Дисертації з теми "Espèces Réactives d'Oxygène (ROS)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-30 дисертацій для дослідження на тему "Espèces Réactives d'Oxygène (ROS)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Patten, David. "LES GÉNÉRATEURS DES ESPÈCES RÉACTIVES D'OXYGÈNE DANS LA RÉGULATION DU FACTEUR DE TRANSCRIPTION INDUIT PAR L'HYPOXIE, HIF-1[ROS generators in HIF-1 regulation]." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27242/27242.pdf.
Повний текст джерелаZoumpoulaki, Martha. "MnSOD Mimics : analytical mass spectrometry-based techniques to quantify their amount and biological effect in inflamed intestinal epithelial cells." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS518.
Повний текст джерелаThe intracellular imbalance between antioxidants and pro-oxidants is involved in the development of many pathologies (like chronic inflammatory bowel diseases-IBD). The fact that manganese superoxide dismutase (MnSOD) is the first line of antioxidant defense led us to study the role of MnSOD mimics as anti-inflammatory agents in the context of IBD. Mn1 is easily synthesized, stable, with good intrinsic anti-superoxide activity and anti-inflammatory activity on intestinal epithelial cells (HT29-MD2). The presence of intact Mn1 (ligand+Mn2+) inside HT29-MD2, created to study intestinal inflammation, was demonstrated using mass spectrometry (IMSMS). After 6h of incubation with 100 µM Mn1 and with LPS 0.1 µg/mL, Mn1 was detected intact with an estimated intracellular concentration of 10 µM. Using the OcSILAC strategy, making possible to simultaneously quantify protein expression and oxidation at the proteome-wide cysteine level, it has been demonstrated that an oxidation was induced by LPS from 15min (in the organelles fraction, including mitochondria) and was resolved after 6h-LPS, with an overexpression of MnSOD (after 3h). When coincubated with LPS, Mn1 limited the total protein oxidation at 15min (70% in the membranes/organelles) and compensate for MnSOD at 6h. Mn1 also restored to their basal levels most of the proteins that were under and overexpressed upon LPS activation. Our results thus demonstrate the potential of Mn1 as a new therapeutic agent against IBD
Boufraqech, Myriem. "Implication des espèces réactives de l'oxygène (ROS) dans la radiocarcinogenèse thyroïdienne." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00747797.
Повний текст джерелаBoufraqech, Myriem. "Implication des espèces réactives de l’oxygène (ROS) dans la radiocarcinogenèse thyroïdienne." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA11T069/document.
Повний текст джерелаRadiotherapy is used alone or in combination with chemotherapy to treat over 50% of cancers. Despite much progress in order to improve the benefit / risk ratio, the radiation causes many side effects. One of the known origins of thyroid cancer is exposure during childhood to ionizing radiation, either accidentally or as a result of external radiation therapy for another disease. The mechanisms by which ionizing radiation causes the appearance of thyroid cancer are numerous and not yet fully known. Ionizing radiations are genotoxic agents that induce DNA damage such as breaks and chromosomal aberrations. Although the mechanisms underlying these effects are not completely understood, it is generally accepted that ionizing radiations induce DNA damage either directly or indirectly by generating reactive oxygen species (ROS). During my PhD, we studied the role of ROS produced during irradiation in the generation of DNA damage in thyroid cells. Our results show that ROS produced after irradiation participate in the formation of RET/PTC1 rearrangements found in 70% of radiation-induced papillary cancers. ROS generated by radiolysis of water have a very short lifetime that limits their diffusion. However, by redox mechanisms, they cause changes at the cellular level, which in turn lead to the activation of ROS generating systems, which include the NADPH oxidases. Our results show that irradiation induces the expression of NADPH oxidase DUOX1 via the secretion of IL-13, several days after exposure to ionizing radiation. Inactivation of DUOX1 by interfering RNAs significantly reduces the DNA damage observed several days after irradiation. These results suggest a role DUOX1 in chronic oxidative stress that contributes to genetic instability
Hoarau, Emmanuelle. "Etude du rôle des espèces réactives de l'oxygène dans le développement du pancréas." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T007.
Повний текст джерелаThe pancreas is an heterogenous gland composed by exocrine tissue, responsible for digestive enzyme secretions, and endocrine tissue, essential for glucose homeostasis. In particular β cells secrete insulin which controls glycemia. Moreover, β cell failure is one of the primary causes of diabetes and this pathology is nowadays considered as the first non infectious worldwide outbreak. There is unfortunately no cure for this disease. Many laboratories are currently improving β cell generation protocols in order to inject those cells into patients. This is the reason why it appears mandatory to be able to identify factors that govern each step of β cell development. The aim of my work was to study the role of the Reactive Oxygen Species (ROS) during pancreatic development. First we found out that the expression of genes coding for antioxidant enzymes was extremely low in embryonic pancreas compared to adult pancreas. This suggested that progenitors could be sensitive to ROS variations. We then showed in vivo using an antioxidant component (NAC) that decreasing ROS level diminishes β cell development. Analysis in vitro allowed us to better describe the role of ROS. Indeed, hydrogen peroxyde favors β cell differentiation by increasing the pro-endocrine marker NGN3 expression in the progenitors. In this process, ROS activate the ERK1/2 signaling pathway. On the contrary, lowering ROS level using both pharmacologic and genetic approaches, decreases β cell differentiation. Our results also point out a role of the mitochondria in this process. Altogether, our data define the effects of ROS on β cell differentiation and open new perspectives to improve protocols of β cell generation
Ronzani, Filippo. "Réactions d’oxydation photosensibilisée : espèces transitoires réactives et mécanismes aux interfaces." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3020/document.
Повний текст джерелаThe main aim of the work carried out during this PhD project was to develop, characterize and analyze original materials for photosensitized oxidation reactions. Particular attention was paid to the determination of the photophysical properties of the selected photosensitizers (PSs) and the effect induced by the immobilization on an inert support (silica). The reactive species formed upon irradiation were identified and analyzed. Singlet oxygen production was monitored by two complementary methods. The solid-supported sensitizers were employed, in the form of either monoliths or powders, for the photooxidation of dimethyl sulfide at the gas-solid interface and of -terpinene at the liquid-solid interface. Singlet oxygen was the main reactive oxygen species formed by the selected PSs; nonetheless, the reaction products were analyzed and other possible mechanistic scenarios investigated
Ristic, Marko. "ROS/SUMO relationship in the chemotherapeutic treatment of Acute Myeloid Leukemia." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT047.
Повний текст джерелаAcute Myeloid Leukemias (AML) are a group a severe hematological malignancies, which treatment is generally composed of two genotoxics: Cytarabine (Ara-C) and Daunorubicin (DNR). We have shown that these drugs induce the rapid deconjugation of the Small Ubiquitin-related Modifier (SUMO) from its target protein. This is due to the inactivation of SUMO E1 and E2 enzymes by Reactive oxygen species (ROS). This deSUMOylation participated in the activation of specific genes and is involved the induction of apoptosis. In addition, this ROS/SUMO axis is anergized in chemoresistant AMLs. However, it can be reactivated by pro-oxidants or inhibition of the SUMO pathway with anacardic acid, an inhibitor of the SUMO E1. To identify which proteins are regulated by this ROS/SUMO axis, we performed a quantitative mass spectrometry approach. Among the 1000 identified SUMO targets, most of the 114 proteins, which SUMOylation decrease upon treatment, are involved in the regulation of gene expression. In addition, we showed by ChIP-Seq with SUMO-2 antibodies that genotoxics, in particular DNR, induce a massive decrease of the presence of SUMOylated proteins on the chromatin. Motif search analysis of the SUMO binding sequences in these genes identified CTCF binding motif. Interestingly, CTCF was found in the SILAC as deSUMOylated by the drugs. Using publicly available ChIP-Seq data for CTCF, we found 55 genes which are occupied by both SUMO-2 and CTCF and which expression is regulated by the drugs. In the last part of this work, we got interested in the 19 proteins that get up-SUMOylated upon treatment. Among them, we found centromeric proteins, including CENP-B and CENP-C. Using Proximity Ligation Assay, we could show that CENP-B and CENP-C colocalize with both SUMO and yH2AX upon DNR treatment. Altogether, this suggests that centromeric protein up-SUMOylation occurs at sites of DNA damage and might play a role in DNA damage repair
Marut, Wioleta. "ROS/RNS modulation in Systemic sclerosis treatment." Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T079/document.
Повний текст джерелаSeveral reports have suggested that reactive oxygen and nitrogen species are involved in SSc pathogenesis. SSc fibroblast from skin and internal organs overproduce ROS that trigger the proliferation of fibroblasts and the synthesis of type I collagen leading to the initiation and progresion of SSc. As in human SSc, skin fibroblasts from SSc mice constitutively produce large amounts of ROS. We have used this property to selectively induce apoptosis in the diseased fibroblast of SSc mice. Indeed, the organotelluride catalyst-(PHTE)2NQ and natural organosulfur compound – Dipropyltertrasulfide (DPTTS) are able of increasing ROS production by fibroblasts and inducing a lethal oxidative stress specificaly in SSc fibroblasts. This phenomenon has no impact on normal fibroblasts that present normal levels of ROS and a normal oxidant/antioxidant status. Many studies have also proved an importance of nitrogen species in the pathogenesis of SSc. In patients with SSc, the serum level of nitric oxide is significantly increased. Furthermore, NO can combine with other free radicals like superoxide anion (O•-2) to form the highly cytotoxic peroxynitrite (ONOO−) that contributes to inflammation, fibrosis and apoptosis of endothelial cells. Production of NO by endothelial cells or by fibroblasts can be stimulated by angiotensin II, the main peptide of the renin-angiotensin system (RAS). The level of angiotensin II is increased in SSc patients as well as in our HOCl mouse model and can promote proliferation of fibroblasts, fibrosis, and inflammation. These observations led us to test irbesartan, an angiotensin II type I receptor antagonist (AT1 RA) in the murine model of SSc. A new animal model based on chronic exposure to ROS and with many similarities to the human disease, allowed me to study new therapeutic approaches in SSc based on the cytotoxic action of pro-oxidative compounds - (PHTE)2NQ and DPTTS - and on the anti- nitrosative effect of irbesartan. These new therapeutic strategies open interesting perspectives in the treatment of SSc, where the therapeutic arsenal is currently still limited
Farhat, Firas. "Fonction mitochondriale et espèces réactives dérivées de l'oxygène : effets du genre et de l'entraînement en endurance chez le rat Wistar et l'anguille européenne." Thesis, Brest, 2015. http://www.theses.fr/2015BRES0018/document.
Повний текст джерелаMitochondrion is the main site of aerobic energy (ATP) and reactive oxygen species (ROS) productions. Mitochondrial function is closely linked to ROS, which, according their rate, can alter or optimize energy efficiency. Structural and functional plasticity of mitochondria is essential to maintain homeostasis in any situation that requires metabolic adjustments as physical exercise. The adaptive mechanisms of mitochondrial function and ROS during training and the impact of gender on these responses are still far from being solved. In this perspective, two animal models (Wistar rat and European eel) were chosen.The effects of endurance training of the same intensity (70% of maximal aerobic speed running or swimming) were studied in Wistar rat and silver European eel. The latter is an enduring species capable of performing a spawning migration of 6000 km and characterized by sexual dimorphism in size. In vitro measurements of oxygen consumption, free radical and ATP productions were carried out simultaneously from heart and skeletal muscle permeabilized fibers. The vulnerability or resistance of the mitochondrial function to a ROS generating system exposure (mimicking oxidative stress) was also studied.Before training, in rat, female has a mitochondrial function energetically more efficient and more resistant to ROS, whereas in eel, this metabolic and radical profile is observed rather in male. After training, whatever the species, the improved physical performance observed is associated with various metabolic and radical changes which depending on gender and species. In rats, the improving of mitochondrial function translates differently according to gender. In male, training induces improvement in energy efficiency through a better coupling between oxidation and phosphorylation and/or better use of electrons at the respiratory chain level. In female, increasing in ATP production may be related to the increase in mitochondrial oxygen consumption. As in rats, training induces globally in eel an improvement in energy efficiency and resistance of mitochondrial function to ROS, but only in male. All these results show metabolic and radical responses depending on gender. Whatever the species, training seems to be most beneficial in males than in females in terms of mitochondrial energy efficiency and resistance of mitochondrial function to oxidative stress. In the context of eel migration, these adaptations allow to male, largely smaller than female, a higher swim efficiency, allowing their synchronization on breeding site. Interspecific similarities in training response by gender confirm the interest of fish model’s using in the field of exercise physiology
Khawaja, Naeem Raza Shaheen. "Role of mitochondrial ROS in patupilone induced apoptosis in neuroblastoma cells." Aix-Marseille 2, 2009. http://www.theses.fr/2009AIX22954.
Повний текст джерелаHaissaguerre, Magali. "Etude de l’intéraction entre les ros et la voie mtorc1 dans la régulation de la balance énergetique." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0206/document.
Повний текст джерелаThe mechanistic target of rapamycin complex 1 (mTORC1) pathway is an importanthypothalamic integrator of nutrients and hormones. Nutrient availability also affects thereactive oxygen species (ROS) in propiomelanocortin (POMC) neurons and regulatesneuronal activity. We hypothesize that modulation of mTORC1 activity mediates ROS effectson food intake.To this purpose, C57Bl6J mice or WT mice and their KO littermates either deficient for themTORC1 downstream target S6K1 or for the mTORC1 component raptor specifically inPOMC neurons (POMC-raptor-KO) were treated with an intracerebroventricular (ICV)injection of the ROS producer H2O2 or the ROS scavenger honokiol, alone or in combinationwith the mTOR inhibitor rapamycin or the mTOR activator leptin.ICV H2O2 induced phosphorylation of S6K1 within the hypothalamus, increased expressionof c-fos, a marker of neuronal activity, in the arcuate nucleus and increased ROS in POMCneurons. These effects were associated with a significant decrease in food intake. Theanorexigenic effect of ICV H2O2 was not seen in S6K1-KO mice, in C57Bl6J mice cotreatedwith rapamycin (an mTOR inhibitor) and in POMC-raptor-KO mice.Similarly, ICV honokiol administration combined with a leptin injection blunted theanorexigenic effect of leptin, suggesting that leptin requires ROS formation to reduce FI. ICVadministration of leptin increased ROS in POMC neurons in C57Bl6J and POMC-raptor-WTmice, but not in POMC-raptor-KO mice.Our results demonstrate that ROS modulators require a functional mTORC1 pathway toregulate food intake and that leptin needs an mTORC1-dependent increase in ROS levels inPOMC neurons to decrease food intake
Dakik, Hassan. "Caractérisation des NADPH oxydases et effet de leur inhibition dans les leucémies aigues myéloïdes." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR3309.
Повний текст джерела350,000 leukaemia are diagnosed each year worldwide. In acute myeloid leukaemia (AML), relapse remains a major problem and the oxidative metabolism might play a crucial role in the therapeutic response. Low level of reactive oxygen species (ROS) is associated with properties of leukemic stem cells and quiescence whereas higher level promotes leukoblasts proliferation. ROS homeostasis relies on a tightly regulated balance between the oxidant and antioxidant systems. Although the antioxidant system is extensively studied in AML, the oxidant system remains poorly documented. In this work we aimed to study the seven NADPH oxidases (NOX) complexes in 25 AML human cell lines and primary samples. NOX transcriptional and protein profiles are variable with a higher expression of NOX2 in cell lines belonging to mature differentiation stages. An equivalent level of enzymatic activity was observed across all the cell lines. To reveal the contribution of NOX to global ROS production in the cells, two NOX inhibitors, DPI and VAS3947, were then used. Although both inhibitors efficiently blocked NOX activity they unexpectedly triggered strong oxidative stress leading to reduced cell proliferation and strong apoptosis, DPI by increasing mitochondrial ROS while VAS3947 by increasing cytoplasmic ROS production. To highlight which of the subunits were involved and to understand the mechanisms, NOX2 and p22phox subunits were inhibited using shRNA strategy. These did not affect cell proliferation but revealed a compensation effect. Our data suggest that NOX inhibition might be potential therapeutic strategy by increasing oxidative stress in leukemic cells
Blanc, Lionel. "Bases moléculaires de la clairance des exosomes de réticulocyte." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00229752.
Повний текст джерелаCe travail montre que la sécrétion d'exosomes au cours de la maturation du réticulocyte est un processus issu d'un programme cellulaire permettant un remodelage membranaire en éliminant spécifiquement certaines protéines devenues inutiles voire dangereuses pour la cellule en fin de différenciation. Nos résultats suggèrent qu'une fois libérés dans la circulation sanguine, les exosomes de réticulocyte sont éliminés par un mécanisme similaire à celui impliqué dans la clairance des corps apoptotiques. L'action d'une iPLA2 d'origine endosomale et activable à la fois par les espèces réactives de l'oxygène libérées lors de la mitoptose et par la caspase-3 présente dans les vésicules permet la formation de lysophosphatidylcholine (LPC) à la surface des exosomes. Cette LPC est alors reconnue par les IgMs naturelles présentes dans la circulation, activant à leur tour la voie du complément. De la même façon, ApoH interagit avec les exosomes de réticulocyte et pourrait contribuer à leur élimination via la reconnaissance de phosphatidylsérine. La liaison de ces différentes opsonines en surface des exosomes pourrait en effet permettre leur ingestion par les phagocytes.
Zang, Lili. "Deciphering the nitrate signaling pathway leading to a reduction of primary root growth in Medicago truncatula Nitrate inhibits primary root growth by reducing accumulation of reactive oxygen species in the root tip in Medicago truncatula." Thesis, Angers, 2020. http://www.theses.fr/2020ANGE0007.
Повний текст джерелаIn Medicago truncatula, nitrate, acting as a signal perceived by MtNPF6.8, inhibits primary root growth through a reduction of root cell elongation. We evaluated here whether reactive oxygen species (ROS) could mediate the nitrate signal since ROS produced and converted (O2•−→ H2O2 → •OH) in the root tip have been reported to control cell elongation. We found that nitrate reduces the content in ROS of the primary root tip in three wild type genotypes (including R108) sensitive to nitrate, but not in the npf6.8 mutants (in the R108 genetic background), insensitive to nitrate. The decrease in ROS content observed in R108 in response to nitrate is orchestrated by cell wall peroxidases (PODs) that eliminate H2O2 and impair its conversion in •OH, the species responsible for cell wall loosening and cell elongation. These results demonstrate that ROS and PODs are downstream mediators of the nitrate signal. We further identified a NADPH oxidase (MtRBOHF), as another mediator in the nitrate signaling pathway, the primary root growth of rbohF mutants being insensitive to nitrate. We finally performed a coupled transcriptomic and proteomic analysis with R108 and npf6.8 grown in absence or presence of nitrate to uncover novel aspects of legume primary root tip response to nitrate. We found that the sensitivity of the primary root is strongly linked to the functionality of MtNPF6.8 and many nitrate responsive genes encompass genes involved in ROS homeostasis and cell wall organization, or encode transcription factors
Hamdar, Alaa. "Procédés innovants pour la production de dithiolopyrrolones par Saccharothrix algeriensis NRRLB-24137." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30289/document.
Повний текст джерелаSaccharothrix algeriensis is a rare Actinobacterium that produces a variety of dithiolopyrrolone derivatives (DTPs). These biocidal compounds are used as plant and crop- protection products. The aim of this thesis is to develop new strategies for DTPs production by regulating bacterial metabolism as an alternative to the chemical synthesis of these compounds. Two strategies were used : * the first strategy consist of using chemical elicitors such as ethanol, butan-1-ol, dimethylsulfoxide and homoserine lactones (C4-HSL, 3-oxo-C12-HSL and 3-OH-C12-HSL). The effects of concentration and time addition of these compounds were studied and ethanol mode of action was investigated. * the second strategy is a physico-chemical innovative approach that modifies bacterial metabolism using a polarized electrod. Platinum, carbon and stainless steel electrodes with varied topographies were used to study the effect of the potential, versus a saturated calomel electrode (SCE), on the growth of S. algeriensis and DTPs production. Our results show that the addition of pure ethanol and dimethylsulfoxide, at the beginning of the culture (t0), in respective concentrations of 1,74 % v/v and 3 % v/v increases DTPs specific production. This one was multiplied by nineteen-fold in presence of ethanol and by six-fold in presence of dimethylsulfoxide. In the case of ethanol, the induction of DTPs biosynthesis is mediated by reactive oxygen species (ROS). Furthermore, simultaneous addition of C4-HSL and 3-oxo-C12-HSL in multiple doses of 500 µM increases DTPs specific production by 2,5 fold. In presence of polarized platinum and carbon electrodes mycelium development of S. algeriensis is thicker than that grown on stainless steel electrode. Although, under - 0,3 V/SCE, high DTPs concentrations were quantified in comparison to other conditions tested
Galais, Mathilde. "L'autophagie induite par les glycoprotéines de l'enveloppe du VIH-1 dégrade les peroxysomes : rôle dans la mort des lymphocytes T CD4 non infectés." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT017/document.
Повний текст джерелаThe development of AIDS (Acquired ImmunoDeficiency Syndrome) in HIV-1 (Human Immunodeficiency Virus)-infected patients is characterized by a progressive decrease in the number of CD4 T cells. The majority of dying cells are noninfected and called bystander CD4 T cells. In 2006, our team demonstrated that the contact between infected cells (expressing the envelope glycoproteins (Env)) and non-infected cells (expressing the CD4 and CXCR4 receptors) was responsible for enhancing the autophagic pathway which lead to their cellular death by apoptosis. The autophagicpathway is involved in the degradation of cytoplasmic material after its sequestration into vacuoles wherein it will be degraded and then recycled. This process can be highly selective through the involvement of receptor proteins such asp62 or NBR1.We aim at understanding how Env-mediated autophagy can lead to apoptosis in bystander CD4 T cells. A precedent workof our team showed that the changes induced by Env in bystander CD4 T cells included the production of reactive oxygen species (ROS) leading to an oxidative stress state. We showed that the oxidative stress induced by Env is involved in thecellular death by apoptosis of bystander CD4 T cells. We also show that the autophagic process involved has to be a degradative process to lead these CD4 T cells to their death by apoptosis. Moreover, we have observed that Env-mediatedautophagy was degrading peroxisomal proteins. Peroxisomes are essential organelles in the cell responsible partly for the detoxification of ROS in the cell. Their number is regulated through a selective autophagic degradation known aspexophagy.Therefore, we hypothesized that Env induced a selective degradation by autophagy of the cell antioxidant system in bystander CD4 T cells. Since peroxisomes are responsible for regulating the cellular response to an oxidative stress state, their selective degradation could prevent the cell from overcoming this event and eventually lead to its death by apoptosis. In conclusion, we are showing that Env-mediated autophagy degrades important antioxidant systems which are a key survival factor necessary to the bystander CD4 T cells to reduce the oxidative stress induced by Env
Wang, Huan. "Multiphotonic study of a new NADPH-derivative compound targeting NO-synthase." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00958076.
Повний текст джерелаLakhal, Raja. "Etude de l'effet de l'oxygène sur la physiologie et le métabolisme de la bactérie hyperthermophile anaérobie thermotoga maritima." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10052/document.
Повний текст джерелаBatch cultures of the hyperthermophilic bacterium Thermotoga maritima were performed in a bioreactor where O2 concentrations in the gas phase were strictly controlled. At 80°C and pH 7, we demonstrated that T. maritima survived despite being exposed to oxygen at different times and that it consumed it. O2 uptake rate was estimated at 73.6 µmoles O2 min-1g proteins-1 during a short exposure to O2 (30 minutes). A long time exposure of T. maritima cultures to oxygen (20h) led to a drastic reduction in growth, together with a shift in glucose metabolism towards lactate instead of acetate production and a stop in H2 production. Under these conditions, it has been observed that 73% of glucose was partially oxidised by using both Embden-Meyerhof and Entner-Doudoroff glycolytic payhways. Uncomplete oxidation of glucose is correlated to a reduction of O2 to H2O. Transcription analyses revealed that this reductive process of O2 involved enzymes like peroxidases [activation of alkyl hydroperoxide reductase (ahp), bcp1 and thioredoxin-dependent thiol peroxidase (bcp 2)]. Moreover, genes encoding reactive oxygen species (ROS)-scavenging systems (neelaredoxin and rubrerythrin), were found to be upregulated during oxygen exposure. The oxygen reductase FprA, which expression was shown to depend on the redox level of the culture medium, is proposed as a primary consumer of O2. All these enzymes are essential for T. maritima to consume O2 consumption and to fight against the toxic effects of ROS in cells
Song, Zhimin. "Le rôle des phosphoinositides dans la régulation de l’activation de la NADPH oxydase des neutrophiles." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS152.
Повний текст джерелаThe NADPH oxidase of the professional phagocyte is essential for the immune system. The phagocyte NADPH oxidase, NOX2, catalyze the reduction of molecular oxygen to superoxide. Superoxide is transformed rapidly into other reactive oxygen species (ROS) which play a critical role in the killing of pathogens in host defense. Indeed neutrophils, the first cells that arrive at the site of infections, engulf pathogens in a process called phagocytosis. The production of reactive oxygen species is then triggered by the NADPH oxidase in the phagosome. The importance of ROS production is demonstrated by the recurrent bacterial and fungal infections that face patients who lack functional NADPH oxidase as in the rare genetic disorder known as the chronic granulomatous disease (CGD). Upon stimulation by bacterial peptide or in some pathological conditions, NADPH oxidase can also be activated at the phagocyte plasma membrane producing ROS in the extracellular medium. So, an excessive or inappropriate NADPH oxidase activation generates oxidative stress involve in chronic inflammation, cardiovascular disease and neurodegenerative disease. The NADPH oxidase activity should be tightly regulated. The activity of the enzyme is the result of the assembly of cytosolic subunits (p47phox, p67phox, p40phox and Rac2) with membranous subunits (gp91phox and p22phox). P67phox regulates the electron flow through gp91phox from NADPH to oxygen leading to the formation of superoxide. Recent data indicate that the anionic phospholipids are important for the NADPH oxidase regulation. Moreover, p40phox and p47phox bear a PX domain that binds respectively phosphatidylinositol3-phosphate (PI3P) and phosphatidylinositol (3,4)-bisphosphate(PI(3,4)P2). Our objective was to decipher the importance of these phosphoinositides on the NADPH oxidase activity. We first examined the role of PI3P, which is present on the cytosolic leaflet of phagosome after its sealing, in NADPH oxidase activation. Our data indicate that p40phox works as a late adaptor controlled by PI3P to maintain p67phox in the NADPH oxidase complex. Thus, PI3P acts as a timer for NADPH oxidase assembly. We then examined the role of PI(3,4)P2 in the activation of the NADPH oxidase assembled at the plasma membrane. PI(3,4)P2 and PI(3,4,5)P3 are formed at the plasma membrane, upon neutrophil activation, by phosphorylation by Class I PI3K of respectively PI4P and PI(4,5)P2. We found that class I PI3K activity is required to maintain the integrin-dependent activation of NADPH oxidase at the plasma membrane
Ismail, Liliane. "Étude de la dégradation de la sulfaclozine par les radicaux OH• et SO4•– et évaluation de l'influence des principaux constituants des eaux sur ces dégradations." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1108/document.
Повний текст джерелаIn this work, we studied the degradation of the antibiotic sulfaclozine in aqueous solutions by photocatalysis (on TiO2 suspensions) as well as by persulfate ions. The use of specific inhibitors (KI and alcohols) allowed us to understand the intervention of each of the reactive species (electrons, holes, radicals •OH) in the degradation of sulfaclozine. In addition, the identification of the by-products by LC-MS / MS and the monitoring of their appearance and disappearance kinetics, allowed us to propose a photocatalytic degradation mechanism involving TiO2 holes, •OH radicals, electrons, and O2•– radicals. We also evaluated several methods for persulfate activation (UV, sunlight, UV / TiO2 and Fe (II)) to generate SO4•–. We have shown that at pH 7, the system having the highest efficiency, regardless of persulfate concentration, was the UV/TiO2/K2S2O8 system. The use of specific inhibitors of •OH and SO4•– radicals showed that pH has a significant effect on the role of each of these radicals in the sulfaclozine degradation. Moreover, the reaction rate constants of sulfaclozine with •OH radicals and with SO4•– radicals were determined and close values were found (?109 M-1s-1). We also studied the effect of the main water constituents on the degradation of sulfaclozine in the following three systems: UV/TiO2, UV/TiO2/K2S2O8 and UV/K2S2O8. This study showed that bicarbonate and phosphate accelerated the photocatalytic degradation of sulfaclozine while no effect was observed in the UV/K2S2O8 system. Regarding chloride and nitrate ions, we obtained an enhancement in sulfaclozine adsorption on the surface of TiO2 but no significant enhancement of the degradation rate was observed
Valenta, Hana. "Live-cell investigation of the NADPH oxidase active state using fluorescent proteins and quantitative spectro-microscopies." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF010.
Повний текст джерелаIn living cells, dynamic interactions between proteins play a key role in regulating many signaling pathways and biochemical events. It is also the case of the phagocyte NADPH oxidase (NOX), a key enzyme of the innate immune system. It generates superoxide anions (O₂•⁻), precursors of reactive oxygen species (ROS), such as hydrogen peroxide or hydroxyl radical that are critical for host responses to microbial infections. The NADPH oxidase is a protein complex composed of six subunits; two membrane proteins (NOX2 and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of all cytosolic subunits with the membrane-bound components, whereby proteinprotein interactions play an important role. Lack of the NADPH oxidase activity leads to chronic granulomatous disease (CGD) characterized by severe and recurrent infections. On the other hand, enhanced levels of ROS contribute to cardiovascular and neurodegenerative diseases. Thus, the NADPH oxidase activity needs to be tightly regulated in order to maintain physiological levels of ROS. Understanding the NADPH oxidase machinery at the molecular level will help to identify the key aspects of its enzyme activity and thereby potential therapeutic targets. The aim of my PhD project was to investigate the active state of the NADPH oxidase in living cells using state of the art fluorescence microscopy strategies. To detect the protein-protein interactions Förster Resonance Energy Transfer (FRET) measured by fluorescence lifetime imaging microscopy (FLIM) was a method of choice. As the FRET phenomenon occurs only between fluorophores in close proximity (< 10 nm), it is well-suited to reveal interactions of the NADPH oxidase subunits labeled by fluorescent proteins at nanoscale level, but also it provides information about the topology of the enzyme complex. FRET-FLIM was performed either with separated NOX subunits or with a chimeric fusion protein called “Trimera”. The Trimera is composed of the essential domains of the cytosolic proteins p47phox, p67phox and Rac1, enabling constitutive, robust NADPH oxidase activity in cells without the need of a stimulant. First, we worked with the individual FP-labeled cytosolic subunits in COSNOX cells (stably expressing NOX2/p22phox subunits) or macrophages and compared PMA and arachidonic acid as activators of the NADPH oxidase in terms of the activation kinetics and the total ROS production. By introducing mutations into the p47phox and p67phox subunits we were able to modulate the oxidase activity. The final validated working conditions were explored by TIRF microscopy, an imaging method allowing selective excitation of the fluorophores situated in the vicinity of the plasma membrane, and thus enabling to monitor the realtime formation of the active NADPH oxidase complex. We also focused on NOX2, the catalytic center of the NADPH oxidase that we labeled by FPs and prepared for further FRET-FLIM experiments aiming the investigation of NOX2/cytosolic subunits interactions. Second, we employed the Trimera that acts as a single activating protein of the NADPH oxidase. FRET-FLIM experiments revealed that theFP-Trimera forms clusters in the plasma membrane. The continuous long-term NOX activity elicited by the Trimera was also examined in terms of consequences on the physiology of living cells. We showed that the sustained ROS production leads to acidification of the intracellular pH and triggers apoptosis
He, Tiantian. "Studying the Role of Peroxiredoxin 1 in ROS Modulation and Drug Resistance." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112139.
Повний текст джерелаPeroxiredoxins have multiple cellular functions as major antioxidants, signaling regulators, molecular chaperones and tumor suppressors. Peroxiredoxin 1 (Prx1) is the most abundant among the six isoforms of human peroxiredoxins. It is frequently over-expressed in various cancer cells, which is known associated with carcinogenesis, metastasis and resistance to radiotherapy or chemotherapy. Prx1 could thus be an interesting anticancer target. In this study, we first evaluated the impact of Prx1 knockdown (Prx1–) on cellular sensitivity to dozens of anticancer drugs including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D, and 5-fluorouracil, and of reactive oxygen species (ROS)-generating agents, including hydrogen peroxide, 2-phenylethyl isothiocyanate, β-lapachone (β-lap) and menadione. We observed that Prx1 knockdown significantly enhanced cancer cell sensitivity to β-lap and menadione, two naphthoquinones with anti-cancer activity.We first investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to β-lap in a Prx1 knockdown context. Prx1 knockdown markedly potentiated β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent and associated with the phosphorylation of c-Jun N-terminal kinases (JNK), protein 38 (p38) and extracellular signal-regulated kinases (Erk) proteins in mitogen-activated protein kinase (MAPK) pathways, and a decrease in thioredoxin 1 protein levels. Based on the fact that Prx1 is a major ROS scavenger and a partner of apoptosis signaling kinase 1 (ASK1) and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through the combined action of ROS accumulation and MAPK pathway activation, leading to cell apoptosis.We then investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to menadione in Prx1– cells. Enhanced sensitivity to menadione was associated with a rapid and significant intracellular ROS accumulation and necroptotic-like cell death. Menadione-induced ROS accumulation occurred immediately in the cytosol, the nucleus, and even more noticeably in the mitochondrial matrix, correlated with significant oxidation of both mitochondria-localized thioredoxin 2 and peroxiredoxin 3. Prx1 knockdown significantly up-regulated mRNA and protein levels of NRH: quinone oxidoreductase 2 (NQO2). Increased activity of NQO2 was largely responsible for menadione-induced ROS accumulation and consequent cell death. Our data indicate that massive ROS accumulation results from the combined effect of increased ROS generation by higher NQO2 activity during menadione metabolism, and diminished Prx1 scavenging activity. Finally and noteworthy, the metabolic pathways that lead to ROS accumulation, downstream signaling pathways and cell death mechanisms appear to be distinct for β-lap and menadione
Wu, Hui-Chen. "Molecular bases of the heat shock response in plants : identification of elements involved in HS transduction pathway and in the cross talk between HS and oxidative stress." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20125.
Повний текст джерелаWhile being unable to escape their lands, plants are continuously submitted to the modifications of their environment, and need to adjust proper physiological processes in response to various stimuli. During this work, I devoted my studies on two major stresses affecting plant development, heat shock (HS) and oxidative stresses (OS), focusing on key elements in these pathways (HS chaperons and HS-related thioredoxins) in order to bring news elements of knowledge and interconnexion of these pathways.Using rice and soybean as mono- and dicotyledonous plant systems, I show how HS leads to calcium release from plant cell apoplast to the cytosol in a typical calcium signature, conferring cell wall rigidity and enhancing HS signaling pathway. I also identify Pectin Methylesterase as required in this pathway for cell wall remodeling and plasma membrane integrity. I further investigate how plant sense temperature increases and how they transmit the HS signal to downstream elements. Using systematic analyses of Calmodulin (CaM) and small heat shock protein (sHsp) gene expression, I identify one CaM as a coordinator of HS response, which I characterize as involving specific cytosolic/nuclear isoforms of the sHsp family.I latter perform the molecular analysis of TDX, a Thioredoxin suspected to be involved in heat shock response. I show that TDX interacts with cytosolic/nuclear members of the Hsp70 family in a redox dependent manner, both HS and OS inducing its nuclear relocation, and that TDX is required for both acquired thermotolerance and OS signaling.I finally discuss the data brought by this work and propose models with cross-talks between HS and oxidative stress signaling
Moné, Yves. "Bases moléculaires du polymorphisme de compatibilité dans l'interaction Schistosoma mansoni / Biomphalaria glabrata." Phd thesis, Université de Perpignan, 2011. http://tel.archives-ouvertes.fr/tel-00608477.
Повний текст джерелаBoulghobra, Doria. "Développement de stratégies naturelles de cardioprotection : Quel rôle pour la mitochondries ? Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Sinapine, but not sinapic acid, counteracts mitochondrial oxidative stress in cardiomyocytes." Thesis, Avignon, 2021. http://www.theses.fr/2021AVIG0718.
Повний текст джерелаCardiovascular ischemic heart disease remains one of the main cause of morbidity and mortality worldwide. Reperfusion is essential to blunt cell death during ischemia. However, post-ischemic reperfusion exacerbates cell death during the first minute of reperfusion. This is mainly explained by the activation of the mitochondrial permeability transition pore (mPTP). A vicious circle between overproduction of mitochondrial ROS (mtROS) and matrix mitochondrial calcium overload (Ca2+) is proposed today as a main trigger of mPTP activation during IR. Thus, the aim of this work, was to i) proposed new strategy to blunt this vicious circle and protect mitochondria during IR or ii) better understand the underlying mechanisms of natural cardioprotective strategy. Targeting mitochondria with antioxidant is a promising strategy. In this work, we identified a natural antioxidant, sinapine, able to target mitochondrial oxidative stress. We reported that sinapine but not sinapic acid limit mitochondrial oxidative stress and ROS production during cardiac IR. In our second study, we decipher the role of nitric oxide in exercise-induced cardioprotection. We reported that exercise training resulted in eNOS translocation to mitochondria which impact the bioavailability of NO and the S-nitrosylation of mitochondrial key proteins involved in cardioprotection. Finally, we reported that S-nitrosylation played a key role in the protection of mitochondria during stress situations mimicking cardiac ischemia-reperfusion. Keywords
Hameren, Gerben van. "Mitochondrial physiology within myelinated axons in health and disease : an energetic interplay between counterparts." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT084/document.
Повний текст джерелаThe nervous system consists of several cell types that interact with each other in order to conduct action potentials from the neuronal soma through axons to the synapse. In peripheral nerves, Schwann cells interact with neurons by wrapping around the axon and creating a myelin sheath. This myelin sheath allows for fast conduction of action potentials from node of Ranvier to node of Ranvier, which are small unmyelinated areas of the axon. In addition, Schwann cells transfer lactate to the neuron, which the axonal mitochondria use to produce energy in the form of ATP. This is necessary, because many cellular processes, such as the conduction of action potentials use ATP. The production of ATP involves three mechanisms: anaerobic glycolysis in the cytosol and the Kreb’s cycle and electron transport chain within mitochondria. However, the production of ATP by mitochondria also results in the production of reactive oxygen species (ROS), which cause cell damage. ROS can be present in several different forms and these different forms have specific properties. For example, superoxide anions are highly reactive and subsequently react rapidly with the molecules in their environment. Hydrogen peroxide on the other hand is less reactive but hence can diffuse over longer distances and react with their targets more distally. Fortunately, the cell contains a competent antioxidant system, which can reduce ROS to water. When mitochondria malfunction or when the equilibrium between ROS and antioxidants becomes in disbalance, neuropathies can develop, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer’s disease or Parkinson’s disease. In the PNS, peripheral neuropathies can develop such as Charcot-Marie-Tooth disease as a result from an excess of ROS.In this thesis, I will provide an elaborate model for ATP and ROS production by axonal mitochondria in vivo. I will show how Schwann cells use the Warburg effect, the shift in metabolism from oxidative phosphorylation to anaerobic glycolysis, to produce lactate, which is then transported to the neuron for energy production. I also demonstrate that without the Warburg effect in Schwann cells neuronal metabolism would be impaired, leading to impaired ATP production, neuronal deficits and motor problems. Following action potential firing, not only ATP is produced by mitochondria, but also ROS, although with independent dynamics. In addition, I show that mitochondrial physiology is affected by several neuropathologies. In mitofusin2 deficient mice, a model for CMT2A, contact between the endoplasmic reticulum and mitochondria is impaired next to affected mitochondrial morphology and function. Also demyelination causes deficits in mitochondrial ATP and ROS production, showing a pathologic decoupling between ATP and ROS.To obtain these results, advanced imaging techniques were used to image peripheral nerves of transgenic mice. These transgenes were introduced in mice via injection of viral vectors which induce expression of fluorescent probes in neuronal cells. These fluorescent probes were detected via multiphoton microscopy. Next to the model for ATP and ROS production in peripheral nerves, I provide a protocol for introducing viral vectors into mouse sciatic nerves
Pierre, Anne-Sophie. "Le métabolisme des acides gras monoinsaturés et la prolifération des cellules cancéreuses coliques : rôle de la Stéaroyl-CoA Désaturase-1 et effets des isomères conjugués de l'acide linoléique." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-01017782.
Повний текст джерелаTardif, Valérie. "GLP, une nouvelle protéine associée au récepteur AT1, induit de l'hypertrophie dans les cellules du tubule proximal du rein du rat." Thèse, 2004. http://hdl.handle.net/1866/15275.
Повний текст джерелаMaachi, Hasna. "Étude de l’expression de « Bcl-2 modifying factor » (Bmf) et son implication dans la néphropathie diabétique." Thèse, 2013. http://hdl.handle.net/1866/10890.
Повний текст джерелаObjective: To investigate the mechanisms underlying tubular apoptosis in diabetes by identifying pro-apoptotic genes that are differentially upregulated by reactive oxygen species in renal proximal tubular cells (RPTCs) in models of diabetes. Research Design and Methods: Total RNAs isolated from renal proximal tubules (RPTs) of 20 week-old heterozygous db/m+, db/db and db/db catalase (CAT)-transgenic (Tg) mice were used for DNA chip microarray analysis. Real time-quantitative polymerase chain reaction assays, immunohistochemistry and mice rendered diabetic with streptozotocin were used to validate the pro-apoptotic gene expression in RPTs. Cultured rat RPTCs were used to confirm the apoptotic activity and regulation of pro-apoptotic gene expression. Additionally, studies in kidney tissues from patients with and without diabetes were employed to confirm enhanced pro-apoptotic gene expression in RPTs. Results: Bcl-2-modifying factor (Bmf) was differentially upregulated (p<0.01) in RPTs of db/db mice as compared to db/m+ and db/db CAT-Tg mice and in RPTs of streptozotocin-induced diabetic mice in which insulin reversed this finding. In vitro, Bmf cDNA overexpression in rat RPTCs co-immunoprecipated with Bcl-2, enhanced caspase-3 activity and promoted apoptosis. High glucose (HG, 25 mM) induced Bmf mRNA expression in RPTCs, while rotenone, catalase, diphénylèneiodonium and apocynin decreased it. Knockdown of Bmf with small interference RNA reduced HG-induced apoptosis in RPTCs. Importantly, enhanced Bmf expression was detected in RPTs of kidneys from patients with diabetes. Conclusion: These data demonstrate differential up-regulation of Bmf in diabetic RPTs and suggest a potential role for Bmf in regulating RPTC apoptosis and tubular atrophy in diabetes.
Ghosh, Anindya. "Mécanisme(s) d'action de l'insuline dans la prévention de l'hypertension et la progression de la tubulopathie dans le diabète : rôle de hnRNP F, Nrf2 et Bmf." Thèse, 2018. http://hdl.handle.net/1866/21837.
Повний текст джерела