalman sans parfum paramétré à quaternions." MATEC Web of Conferences 261 (2019): 06003. http://dx.doi.org/10.1051/matecconf/201926106003.
Повний текст джерелаMenger, Pierre-Michel. "L’évaluation de l’oeuvre d’art dans son horizon temporel." Articles, no. 16 (April 19, 2011): 75–87. http://dx.doi.org/10.7202/1002129ar.
Повний текст джерелаMokrani, N., A. Borvon, A. Milla, C. Thorin, and C. Guintard. "Étude ostéométrique des principaux os des membres et de la ceinture du membre thoracique chez le Faisan de Colchide (Phasianus colchicus L., 1758)." Archaeofauna 31 (October 11, 2023): 155–80. http://dx.doi.org/10.15366/archaeofauna2022.31.008.
Повний текст джерелаLang, Vincent. "La profession enseignante en France." Éducation et francophonie 29, no. 1 (July 28, 2021): 52–69. http://dx.doi.org/10.7202/1079567ar.
Повний текст джерелаLantri, Fodhil, Nour El Islam Bachari, and Ahmed Hafid Belbachir. "Estimation et cartographie des différentes composantes de rayonnement solaire au sol à partir des données météorologiques." Journal of Renewable Energies 20, no. 1 (October 12, 2023): 111–30. http://dx.doi.org/10.54966/jreen.v20i1.614.
Повний текст джерелаДисертації з теми "Estimation des valeurs initiales"
Wang, Zhibo. "Estimations non-asymptotiques et robustes basées sur des fonctions modulatrices pour les systèmes d'ordre fractionnaire." Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2023. http://www.theses.fr/2023ISAB0003.
Повний текст джерелаThis thesis develops the modulating functions method for non-asymptotic and robust estimations for fractional-order nonlinear systems, fractional-order linear systems with accelerations as output, and fractional-order time-delay systems. The designed estimators are provided in terms of algebraic integral formulas, which ensure non-asymptotic convergence. As an essential feature of the designed estimation algorithms, noisy output measurements are only involved in integral terms, which endows the estimators with robustness against corrupting noises. First, for fractional-order nonlinear systems which are partially unknown, fractional derivative estimation of the pseudo-state is addressed via the modulating functions method. Thanks to the additive index law of fractional derivatives, the estimation is decomposed into the fractional derivatives estimation of the output and the fractional initial values estimation. Meanwhile, the unknown part is fitted via an innovative sliding window strategy. Second, for fractional-order linear systems with accelerations as output, fractional integral estimation of the acceleration is firstly considered for fractional-order mechanical vibration systems, where only noisy acceleration measurements are available. Based on the existing numerical approaches addressing the proper fractional integrals of accelerations, our attention is primarily restricted to estimating the unknown initial values using the modulating functions method. On this basis, the result is further generalized to more general fractional-order linear systems. In particular, the behaviour of fractional derivatives at zero is studied for absolutely continuous functions, which is quite different from that of integer order. Third, for fractional-order time-delay systems, pseudo-state estimation is studied by designing a fractional-order auxiliary modulating dynamical system, which provides a more general framework for generating the required modulating functions. With the introduction of the delay operator and the bicausal generalized change of coordinates, the pseudo-state estimation of the considered system can be reduced to that of the corresponding observer normal form. In contrast to the previous work, the presented scheme enables direct estimation for the pseudo-state rather than estimating the fractional derivatives of the output and a bunch of fractional initial values. In addition, the efficiency and robustness of the proposed estimators are verified by numerical simulations in this thesis. Finally, a summary of this work and an insight into future work were drawn
Toulemonde, Gwladys. "Estimation et tests en théorie des valeurs extrêmes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00348589.
Повний текст джерелаAyvazyan, Vigen. "Etude de champs de température séparables avec une double décomposition en valeurs singulières : quelques applications à la caractérisation des propriétés thermophysiques des matérieux et au contrôle non destructif." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14671/document.
Повний текст джерелаInfrared thermography is a widely used method for characterization of thermophysical properties of materials. The advent of the laser diodes, which are handy, inexpensive, with a broad spectrum of characteristics, extend metrological possibilities of infrared cameras and provide a combination of new powerful tools for thermal characterization and non destructive evaluation. However, this new dynamic has also brought numerous difficulties that must be overcome, such as high volume noisy data processing and low sensitivity to estimated parameters of such data. This requires revisiting the existing methods of signal processing, adopting new sophisticated mathematical tools for data compression and processing of relevant information.New strategies consist in using orthogonal transforms of the signal as a prior data compression tools, which allow noise reduction and control over it. Correlation analysis, based on the local cerrelation study between partial derivatives of the experimental signal, completes these new strategies. A theoretical analogy in Fourier space has been performed in order to better understand the «physical» meaning of modal approaches.The response to the instantaneous point source of heat, has been revisited both numerically and experimentally. By using separable temperature fields, a new inversion technique based on a double singular value decomposition of experimental signal has been introduced. In comparison with previous methods, it takes into account two or three-dimensional heat diffusion and therefore offers a better exploitation of the spatial content of infrared images. Numerical and experimental examples have allowed us to validate in the first approach our new estimation method of longitudinal thermal diffusivities. Non destructive testing applications based on the new technique have also been introduced.An old issue, which consists in determining the initial temperature field from noisy data, has been approached in a new light. The necessity to know the thermal diffusivities of an orthotropic medium and the need to take into account often three-dimensional heat transfer, are complicated issues. The implementation of the double singular value decomposition allowed us to achieve interesting results according to its ease of use. Indeed, modal approaches are statistical methods based on high volume data processing, supposedly robust as to the measurement noise
Makhoul-Karam, Noha. "Time-slicing, rescaling and ratio-based parallel time integration." Rennes 1, 2010. http://www.theses.fr/2010REN1S156.
Повний текст джерелаIn this thesis, we propose a Ratio-based Parallel Time Integration (RaPTI) algorithm for solving initial value problems, in a time-parallel way. RaPTI algorithm uses a time-slicing and rescaling technique, with some resulting similarity properties, for generating a coarse grid and providing ratio-based predictions of the starting values at the onset of every time-slice. The correction procedure is performed on a fine grid and in parallel, yielding some gaps on the coarse grid. Then, the predictions are updated and the process is iterated, until all the gaps are within a given tolerance. RaPTI algorithm is applied to three problems: a membrane problem, a reaction-diffusion problem and a satellite trajectory in a J2-perturbed motion. In some rare cases of invariance, it yields a perfect parallelism. In the more general cases of similarity, it yields good speed-ups
Lekina, Alexandre. "Estimation non-paramétrique des quantiles extrêmes conditionnels." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00529476.
Повний текст джерелаRietsch, Théo. "Théorie des valeurs extrêmes et applications en environnement." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00876217.
Повний текст джерелаPham, Quang Khoai. "Estimation non paramétrique adaptative dans la théorie des valeurs extrêmes : application en environnement." Thesis, Lorient, 2015. http://www.theses.fr/2015LORIS361/document.
Повний текст джерелаThe objective of this PhD thesis is to develop statistical methods based on the theory of extreme values to estimate the probabilities of rare events and conditional extreme quantiles. We consider independent random variables $X_{t_1},…,X_{t_n}$ associated to a sequence of times $0 ≤t_1 <… < t_n ≤ T_{\max}$ where $X_{t_i}$ has distribution function $F_{t_i}$ and $F_t$ is the conditional distribution of $X$ given $T = t \in [0,T_{\max}]$. For each $ t \in [0, T {\max}]$, we propose a nonparametric adaptive estimator for extreme quantiles of $F_t$. The idea of our approach is to adjust the tail of the distribution function $F_t$ with a Pareto distribution of parameter $\theta {t,\tau}$ starting from a threshold $\tau$. The parameter $\theta {t,\tau}$ is estimated using a nonparametric kernel estimator of bandwidth $h$ based on the observations larger than $\tau$. We propose a sequence testing based procedure for the choice of the threshold $\tau$ and we determine the bandwidth $h$ by two methods: cross validation and an adaptive procedure. Under some regularity assumptions, we prove that the adaptive estimator of $\theta {t, \tau}$ is consistent and we determine its rate of convergence. We also propose a method to choose simultaneously the threshold $\tau$ and the bandwidth $h$. Finally, we study the proposed procedures by simulation and on real data set to contribute to the survey of aquatic systems
Kachour, Maher. "Une nouvelle classe de modèles autorégressifs à valeurs entières." Rennes 1, 2009. https://tel.archives-ouvertes.fr/tel-00442146.
Повний текст джерелаIn many practical situations we deal with integer-valued time series. The analysis of such a time series present some difficulties, namely where the analysis is based on some stochastic models. These models must reflect the integer peculiarity of the observed series. Many attempts have been made to define some models which can be used to describe integer-valued time series. Most of the proposed models are based on the thinning operator and they have the same properties as the real-valued models well-known in the literature. The aim of this thesis is to study the integer-valued autoregressive models. We introduce a new class of models based on the rounding operator. Compared to the existent models, the new class has several advantages : simple innovation structure, autoregressive coefficients with arbitrary signs, possible negative values for time series and for the autocorrelation function. We study the stationarity of the models and the strong consistency of the least squares estimator proposed to estimate the parameters. We analyze some well-known time series with the introduced models
Côte, Raphaël. "Construction et propriétés de solutions pour des équations dispersives focalisantes." Cergy-Pontoise, 2006. http://www.theses.fr/2006CERG0298.
Повний текст джерелаIn this work we study sorne properties of solutions to dispersive focalizing partial differential equations. We study two types of equations. In chapters 2 to 4, we study the generalized Korteweg-de Vries equations (gKdV). Given a solution to the linear Korteweg-de Vries equation, we construct a solution to (gKdV) which behaves like this for large times. Given N solitons solutions (stationnary wave solutions to (gKdV)), we construct in the L2-critieal and sub-critieal cases, a solution to (gKdV) which behaves like the sum of these solitons and of the linear solution. In chapter 5, we are interested in the wave map system in critical dimension (1+2) : this is a simple model for the wave equation in a geometrieal background. We prove that harmonie functions (stationnary wave maps) are instable in the energy space, in a strong sense, for this system
Albert, Clément. "Estimation des limites d'extrapolation par les lois de valeurs extrêmes. Application à des données environnementales." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM079/document.
Повний текст джерелаThis thesis takes place in the extreme value statistics framework. It provides three main contributions to this area. The extreme quantile estimation is a two step approach. First, it consists in proposing an extreme value based quantile approximation. Then, estimators of the unknown quantities are plugged in the previous approximation leading to an extreme quantile estimator.The first contribution of this thesis is the study of this previous approximation error. These investigations are carried out using two different kind of estimators, both based on the well-known Generalized Pareto approximation: the Exponential Tail estimator dedicated to the Gumbel maximum domain of attraction and the Weissman estimator dedicated to the Fréchet one.It is shown that the extrapolation error can be interpreted as the remainder of a first order Taylor expansion. Necessary and sufficient conditions are then provided such that this error tends to zero as the sample size increases. Interestingly, in case of the so-called Exponential Tail estimator, these conditions lead to a subdivision of Gumbel maximum domain of attraction into three subsets. In constrast, the extrapolation error associated with Weissmanestimator has a common behavior over the whole Fréchet maximum domain of attraction. First order equivalents of the extrapolation error are thenderived and their accuracy is illustrated numerically.The second contribution is the proposition of a new extreme quantile estimator.The problem is addressed in the framework of the so-called ``log-Generalized Weibull tail limit'', where the logarithm of the inverse cumulative hazard rate function is supposed to be of extended regular variation. Based on this model, a new estimator of extreme quantiles is proposed. Its asymptotic normality is established and its behavior in practice is illustrated on both real and simulated data.The third contribution of this thesis is the proposition of new mathematical tools allowing the quantification of extrapolation limits associated with a real dataset. To this end, we propose estimators of extrapolation errors associated with the Exponentail Tail and the Weissman approximations. We then study on simulated data how these two estimators perform. We finally use these estimators on real datasets to show that, depending on the climatic phenomena,the extrapolation limits can be more or less stringent
Книги з теми "Estimation des valeurs initiales"
1949-, Lorenz Jens, and Society for Industrial and Applied Mathematics., eds. Initial-boundary value problems and the Navier-Stokes equations. Philadelphia, Pa: SIAM, 2004.
Знайти повний текст джерелаKreiss, H. Initial-boundary value problems and the Navier-Stokes equations. Boston: Academic Press, 1989.
Знайти повний текст джерелаDix, Daniel Beach. Large-time behavior of solutions of linear dispersive equations. Berlin: Springer, 1997.
Знайти повний текст джерелаReddy, J. N., and Karan S. Surana. Finite Element Method for Initial Value Problems: Mathematics and Computations. Taylor & Francis Group, 2017.
Знайти повний текст джерелаReddy, J. N., and Karan S. Surana. Finite Element Method for Initial Value Problems: Mathematics and Computations. Taylor & Francis Group, 2017.
Знайти повний текст джерелаReddy, J. N., and Karan S. Surana. Finite Element Method for Initial Value Problems: Mathematics and Computations. Taylor & Francis Group, 2017.
Знайти повний текст джерелаKreiss, Heinz-Otto, and Jens Lorenz. Initial-Boundary Problems and the Navier-Stokes Equation (Classics in Applied Mathematics). SIAM: Society for Industrial and Applied Mathematics, 2004.
Знайти повний текст джерела(Editor), M. A. Shubin, and C. Constanda (Translator), eds. Partial Differential Equations : Overdetermined Systems Index of Elliptic Operators (Encyclopaedia of Mathematical Sciences , No 8). Springer, 1997.
Знайти повний текст джерела