Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: ERYTHROPOIETIC DIFFERENTIATION.

Дисертації з теми "ERYTHROPOIETIC DIFFERENTIATION"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-20 дисертацій для дослідження на тему "ERYTHROPOIETIC DIFFERENTIATION".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zhang, Ji. "Mechanisms of erythroid proliferation and differentiation analysis of the role of erythropoietin receptor in the friend virus model /." View the abstract Download the full-text PDF version (on campus access only), 2008. http://etd.utmem.edu/ABSTRACTS/2008-025-JiZhang-index.html.

Повний текст джерела
Анотація:
Thesis (Ph.D. )--University of Tennessee Health Science Center, 2008.
Title from title page screen (viewed on October 7, 2008 ). Research advisor: Paul A. Ney, M.D. Document formatted into pages (xi, 122 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 78-110).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dobocan, Monica Crisanti. "Chaperonin 10: an endothelial-derived, erythropoietin- dependent differentiation factor." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40690.

Повний текст джерела
Анотація:
Erythropoietin (EPO) stimulates endothelial cells to produce various factors that support the formation of erythroid cells. We identified by 2D electrophoresis/mass spectrometry one such factor as being chaperonin 10 (cpn10). Cpn10 was released in human umbilical vein endothelial cells (HUVEC) medium after EPO treatment; it decreased the proliferation of the erythroleukemic K562 cells, while stimulating differentiation in the erythroid TF-1 cells and skin fibroblasts. We analyzed the early events initiated by the addition of cpn10 in K562 and TF-1 cells and found significant changes in the phosphorylation levels of glycogen synthase kinase 3 (GSK-3) and cofilin-1. Further experiments using GSK-3 inhibitors in the presence or absence of cpn10 showed an alteration in the proliferation and differentiation patterns previously observed in TF-1 cells, suggesting a possible role for GSK-3 in cell differentiation as part of the signal transduction pathway triggered by cpn10. This is the first evidence linking cpn10 to erythropoiesis.
L’érythropoïétine (EPO) stimule les cellules endothéliales à produire différents facteurs qui soutiennent la formation des érythrocytes. En effectuant une électrophorèse-2D / spectrométrie de masse, on a identifié la chapéronine10 (cpn10) comme étant un de ces facteurs. Cpn10 est secrétée par les cellules endothéliales HUVEC après un ajout d’EPO; elle diminue la prolifération des cellules érythroleucémiques K562 et elle stimule la différentiation des érythrocytes TF-1 et des fibroblastes. On a observé qu’une des actions immédiates initiées par cpn10 dans les cellules K562 et TF-1 était de changer significativement la phosphorylation de GSK-3 (glycogen synthase kinase 3) et cofilin-1. Des inhibiteurs de GSK-3 utilisés en présence de cpn10 ou seuls ont altéré le processus de prolifération et différentiation observés auparavant avec les cellules TF-1, en suggérant ainsi que GSK-3 puisse jouer un rôle dans la différentiation cellulaire déclenchée par cpn10. C’est la première fois qu’un lien est décrit entre cpn10 et l’érythropoïèse.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Raimbault, Anna. "Le ribosome au cours de l'érythropoïèse." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB251.

Повний текст джерела
Анотація:
La biogenèse du ribosome est un processus indispensable à la prolifération cellulaire car elle permet la synthèse protéique assurant la croissance avant la division cellulaire. Les ribosomopathies telles que le syndrome myélodysplasique 5q- et l’anémie de Blackfan-Diamond sont dues respectivement à une mutation d’un gène codant une protéine ribosomique (RP) et à l’haploinsuffisance en RPS14, RP de la petite sous-unité du ribosome. Les patients atteints de l’une de ces ribosomopathies présentent un défaut de l’érythropoïèse suggérant que celle-ci est particulièrement dépendante du ribosome. L’érythropoïèse est le processus qui permet la formation de globules rouges à partir de cellules souches hématopoïétiques et consiste en différents stades de différenciation appelés érythroblastes. C’est dans ce contexte que je me suis intéressée au ribosome au cours de l’érythropoïèse. Dans un premier temps, nous avons caractérisé la biogenèse du ribosome dans des cellules érythroïdes primaires humaines et murines. Pour cela nous avons adapté une technique de SILAC pulsé et mis au point la ribomique, technique de protéomique permettant l’analyse de la biogenèse du ribosome dans des échantillons de cellules primaires basée sur l’identification presque exhaustive des protéines ribosomiques. À l’aide de la ribomique et par d’autres techniques, nous avons mis en évidence une diminution de la biogenèse du ribosome après le stade érythroblaste basophile. Nous avons également montré que cette biogenèse du ribosome est en partie sous le contrôle de la voie mTORC1 régulée par les deux cytokines fondamentales de l’érythropoïèse : le Stem Cell Factor (SCF) et l’érythropoïétine (EPO). L’expression par l’érythroblaste des récepteurs des deux cytokines permet une biogenèse du ribosome optimale. L’inhibition de la biogenèse du ribosome par le CX-5461, inhibiteur spécifique de l’ARN polymérase I, ou par la rapamycine, inhibiteur de mTORC1, entraîne une accélération de la différenciation érythroïde soulignant un rôle de la biogenèse du ribosome au cours de l’érythropoïèse. L’inhibition de la voie mTORC1 modifie l’ordre de clivage de l’ARNr, reflet d’une modification de sa maturation. Les expériences de ribomique dans les érythroblastes humains ont également permis de mettre en évidence la présence de paralogues de RP et la sous-représentation de certaines RPs au sein des ribosomes suggérant une hétérogénéité des ribosomes dans les érythroblastes humains. Parallèlement, un modèle mimant le syndrome 5q- a été développé par une approche shRPS14 dans une lignée humaine érythroleucémique dépendante de l’EPO. L’inhibition de RPS14 entraîne un défaut de biogenèse de la sous-unité 40S du ribosome aboutissant à une diminution des ribosomes entiers formés et une diminution de la traduction globale. Cependant une traduction est maintenue. Le défaut de biogenèse de la sous-unité 40S entraîne une augmentation de la quantité de c-KIT, récepteur du SCF et une diminution de la quantité de GATA1, facteur de transcription spécifique de l’érythropoïèse. Nous avons mis en évidence que la diminution de GATA1 est due à une diminution de sa traduction tandis que la traduction d’autres protéines est conservée dans ce contexte d’altération de la biogenèse du ribosome. Nous avons ensuite réalisé une analyse des transcrits présents dans les fractions polysomales correspondants à la traduction la plus efficace. Nous avons montré grâce à ce traductome que les propriétés thermodynamiques des parties 5’ et 3’UTR des ARNm modulent leur traduction dans le contexte d’inhibition de RPS14. Ces données suggèrent que l’altération de la biogenèse du ribosome peut aboutir à une modification du programme traductionnel. Ce travail montre que la biogenèse du ribosome diminue au cours de l’érythropoïèse et participe à la différenciation érythroïde. La voie mTORC1 participe au contrôle de cette biogenèse
Ribosome biogenesis is a key event allowing cell growth before division. Defective RB recognized in ribosomopathyinherited Diamond-Blackfan anemia and 5q- syndrom. In this study, we aimed at investigating the regulatory role of RB during the erythroid precursor maturation which is characterized by a cell size reduction during 2 to 3 rapid cell divisions. We used two in vitro systemsé of expansion and differentiation of erythroblasts (E.) derived of immature hematopoietic progenitors from human mobilized peripheral blood or mouse fetal liver. The expansion step is supported by the Stem Cell Factor (SCF) and the second step depends on erythropoietin (EPO). The structure of the nucleolus was studied by electron microscopy. Compared to immature proerythroblasts (proE), a dramatic size reduction and change in nucleolar structure (ie. the disappearance of fibrillar and dense fibrillar components) is observed at the stage of mature polychromatophilic E. suggesting a loss of functionality. RB was measured by a pulsed SILAC (Stable Isotopic Labeling by Amino acids in Culture cell) proteomic assay that quantified the incorporation of newly synthesized ribosomal proteins in the ribosome. Both in mouse and human models, immature proE expanded upon SCF and EPO demonstrate a maximal RB with a renewal rate of 60% and 50% every 14h and 24h, respectively. By contrast, RB rapidly interrupted with the disappearance of proE and basophilic E after the switch to EPO alone. Consistently, the quantities of ribosomal RNA (rRNA) 45S precursor estimated by qPCR are maximal in proE and almost null in orthochromatophilic E. Inhibition of RB at proE stage by RNApol I specific inhibitor (CX-5461) accelerates the onset of terminal erythroid differentiation suggesting that RB is a rate limiting factor for final maturation. We then hypothesize that degree of signaling intensity in response to SCF and EPO may control the level of RB. To address this question, we investigated the mTORC1 (mechanistic Target Of Rapamycin Complex 1) pathway which is directly involved in RB through its substrate p70S6Kinase. Activation of P-p70S6Kinase and P-Rps6, as well as ribosome renewal, are twice more elevated in response to SCF and EPO than to EPO alone. Furthermore, inhibition of mTORC1/p70S6K/Rps6 pathway by rapamycin disrupts RB and leads to an acceleration of terminal erythroid differentiation.This study demonstrates that the collapse of RB promotes erythroid cell terminal maturation and shows the regulatory role of mTORC1 pathway on RB during erythropoiesis
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bin, Sofia <1990&gt. "Erythropoietin reduces pathogenic humoral immunity by inhibiting T Follicular Helper cell differentiation and function." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9694/1/TesiPhD_SofiaBin_Final.pdf.

Повний текст джерела
Анотація:
A large fraction of organ transplant recipients develop anti-donor antibodies (DSA), with accelerated graft loss and increased mortality. We tested the hypothesis that erythropoietin (EPO) reduces DSA formation by inhibiting T follicular helper (TFH) cells. We measured DSA levels, splenic TFH, TFR cells, germinal center (GC), and class switched B cells, in murine models of allogeneic sensitization, allogeneic transplantation and in parent-to-F1 models of graft versus host disease (GVHD). We quantified the same cell subsets and specific antibodies, upon EPO or vehicle treatment, in wild type mice and animals lacking EPO receptor selectively on T or B cells, immunized with T-independent or T-dependent stimuli. In vitro, we tested the EPO effect on TFH induction. We isolated TFH and TFR cells to perform in vitro assay and clarify their role. EPO reduced DSA levels, GC, class switched B cells, and increased the TFR/TFH ratio in the heart transplanted mice and in two GVHD models. EPO did also reduce TFH and GC B cells in SRBC-immunized mice, while had no effect in TNP-AECM-FICOLL-immunized animals, indicating that EPO inhibits GC B cells by targeting TFH cells. EPO effects were absent in T cells EPOR conditional KO mice, confirming that EPO affects TFH in vivo through EPOR. In vitro, EPO affected TFH induction through an EPO-EPOR-STAT5-dependent pathway. Suppression assay demonstrated that the reduction of IgG antibodies was dependent on TFH cells, sustaining the central role of the subset in this EPO-mediated mechanism. In conclusion, EPO prevents DSA formation in mice through a direct suppression of TFH. Development of DSA is associated with high risk of graft rejection, giving our data a strong rationale for studies testing the hypothesis that EPO administration prevents their formation in organ transplant recipients. Our findings provide a foundation for testing EPO as a treatment of antibody mediated disease processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vieillevoye, Maud. "Role and expression of transferrin receptor 2 in erythropoiesis." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05S020.

Повний текст джерела
Анотація:
L’érythropoïèse est le processus de différentiation d’un progéniteur érythroïde multipotent en globules rouges. La différentiation érythroïde est essentiellement contrôlée par le récepteur à l’érythropoïétine (EPOR). Nous avons montré que le récepteur à la transferrine de type 2 (TFR2) est un membre important du complexe formé par l’EPOR. Le TFR2 présente, comme l’EPOR une expression restreinte qui dépend du type cellulaire. Ainsi son expression n’a pu être détectée que dans le foie, l’érythron et l’intestin grêle. Le rôle du TFR2 a été exploré dans les hépatocytes et il a été montré qu’il joue le rôle d’un senseur de fer dans cette lignée et de ce fait contribue à l’homéostasie du fer. Nous avons déterminé le rôle du TFR2 dans les érythroblastes et montré que TFR2 est une protéine escorte de l’EPOR qui contribue à l’érythropoïèse in vitro et in vivo. De plus, nos travaux montrent que le TFR2 est requis pour la production de GDF15 (Growth Differentiation Factor 15) dans les érythroblastes. D’autre part nous avons démontré que la production de GDF15 est augmentée par l’EPO, la déplétion intracellulaire en fer et l’activité transactivatrice de P53. L’inhibition de l’expression de P53, réalisée au cours de l’étude de son rôle dans la production de GDF15, a révélé son implication dans l’érythropoïèse normale. Nous avons mis en évidence l’existence de plusieurs formes du TFR2. Deux d’entre elles résultent de l’utilisation de sites distincts d’initiation de la traduction. Ces deux isoformes sont régulée différemment au cours de la maturation des érythroblastes. La troisième isoforme, appelée TFR2 soluble (sTFR2), est relargée dans le plasma suite au clivage du TFR2. Nous avons montré que la production du sTFR2 est inhibée en présence du ligand de TFR2, la transferrine saturée en fer (holoTF) alors que le TFR2 est stabilisé dans ces mêmes conditions. Les rôles spécifiques des trois formes du TFR2 doivent encore être élucidés
Erythropoiesis is the differentiation process of a multipotent erythroid progenitor into red blood cells. Erythroid differentiation is primarily controlled by the erythropoietin receptor (EPOR). We showed that the Transferrin receptor 2 (TFR2) is an important member of the EPOR complex. TFR2 has like EPOR a lineage-restricted expression and can solely be detected in the liver, erythron and small intestine. TFR2 function has been explored in hepatocytes where it plays the role of an iron sensor and contributes to iron homeostasis. We determined the role of TFR2 in erythroblasts and showed that TFR2 is an escort protein for EPOR that contributes to optimal erythropoiesis in vitro and in vivo. Moreover we evidenced that TFR2 is absolutely required for the production of Growth differentiation factor 15 (GDF15) in erythroblasts. We further demonstrated that GDF15 production is increased by EPO levels, by intracellular iron depletion as well as by P53 trans-activation activity. The inhibition of P53 expression, realized for the study of its role in GDF15 production, revealed its implication in normal erythropoiesis. We evidenced that TFR2 is expressed under several forms, two of which result from the utilization of distinct translational initiation sites. These two isoforms are differently regulated during erythroid maturation. The third form called soluble TFR2 (sTFR2) is released in the plasma after TFR2 cleavage. We showed that sTFR2 production is inhibited in the presence of TFR2 ligand, iron loaded transferrin (holoTF) whereas cell surface TFR2 expression is stabilized by holoTF. The specific roles of the three forms of TFR2 expressed by erythroblasts remain to be elucidated
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Penglong, Tipparat. "Molecular Basis of Erythroid Cell Proliferation and Differentiation." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA11T022.

Повний текст джерела
Анотація:
Pour assurer la production de milliards de globules rouges, l’érythropoièse doit parfaitement contrôler les processus de prolifération et de différenciation. Ces deux processus sont régulés par l’expression de gènes spécifiques dépendant d’une coordination entre l’activité des facteurs de transcription (FT) et les fonctions épigénétiques portées par exemple par les protéines à bromodomaine. Cette étude se concentre sur les conséquences de l’association ou la dissociation du FT clef de l’érythropoièse GATA-1 avec les FT déterminant pour le cycle cellulaire, pRb et E2F. Dans la première partie de ma thèse, j’ai participé à l’étude du rôle de l’association/dissociation de GATA-1 et FOG-2 avec pRb/E2F dans le contrôle la balance prolifération/différenciation cellulaire. Nos résultats montrent que les souris exprimant une mutation de GATA-1 sur la sérine 310 (GATA-1S310A), qui a la capacité accrue à séquestrer E2F-2, présentent une anémie létale lorsqu’un mécanisme de compensation de production de E2F-2 induit par l’IGF-1 est inhibé. Puis, nous avons trouvé que les propriétés décrites pour GATA-1 sont partagées par le FT FOG-2 et montré que l’abrogation de sa fixation avec pRb induit une perturbation de l’adiposité dans des souris FOG-2pRb-. Dans la deuxième partie, l’expression de c-Myc étant régulé différentiellement par GATA-1 et E2F, j’ai testé si la drogue « JQ1 », premier inhibiteur épigenétique chimique de l’expression de c-Myc, pouvait contrôler l’érythropoièse. Pour cela, j’ai utilisé la ligné érythroleucémique UT7 qui prolifère sans se différencier en présence d’érythropoiétine (stade proérythroblaste). Les résultats montrent que le traitement par JQ1 bloque la prolifération des cellules UT7 et permet de réinitier le programme de différentiation érythroide terminale. J’ai alors recherché les mécanismes moléculaires impliqués dans cette régulation et trouvé que l’inhibition transcriptionnelle de c-Myc par JQ1 est associée à l’inhibition de l’activité transcriptionnelle de STAT5 sans modification de son état de phosphorylation. Enfin, j’ai montré que JQ1 pouvait avoir une activité comparable à celle du TGF-b mais sans implication les voies Smad. Des études in vivo montre que JQ1 augmente la viabilité cellulaire et accélère la maturation des cellules érythroides à la fois chez les souris sauvages et thalassémiques. Cette différence d’action de JQ1 sur l’érythropoièse normale et pathologique implique des modifications épigénétiques différentielles entre ces deux types cellulaires et sont à la base de nouvelles stratégies du traitement du cancer. Le rôle clef de la régulation de l’association/dissociation de GATA-1 ou FOG-2 avec pRb/E2F dans l’érythropoièse et l’adipogénèse, nous a conduit, dans une troisième partie, à déterminer in vivo, les conséquences physiologiques de la séquestration de E2F par pRb. Pour cela nous avons crée une souris transgénique exprimant de façon conditionnelle un peptide contenant la partie N terminale de GATA-1 qui se fixe à pRb (GATA-1Nter). In vitro, ce peptide séquestre E2F dans le complexe GATA-1Nter/pRb et inhibe la prolifération cellulaire de façon irréversible. In vivo, aucune souris transgéniques exprimant le peptide GATA-1Nter n’a pu être sélectionnée et une mortalité au stade embryonnaire est observée. Une expression induite de ce peptide au stade adulte ne produit que des souris chimériques avec une fréquence de recombinaison du transgène GATA-1Nter importante. L’établissement de lignées stables de souris exprimant le peptide GATA-1Nter permettra de déterminer les conséquences physiologiques de la séquestration de E2F dans le complexe GATA-1Nter/pRb
To ensure the generation of billions of erythrocytes daily, erythropoiesis must be well controlled by proliferation and differentiation processes. These two processes are regulated by expressions of specific genes, coordinated by transcription factors (TFs) and epigenetic factors, such as bromodomain proteins. This study focused on the effects of the binding and dissociation of a key erythroid TF, GATA-1, to the crucial cell cycle TFs, pRb and E2F. In the first part of this thesis, the role of GATA-1 and FOG-2 binding to pRb/E2F in a control balances between cell proliferation and differentiation was studied. Mice bearing a GATA-1 mutation (GATA-1S310A) displayed higher levels of E2F2 sequestration and suffered from fatal anemia when the compensatory pathway of E2F2 production via IGF-1 signaling was also inhibited. The properties described for GATA-1 were found to be common to FOG-2, and the abolition of FOG-2 binding to pRb led to obesity resistance in FOG-2pRb- mice. In the second part of this work, as c-Myc is regulated by GATA-1 and E2F, the first chemical epigenetic inhibitor repressing c-Myc expression to be described, JQ1, was investigated to see if it could control erythropoiesis. The UT7 erythroleukemia cell line, which proliferates without differentiating was used. This cell line stops differentiation at the proerythroblast stage, in response to erythropoietin. JQ1 treatment inhibited UT7 proliferation and restored terminal erythroid differentiation. The molecular mechanism underlying this regulation by JQ1 was shown that the inhibition of c-Myc expression was associated with the inhibition of STAT5 transcription, with no change in the phosphorylation of this protein. It was found that JQ1 had a putative TGF--like activity, which did not involve the Smad pathway. It was shown in the ex vivo studies that JQ1 increased the viability of erythroid cells and accelerated the maturation of these cells in both WT and thalassemic mice. The observed differences between leukemic and normal erythropoiesis involved differential epigenetic modifications that could be at the basis of new strategies regarding cancer treatment.The key role of the association of GATA-1 or FOG-2 had with pRb/E2F, and the dissociation of these factors, in erythropoiesis and adipogenesis, respectively, led us to investigate, in vivo, the physiological consequences of E2F sequestration by pRb. As a result, transgenic mice displaying conditional expression of a peptide containing the N-terminal part of GATA-1 that binds to pRb (GATA-1Nter) were developed. In vitro, this peptide traps E2F in a GATA-1Nter/pRb complex, resulting in the irreversible inhibition of cell proliferation. The yield of transgenic mice expressing the GATA-1Nter peptide in vivo was unsuccessful, as this expression lead to lethality at the embryonic stage. Using an alternative approach, based on the inducible expression of the peptide in adults, chimeric mice with a high frequency of recombination of the GATA-1Nter transgene were obtained for this study. The establishment of a stable mouse line expressing the GATA-1Nter peptide should make it possible to determine the pathophysiological consequences of E2F sequestration in the GATA-1Nter/pRb complex
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oburoglu, Leal. "Metabolic fueling of hematopoietic stem cell differentiation to the erythroid lineage." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20122.

Повний текст джерела
Анотація:
Les cellules souches hématopoïétiques (CSH) possèdent deux propriétés fondamentales : l'auto-renouvellement et la capacité de se différencier en lignées hématopoïétiques de tout type. Les CSH se maintiennent dans la moelle osseuse et se renouvellent par division asymétrique. En revanche, les divisions symétriques caractérisent les cellules qui s'engagent dans la différenciation. L'environnement pauvre en oxygène de la moelle osseuse favorise la glycolyse anaérobique et l'oxydation des acides gras, préservant, respectivement, la quiescence et les divisions asymétriques. Que l'engagement des CSH vers la différenciation lymphoïde, myéloïde ou érythroïde dépende ou entraîne une reprogrammation métabolique n'est toujours pas connu. En effet, de nombreuses études ont montré que cytokines et contacts cellulaires sont indispensables pour l'engagement des CSH vers une lignée donnée, alors que l'impact potentiel des nutriments et du métabolisme sur ce processus reste très peu étudié. La différenciation est associée à une prolifération qui nécessite des besoins métaboliques accrus pouvant être supportés par diverses sources d'énergie, telles que le glucose, les acides gras, le lactate ou la glutamine. Le glucose et la glutamine sont des précurseurs de l'ATP, des lipides et des nucléotides. Toutefois, leurs contributions relatives aux voies métaboliques contrôlant l'engagement des CSH n'ont pas été évaluées. Pour autant, nos études ainsi que celles menées par d'autres laboratoires ont montré que l'expression du transporteur de glucose Glut1 n'augmente qu'au cours des dernières étapes de la différenciation érythroïde, suggérant l'implication potentiel d'autres nutriments dans la régulation des étapes précoces de l'engagement vers la voie érythroïde. Ainsi, mon travail de thèse a consisté à déterminer si la disponibilité et l'utilisation des nutriments régulent la différenciation des CSH vers la lignée érythroïde. De fait, j'ai montré que le transporteur de glutamine ASCT2 est hautement exprimé dans les CSH et que la répression d'ASCT2 ou le blocage du métabolisme de la glutamine empêche la différenciation érythroïde des CSH, les détournant vers la voie myéloïde, même en présence d'érythropoïétine. Dans ces conditions, nous avons montré que la différenciation érythroïde ne pouvait pas être restaurée par l'ajout d'intermédiaires du cycle de Krebs, alors que qu'elle était dépendante de la biosynthèse de novo de nucléotides. Étonnamment, le 2-désoxyglucose (2-DG), un analogue du glucose inhibant la glycolyse, accélérait l'érythropoïèse. Nous avons aussi mis en évidence in vivo, en condition de stress érythropoïétique, des influences différentes du catabolisme de la glutamine et celui du glucose dans la modulation de l'érythropoïèse. Afin de mieux élucider les mécanismes par lesquels la glutamine module la différenciation érythroïde des CSH, nous avons étudié les voies métaboliques qu'elle emprunte. Des expériences de suivi de la glutamine marquée ont montré que l'entrée de la glutamine dans le cycle de Krebs est requise pour une érythropoïèse efficace. Par contre, nous avons montré que la synthèse de novo des nucléotides était l'étape limitante de la différenciation érythroïde. De plus, nous avons observé que la différenciation érythroïde accélérée en présence du 2-DG était associée à une augmentation importante du niveau des pentoses phosphates, précurseurs des nucléotides. Ainsi, l'utilisation de la voie des pentoses phosphates par le glucose, plutôt que la glycolyse, était essentielle pour l'érythropoïèse. En conclusion, mon travail de thèse a montré que la production de nucléotides via le métabolisme coordonné du glucose et de la glutamine est la condition sine qua non pour l'engagement des CSH vers la lignée érythroïde
Hematopoietic stem cells (HSCs) possess two fundamental characteristics; self-renewal capacity and the ability to give rise to all blood cell lineages. Before their commitment to a specific lineage, these cells are maintained in a quiescent state in the bone marrow. Asymmetric division is essential for the maintenance of the stem cell compartment while symmetric division results in HSC differentiation. The hypoxic environment of the bone marrow is conducive to anaerobic glycolysis and fatty acid oxidation, preserving stem cell quiescence and asymmetric division, respectively. However, it is not known whether the commitment of an HSC to a lymphoid, myeloid or erythroid lineage fate, is regulated by a metabolic switch. Indeed, while much research has shown a critical role for cytokines and cell-cell contacts in the commitment of HSCs to distinct hematopoietic lineages, the possibility that nutrient entry and metabolism may contribute to this process was not considered until very recently. Cell differentiation is associated with proliferation resulting in increased metabolic requirements that can be met by energy sources such as glucose, fatty acids, lactate, or glutamine, amongst others. While glucose and glutamine are both precursors for the production of ATP, lipids and nucleotides, their relative contributions to metabolic pathways driving HSC lineage commitment have not been evaluated. Interestingly, we and others previously found that the Glut1 glucose transporter is highly upregulated only during the final mitoses of HSC-driven erythroid differentiation, suggesting that other nutrients may regulate early stages of erythroid lineage commitment. During my PhD, I was interested in determining whether nutrient availability and utilization regulate HSC differentiation to the erythroid lineage. Interestingly, I found that the ASCT2 glutamine transporter is expressed at high levels on HSCs. Downregulation of ASCT2 or blocking glutamine metabolism abrogated erythroid differentiation of HSCs and diverted erythropoietin-signaled HSCs towards a myeloid fate. Under conditions where glutamine utilization was blocked, erythroid differentiation was not restored by directly replenishing the tricarboxylic acid cycle but rather, was dependent on de novo nucleotide biosynthesis. Surprisingly, 2-deoxyglucose, a glucose analogue that inhibits glycolysis, enhanced erythropoiesis. Glutamine and glucose catabolism also differentially modulated erythropoiesis in vivo, under stress conditions. To better elucidate the mechanism(s) via which glutamine supports the erythroid lineage specification of HSCs, we evaluated the metabolic pathways fueled by glutamine. Carbon/nitrogen-labeled glutamine tracing experiments showed that the rate-limiting step in EPO-induced erythroid differentiation is glutamine-dependent de novo nucleotide biosynthesis while glutamine entry into the TCA cycle (anaplerosis) is not required. Furthermore, the accelerated erythroid differentiation in the presence of 2-DG was associated with a striking increase in pentose phosphates, precursors of nucleotides. Notably, the shunting of glucose into the pentose phosphate pathway (PPP), rather than glycolysis, was essential for erythropoiesis. In conclusion, my research shows that the coordinated redirection of glucose and glutamine into the production of nucleotides is the sine qua non condition for the erythroid differentiation of HSCs
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Romano, Manuela. "Stage-specific changes in the Krebs cycle network regulate human erythroid differentiation." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT077.

Повний текст джерела
Анотація:
Le processus conduisant à la prolifération et différenciation des cellules souches hématopoïétiques (CSH) en cellules de toutes les lignées sanguines s’appelle l’hématopoïèse. Bien que l'engagement des CSH soit régi par les cytokines, les facteurs de transcription, les modificateurs épigénétiques et la niche des CSH, notre groupe a constaté que leur engagement vers la lignée érythroïde dépendait aussi du métabolisme de la glutamine. La glutaminolyse contribue à la biosynthèse des nucléotides de novo ainsi qu’à la production de l'alpha-kétoglutarate (αKG), intermédiaire métabolique du cycle TCA (Oburoglu et al. 2014). Il est cependant important de noter que la différenciation érythroïde est un processus unique, où chaque cellule fille est structurellement et fonctionnellement différente de sa cellule mère. Chaque division définit un stade de différenciation précis avec un dernier cycle de division produisant un réticulocyte énucléé. Ainsi, nous avons émis l'hypothèse que les réseaux métaboliques mobilisés dans les progéniteurs érythroïdes changent en fonction du stade de différenciation et que ces réseaux régulent la transition des progéniteurs d'un stade à l'autre.Au cours de ma thèse, j’ai caractérisé les états métaboliques associés aux différents stades de différenciation des progéniteurs érythroïdes. Nous avons ainsi montré qu'aux stades précoces de différenciation érythroïde, avant la différenciation terminale, les progéniteurs hématopoïétiques présentent une activité métabolique accrue avec un niveau de phosphorylation oxydative (OXPHOS) plus élevé. Ces données sont en corrélation avec l'augmentation de la génération de l’αKG à ces stades de différenciation. De plus, nous avons constaté une augmentation de l’OXPHOS de ces progéniteurs en présence d’αKG exogène. Cependant, la différenciation terminale des précurseurs érythroïdes, caractérisée par la perte de la masse mitochondriale et de leur potentiel membranaire, est associée à une diminution du niveau d'OXPHOS. Ainsi, l'administration exogène d’αKG, a fortement atténué la différenciation érythroïde terminale et l'énucléation, sans affecter la différenciation des pro-érythroblastes. Inversement, un antagoniste de l’αKG (diméthyloxalylglycine, DMOG) n'a pas altéré la différenciation terminale ou l'énucléation, malgré l'abrogation de l'OXPHOS dans les érythroblastes.Ces données suggèrent que la production d’αKG et sa contribution à l’OXPHOS perturbent l'énucléation des globules rouges. C'est pourquoi, dans le but de réduire les niveaux intracellulaires d’αKG, nous avons inhibé l’expression de l'isocitrate déshydrogénase I (IDH1), enzyme cytosolique catalysant la conversion de l'isocitrate en αKG. Cependant, comme IDH1 peut catalyser les réactions dans les deux sens, la diminution de son expression pourrait également augmenter les niveaux d’αKG. En effet, nous avons constaté que le knockdown d'IDH1 entraînait une forte atténuation de la différenciation terminale et de l'énucléation des précurseurs érythroïdes. Cet effet est probablement dû à un déséquilibre de la disponibilité des substrats ; ainsi l’administration ectopique de l’αKG ainsi que du citrate renforce l’altération de la différenciation terminale des précurseurs érythroïdes IDH1-/- ainsi que leur énucléation. Cette étude identifie donc un rôle crucial pour le métabolite αKG dans la régulation de la fonction mitochondriale et de l’OXPHOS, processus qui sont une condition sine qua non pour la différenciation des précurseurs érythroïdes au stade proérythroblaste. Nous montrons en outre que la suppression d’OXPHOS et la catalyse d’intermédiaires du TCA, substrats d’IDH1, sont requis pour les phases terminales de la différenciation érythroïde et l'énucléation.En conclusion, les résultats obtenus au cours de ma thèse mettent en évidence la nature dynamique des réseaux métaboliques qui régulent la progression des précurseurs érythroïdes tout au long des différents stades de la différenciation érythroïde
Hematopoiesis is the process whereby hematopoietic stem cells (HSCs) proliferate and differentiate to all blood cell lineages. While HSC commitment is known to be regulated by cytokines, transcription factors, epigenetic modifiers and the HSC niche, our group found that specification of HSCs to the red cell lineage is dependent on glutamine metabolism. Glutaminolysis contributes to de novo nucleotide biosynthesis and to the generation of the alpha-ketoglutarate (αKG) TCA cycle metabolite (Oburoglu et al. 2014). Importantly though, erythroid differentiation is a unique process as each daughter cell is structurally and functionally different from its parent cell. Each division defines a stage of differentiation with the final division cycle resulting in the production of an enucleated reticulocyte which further matures to a biconcave erythrocyte. Thus, we hypothesized that progenitor metabolic networks change as a function of the erythroid differentiation stage and moreover, that they regulate the transition of progenitors from one stage of differentiation to the next.During my PhD, I assessed the metabolic alterations that occur as a function of the erythroid differentiation stage. We showed that at early stages of human red cell development, prior to terminal differentiation, hematopoietic progenitors exhibited an increased metabolic activity with a significantly higher level of oxidative phosphorylation (OXPHOS). This correlated with the increased generation of αKG and indeed, we found that ectopic αKG directly augmented OXPHOS in these progenitors. However, the terminal differentiation of erythroid precursors, characterized by the loss of mitochondrial mass and membrane potential, was associated with a decreased level of OXPHOS. Notably, ectopic αKG, which did not alter pro-erythroblast erythroid differentiation, severely attenuated terminal differentiation and enucleation. Conversely, an αKG antagonist (dimethyloxalyl glycine, DMOG) did not negatively impact on terminal differentiation or enucleation despite abrogating OXPHOS in erythroblasts.These data suggested that the production of αKG and its subsequent contribution to oxidative phosphorylation perturb red cell enucleation. We therefore downregulated isocitrate dehydrogenase I (IDH1), the cytosolic enzyme that catalyzes the conversion of isocitrate to αKG, by an shRNA approach in an attempt to decrease αKG levels. However, because IDH1 can catalyze both the forward and reverse reactions, its downregulation could also increase αKG levels. Indeed, we found that IDH1 knockdown resulted in a severe attenuation of terminal erythroid differentiation and enucleation. This effect was likely due to an imbalance in substrate availability––both ectopic αKG as well as citrate further decreased polychromatic to orthochromatic erythroblast differentiation and the subsequent enucleation of IDH1-knockdown erythroid precursors. Thus, the present study identifies a crucial role for the αKG metabolite in regulating mitochondrial function and oxidative phosphorylation, processes that are a sine qua non for erythroid precursors at the pro-erythroblast stage. We further show that terminal erythroid differentiation and enucleation requires OXPHOS suppression and the IDH1-mediated enzymatic catalysis of its TCA substrates.To conclude, the results generated during my PhD highlight the dynamic nature of the metabolic networks that regulate the progression of erythroid precursors through the distinct stages of erythroid differentiation
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guimarães, Jacqueline da Silva. "Alterações do metabolismo do ferro nas talassemias." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/60/60135/tde-17042015-113612/.

Повний текст джерела
Анотація:
As síndromes talassêmicas (?- e ?-talassemia) são as desordens mais comuns e frequentes associadas com eritropoese ineficaz. O desbalanço na produção das cadeias ?- e ?-globinas resulta no comprometimento da produção de eritrócitos, em anemia e aumento de progenitores eritroides no sangue periférico. Enquanto os pacientes homozigóticos afetados por essas desordens demonstram alterações características dos parâmetros relacionados a eritropoese, a relação entre grau de anemia, eritropoese alterada e disfunção do metabolismo de ferro ainda não foram investigados nos indivíduos com ?+-talassemia heterozigótica ou ?+-talassêmia. Duzentos e vinte seis indivíduos (75 do gênero feminino e 151 do gênero masculino) foram recrutados e divididos em 5 grupos: Controle (n=28), doadores de sangue regulares (DSR, n=23), ?+-talassemia heterozigótica (TAT, n=14), ?+-thalassemia (traço ?-talassêmico, TBT, n=20) e ?0-talassemia, (?-talassemia maior, BTM, n=27). As amostras foram analisadas para parâmetros hematológicos (Micros ABX 60); ferro sérico, capacidade total de ligação ao ferro e saturação de transferrina por método colorimétrico (Pointe Scientific, Inc., Canton, MI, USA), ferritina e proteína C-reativa ultra sensível por imunoensaio (Immulite 1000); receptor solúvel de transferrina, eritropoetina, fator de diferenciação do crescimento 15 (R&D Systems) e hepcidina (Intrinsic LifeSciences, La Jolla, CA) por ELISA. As razões sTfR/log ferritina e (hepcidina/ferritina)/sTfR foram calculadas para avaliar o metabolismo do ferro. sTfR/log ferritina pode distinguir depleção dos estoques de ferro de eritropoese deficiente de ferro, enquanto (hepcidina/ferritina)/sTfR pode avaliar os estímulos contrários (disponibilidade de ferro e atividade eritropoética) que controlam a síntese de hepcidina e a absorção de ferro, na ausência de estímulos inflamatórios. Foi demonstrado que TAT teve significativa redução da hepcidina e aumento do receptor solúvel de transferrina, com parâmetros hematológicos relativamente normais. Em contraste, todos os parâmetros hematológicos de TBT foram significativamente diferentes do Controle, incluindo aumento dos níveis do receptor solúvel de transferrina, ferritina, eritropoetina e fator de diferenciação do crescimento 15. Essas alterações em ambos os grupos sugerem um balanço alterado entre eritropoese e metabolismo de ferro. Os índices sTfR/log ferritina e (hepcidina/ferritina)/sTfR estão, respectivamente, aumentado e reduzido comparados ao Controle, proporcional a severidade de cada grupo talassêmico. Em conclusão, destacamos que, pela primeira vez, foram descritas alterações no metabolismo de ferro em indivíduos com ?+-talassemia heterozigótica. Esses dados demonstram que, no contexto da saúde pública, são necessários identificação e acompanhamento dos portadores de ?+-talassemia.
The thalassemia syndromes (?- and ?-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of ?- or ?-globin chain production results in impaired red blood cell synthesis, anemia and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis and dysfunctional iron metabolism have not been investigated in both carriers of ?-thalassemia and ?-thalassemia. 226 subjects (75 females and 151 males) were recruited to this study and divided in 5 groups: Control (n=28), repeat blood donors (DSR, n=23), ?+-thalassemia heterozygous carriers (TAT, n=14), ?+-thalassemia (?-thalassemia trait, TBT, n=20) and ?0-thalassemia, (?-thalassemia major, BTM, n=27). Samples were tested for hematological parameters (Micros ABX 60); serum iron, total iron binding capacity, and transferrin saturation by the colorimetric method (Pointe Scientific, Inc., Canton, MI, USA), ferritin and high sensitive C-reactive protein by immunoassay (Immulite 1000); soluble transferrin receptor, erythropoietin and growth differentiation factor 15 (R&D Systems) and hepcidin (Intrinsic LifeSciences, La Jolla, CA) by ELISA. Were calculated the ratios sTfR/log ferritin and (hepcidin/ferritin)/sTfR to evaluate iron metabolism. sTfR/log ferritin can distinguish storage iron depletion from iron-deficient erythropoiesis, while (hepcidin/ferritin)/sTfR can be utilized to explore and quantify the opposing forces (i.e. iron availability and erythropoietic activity) regulating hepcidin synthesis and iron absorption in absence of inflammatory stimuli. We demonstrate that TAT have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, TBT have all hematological parameters significantly different from controls, including increased soluble transferrin receptor, ferritin, erythropoietin and growth differentiation factor 15 levels. These changings in both groups suggest an altered balance between erythropoiesis and iron metabolism. The indexes sTfR/log ferritin and (hepcidin/ferritin)/sTfR are respectively increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we emphasize that, for the first time in the literature, subjects with heterozygous ?+-thalassemia have altered iron metabolism. Our data demonstrate that within the context of public health, identification and monitoring of patients with ?+-thalassemia are needed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fertrin, Kleber Yotsumoto 1980. "Aspectos da regulação do metabolismo do ferro nas hemoglobinopatias." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/309315.

Повний текст джерела
Анотація:
Orientador: Fernando Ferreira Costa
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-19T02:13:16Z (GMT). No. of bitstreams: 1 Fertrin_KleberYotsumoto_D.pdf: 1904934 bytes, checksum: a74beda8b565fcdc3f59ad37d66ca23e (MD5) Previous issue date: 2011
Resumo: As hemoglobinopatias são distúrbios hereditários em que uma mutação genética leva a alteração da produção normal de hemoglobina, tal como na anemia falciforme e nas talassemias ß. Na maioria dessas doenças, ocorre anemia com necessidade transfusional variável, o que pode acarretar sobrecarga corporal de ferro. Na talassemia ß intermediária, ocorre aumento espontâneo e desproporcional da absorção do ferro, com consequente excesso desse metal mesmo na ausência de transfusões. Com a evolução da terapia transfusional e o aumento da expectativa de vida desses pacientes, o conhecimento sobre a regulação do metabolismo do ferro tornou-se fundamental para melhor controle da sobrecarga de ferro. O principal regulador desse metabolismo é a hepcidina, um polipeptídeo produzido majoritariamente pelo fígado, porém também sintetizado por células do sistema fagocítico-mononuclear, em que seu papel é pouco conhecido. Uma citocina capaz de suprimir a produção de hepcidina é o GDF-15 (fator de crescimento e diferenciação 15). Neste estudo, com a avaliação de amostras de sangue de 103 pacientes com anemia falciforme, talassemia ß intermediária, anemia por deficiência de cobalamina ou outros tipos de anemia, constatou-se que o aumento dos níveis desse fator ocorre tanto em quadros de hemólise crônica quanto na presença de eritropoese ineficaz, constituindo um sinal da medula óssea modulador da absorção de ferro nos estados de aumento da eritropoese. Entretanto, evidenciou-se que a associação de supressão da hepcidina com altos níveis de GDF-15 ocorre nas hemoglobinopatias, mas não nas demais causas de anemia. Na anemia megaloblástica, a ausência de sobrecarga de ferro com níveis normais de hepcidina ao diagnóstico e sua queda durante o tratamento sugerem regulação da hepcidina independente de GDF-15 neste tipo de anemia. A análise da razão hepcidina/ferritina mostrou-se mais fidedigna que os níveis de hepcidina circulante na identificação dos estados em que há propensão a absorção aumentada de ferro por alta atividade eritropoética, e sugerem que o estado inflamatório crônico da anemia falciforme poderia exercer um fator protetor contra sobrecarga de ferro, quando comparados a talassemia intermediária, pela elevação relativa da produção de hepcidina. Além disso, observou-se uma correlação negativa entre a expressão gênica de hepcidina (gene HAMP) em monócitos humanos e os níveis de GDF-15, denotando um provável efeito regulatório semelhante ao descrito em hepatócitos. Não se identificou correlação entre essa expressão nos monócitos e marcadores de sobrecarga de ferro, corroborando a hipótese de a hepcidina ter outra função nessas células, não relacionada diretamente à absorção de ferro. Pacientes com anemia falciforme em uso de hidroxiureia apresentaram maiores níveis de expressão de hepcidina monocítica e obteve-se evidência in vitro de uma ação estimuladora dessa expressão por esse fármaco, caracterizando a hidroxiureia com potencial atividade agonista de hepcidina, de futuro interesse em estudos de sua aplicação clínica nos estados em que exista deficiência monocítica dessa proteína. Trata-se do primeiro estudo avaliando comparativamente hemoglobinopatias e outros tipos de anemia com e sem componente eritropoético ineficaz do ponto de vista dos reguladores da absorção de ferro, além de caracterizar, pela primeira vez, a expressão de hepcidina extra-hepática nos distúrbios da síntese de hemoglobina
Abstract: Hemoglobinopathies are inherited diseases in which a genetic mutation leads to abnormal production of hemoglobin, such as in sickle cell anemia or in the ß-thalassemias. In the majority of these disorders, anemia causes variable degrees of transfusion dependency, which may lead to iron overload. In ß-thalassemia intermedia, an increase in iron absorption occurs spontaneously and regardless from the total body iron stores, generating iron overload even in the absence of repeated transfusions. Owing to advances in transfusion medicine and to the improvement in the overall life expectancy of patients with hemoglobin disorders, further knowledge on the regulation of iron metabolism has become increasingly important for appropriate management of iron overload. The main regulator of iron metabolism is hepcidin, a polypeptide mainly produced by the liver, although its synthesis also occurs in phagocytic-mononuclear cells, in which its role is less known. Growth differentiation factor 15 (GDF-15) is a cytokine capable of downregulating hepcidin production. This study analyzed 103 blood samples from patients with sickle cell anemia, ß-thalassemia intermedia, cobalamin deficiency anemia and other types of anemia, showing elevation of GDF-15 plasmatic levels both in chronic hemolytic states and ineffective erythropoiesis, thus characterizing it as a signalling molecule produced by the bone marrow to stimulate iron absorption in the presence of increased erythropoietic activity. Nevertheless, hepcidin suppression was only associated with high levels of GDF- 15 in the hemoglobinopathies. In megaloblastic anemia, absence of iron overload with normal hepcidin levels, associated with their reduction during treatment, suggest that hepcidin regulation occurs independently from GDF-15 in thie type of anemia. Analysis of hepcidin/ferritin ratio proved to be more reliable to identify patients prone to increased iron absorption due to erythropoietic hyperactivity than hepcidin levels themselves and suggests that the chronic inflammatory state in sickle cell anemia may protect from iron overload by relatively increasing hepcidin levels in comparison to levels found in thalassemia intermedia. Moreover, we found a negative correlation between GDF-15 levels and HAMP monocytic expression, a regulatory mechanism similar to what has been observed in hepatic cell lines. In further analyses of the present study, no correlation between hepcidin expression and iron overload markers was observed in monocytes from patients with hemoglobinopathies, corroborating the hypothesis that the monocytic counterpart of hepcidin could have a different function, unrelated to iron regulation. Patients with sickle cell anemia under hydroxyurea treatment have been shown to present with higher levels of hepcidin expression in monocytes, and a cell culture model managed to demonstrate the upregulating effect of hydroxyurea in vitro, thus highlighting the possibility of exploring this drug in the future as a potential hepcidin agonist and, therefore, as a therapeutic intervention in diseases with impaired monocytic hepcidin production. This is the first study of molecules involved in iron metabolism regulation comparing hemoglobinopathies and other anemia types with and without ineffective erythropoiesis. Furthermore, this is the first characterization of extra-hepatic hepcidin expression in hemoglobin disorders
Doutorado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Doutor em Fisiopatologia Medica
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ghadie, Mohamed A. "Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree: A Linear Programming Approach for Gene Selection." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32048.

Повний текст джерела
Анотація:
Stem cells differentiate through an organized hierarchy of intermediate cell types to terminally differentiated cell types. This process is largely guided by master transcriptional regulators, but it also depends on the expression of many other types of genes. The discrete cell types in the differentiation hierarchy are often identified based on the expression or non-expression of certain marker genes. Historically, these have often been various cell-surface proteins, which are fairly easy to assay biochemically but are not necessarily causative of the cell type, in the sense of being master transcriptional regulators. This raises important questions about how gene expression across the whole genome controls or reflects cell state, and in particular, differentiation hierarchies. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering and maximization of parsimony can organize the cell types into a tree, but in general this tree is different from the differentiation hierarchy. Using hematopoietic differentiation as an example, we demonstrate how many genes other than marker genes are able to discriminate between different branches of the differentiation tree by proposing two models for detecting genes that are up-regulated or down-regulated in distinct lineages. We then propose a novel approach to solving the following problem: Given the differentiation hierarchy and gene expression data at each node, construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming framework to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a sparse weighted Euclidean metric that uses just 175 genes. These 175 genes are different than the marker genes that were used to identify the 38 cell types, hence offering a novel alternative way of discriminating different branches of the tree. A DAVID functional annotation analysis shows that the 175 genes reflect major processes and pathways active in different parts of the tree. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. Our results show that the 175 genes frequently appear in the random metrics, implicating their significance from an empirical point of view as well. Finally, we show how our linear programming method is able to identify columns that were selected to build minimum spanning trees on the nodes of random variable-size matrices.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Pous, Camila. "Bases moléculaires du contrôle de l’équilibre entre autorenouvellement et différenciation." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10130/document.

Повний текст джерела
Анотація:
L’autorenouvellement est une propriété fondatrice du concept de cellule souche. Cependant, malgré l’avancée des connaissances actuelles, les mécanismes moléculaires sous-jacents restent mal compris. Nous nous sommes donc intéressés à cette question, en étudiant l’équilibre entre autorenouvellement et différenciation dans des progéniteurs érythrocytaires primaires. D’une part, grâce à une étude combinant des approches pharmacologiques et de génétique fonctionnelle, nos résultats montrent que le contrôle de la synthèse cellulaire du cholestérol joue un rôle essentiel dans la régulation du basculement de l’autorenouvellement vers la différenciation. D’autre part, nous avons étudié la nature stochastique de l’expression génique au cours du passage de l’autorenouvellement vers la différenciation. En effet, contrairement au caractère déterministe initialement attribué à l’expression des gènes, les données accumulées au cours des dernières années démontrent que cette expression repose sur des processus stochastiques. Nous avons en particulier oeuvré à la conception et à la mise en place d’un dispositif permettant de suivre en temps réel l’expression génique dans des cellules individualisées, afin de pouvoir mesurer et évaluer cette stochasticité. Au final, l’ensemble de ces travaux participent à la compréhension des bases moléculaires de l’autorenouvellement et du contrôle des choix du devenir cellulaire
Self-renewal is a key property of the stem cell concept. However, despite the recent advances in this field, the underlying molecular bases are not yet properly understood. We tackled this question by studying the balance between self-renewal and differentiation, in primary erythroid progenitors. Our work is twofold. First, by combining pharmacologic approaches and functional genetics, we have shown that the control of cellular cholesterol synthesis plays a central role in the regulation between self-renewal and differentiation. Second, we have studied the stochastic nature of gene expression along the transition from self-renewal to differentiation. Indeed, while gene expression was initially deemed to be deterministic, more and more data tend to show that it relies on stochastic processes. In particular, we participated to the design of an experimental method allowing to mesure gene expression in a single cell, in real-time. All in all, the work presented here brings new elements towards the understanding of molecular bases controlling self-renewal and cell fate choices
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mayeux, Patrick. "Recherches sur la regulation endocrine de l'erythropoiese." Reims, 1988. http://www.theses.fr/1988REIMS002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kretsovali, Androniki. "Etude de l'organisation genomique et de l'expression des genes globine aviaires." Paris 7, 1987. http://www.theses.fr/1987PA077218.

Повний текст джерела
Анотація:
Deux domaines genomiques d'environ 40 kb contenant tous les genes de la globine du canard ont ete isoles a partir d'une banque de cosmides. L'organisation des genes est comparable a celle des genes de globine du poulet. Une bonne conservation dans la localisation des regions riches en a+t par rapport aux genes est observee alors que celle des sequences repetees est beaucoup plus fluctuante. Une sequence activatrice en 3' du gene beta a adulte de canard a ete mis en evidence a environ 200 pb en aval du site de polydenylation, elle est specifique des cellules erythroides, c'est un fragment unique d'adn de 20 kb comprenant tous les genes de type beta, ce qui pose la question de son action eventuelle sur tous les genes de ce groupe
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Imaizumi-Scherrer, Tereza. "Etudes sur la regulation de l'expression du gene globine au cours de la differenciation des cellules erythropoietiques aviaires." Paris 7, 1987. http://www.theses.fr/1987PA077119.

Повний текст джерела
Анотація:
Pour etudier les phases initiales de la determination et de la differenciation erythropoietiques, des embryons precoces de poulet ont ete utilises et des erythrocytes immatures de canard sont obtenus a partir du sang d'oiseaux anemiques en reaction a une drogue henolytique. Il a ete possible d'identifier des produits de transcription des genes alpha et beta globine dans le rna total d'embryons precodes (blastula a 16 somites). Ces transcrits globine presentent une taille superieure (1kb) a celle du rnam globine completement mature (0,6-0,7kb). La fonction, la nature, la localisation de ces sequences additionnelles sont encore inconnues a partir des erythrocytes aviaires en differenciation terminale, deux mecanismes operant dans la regulation de l'expression des genes globine ont ete propose. Cette regulation serait tres complexe, comportant une phase nucleaire et une phase cytoplasmique
Стилі APA, Harvard, Vancouver, ISO та ін.
16

SAINI, ABHISHEK. "STUDYING THE EFFECT OF GROWTH FACTORS ON EXPANSION AND ERYTHROPOIETIC DIFFERENTIATION OF HEMATOPOIETIC STEM CELLS." Thesis, 2019. http://dspace.dtu.ac.in:8080/jspui/handle/repository/17071.

Повний текст джерела
Анотація:
Red cell production in vertebrates is regulated by several cytokines and factors. The process of erythropoiesis is initiated from the primitive pluripotent stem cell giving rise to mature erythrocyte. This process involves various regulatory factors which induce commitment and further maturation of the cells involved in the red cell lineage. The major growth factors that are involved in Erythropoiesis are granulocyte colonystimulating factor (G-CSF), granulocyte-macrophage (GM)-CSF, interleukin (IL)-3, stem cell factor (SCF), IL-1, IL-6, IL-4, IL-9, IL-11, and insulin growth factor-1 (IGF1) and Erythropoietin (EPO) (Gregory et al. 1978). EPO comes in action during later stages of maturation of erythroid progenitor cells and primarily on colony-forming unit erythroid (CFU-E) to induce the proliferation and maturation of these cells through the stages of proerythroblast followed by reticulocytes and finally mature erythrocytes (Hillman and Henderson, 1969). CFU-E remains the primary target cell in the bone marrow for EPO but it acts synergistically with other growth factors viz. SCF, GMCSF, IL-3, IL-4, IL-9, and IGF-1 in order to regulate the maturation and proliferation starting from the stage of the burst-forming unit erythroid (BFU-E) followed by CFU-E to the proerythroblast stage of erythroid cell development (Douay et al., 2005; Yu et al., 2002). SCF, IL-1, IL-3, IL-6, and IL-11 stimulate pluripotent stem cell to differentiate into the CFU granulocyte, erythroid, monocyte, megakaryocyte (GEMM) and the myeloid stem cell. The CFU-GEMM then differentiates into specific CFU for erythroid, granulocytes, monocytes, macrophages, eosinophils, and megakaryocytes cell precursors in the presence of GM-CSF and IL3. These precursors finally differentiate into specific cell types. Besides the role of erythropoiesis EPO also inhibits apoptosis to decrease the rate of cell death in erythroid progenitor cells in the bone marrow and neural cells (Motoyoshi 1992). IL3 encodes an important growth factor/cytokine which supports the proliferation of a broad range of hematopoietic stem cell types and involved in a variety of other cell activities such as cell growth, differentiation and apoptosis. Granulocyte macrophage colony-stimulating factor (GM-CSF) and granulocyte- colony-stimulating factor (G-CSF) are important growth factors which have established roles in hematopoiesis and have an established role as growth factors in clinical practice. G-CSF and GM-CSF regulate myeloid cell production, differentiation and activation (Matthias et al., 1997).
Стилі APA, Harvard, Vancouver, ISO та ін.
17

"The non-apoptotic role of caspase-3 activation and its modulation in erythroid differentiation of TF-1 cells." Thesis, 2006. http://library.cuhk.edu.hk/record=b6074279.

Повний текст джерела
Анотація:
Apart from CAD, the transient liberation of AIF during day 6 of TF-1 differentiation could pose another threat to the genomic DNA in cells. We have demonstrated the absence of AIF in the nucleus of TF-1 cells despite its release from the mitochondria by using confocal studies. Moreover, the expression of heat shock protein 70 kDa (Hsp70), a well-known antagonist of AIF, was found to be temporarily increased at day 6. Taken together, our results implied a plausible retention of AIF in the cytoplasm by Hsp70. Although Hsp70 is commonly utilized by many cancer cells to counteract AIF and avoid DNA fragmentation, we are the first to demonstrate its role in suppressing AIF during normal erythroid maturation.
As a whole, we have illustrated that the activated caspase-3, mediated most likely by the mitochondrial pathway, is an essential component in the differentiation of TF-1 cells. Its activation was nevertheless not coupled with DNA fragmentation due to some protective mechanisms such as CAD downregulation, Hsp70 upregulation and overexpression of Bcl-XL. Our study therefore provides some insights in the understanding of the relationship between human erythropoiesis and apoptosis and a better understanding in this regard will undoubtedly facilitate the development of new drugs in the treatment of different hematopoietic diseases.
Caspases play a central role in apoptosis. Their activations during the process are accounted for different biochemical and morphological changes in apoptotic cells. Yet in recent years, increasing studies had shown that caspases were also involved in some non-apoptotic cellular events, including T and B-lymphocytes activation, as well as the terminal differentiation of lens cells, megakaryocytes and erythrocytes.
In order to find out other unknown cellular mechanisms in erythropoiesis, mRNA differential display was employed to compare the gene expression pattern of TF-1 cells at different stages of differentiation. Several differentially expressed genes were identified and subsequently confirmed by RT PCR. These genes include formin binding protein 3, destrin and T-complex protein-1 (TCP-1). Their involvement in erythroid differentiation was still not clear at the moment but would be investigated in the near future. Furthermore, aiming at identifying the interacting proteins or inhibitors of caspase-3 in the system, a pull down assay was developed by means of the bacterial expression of a recombinant human caspase-3 mutant protein. With the mutation in the active site, the binding of our recombinant caspase-3 mutant with two known partners ICAD and BIRII (Baculovirus Inhibitor of apoptosis protein Repeat II) domain has been demonstrated. We hope in the near future that it can be employed to fish out some novel caspase-3 substrates from the differentiating TF-1 cell lysate.
In the present study, the participation of caspase in in vitro erythropoiesis was investigated using a human erythroleukemia cell line TF-1. Erythropoietin (EPO) induced erythroid maturation of TF-1 as indicated by the expression of erythroid-lineage markers like glycophorin A (GPA), transferrin receptors (CD71) and synthesis of hemoglobin (Hb). Activation of caspase-3 was observed from day 6 to day 12 during TF-1 differentiation after EPO treatment. With the administration of caspase-3 specific inhibitor, expressions of GPA and CD71 were partially blocked, suggesting that caspase-3 activation is essential in erythropoiesis in our TF-1 model.
Possible involvement of the intrinsic and extrinsic apoptotic pathways was studied by investigating respectively the activation of pro-caspase-9 and -8. It was found that caspase-9, but not -8, was activated at the corresponding time point when caspase-3 was activated. Besides, a transient mitochondrial depolarization coupled with the release of cytochrome c and apoptosis inducing factor (AIF) were detected on day 6, strongly implying a role of mitochondria in triggering the activation of executioner caspase-3. On the other hand, GPA and CD71 expressions were blocked by the application of mitochondrial depolarization inhibitor cyclosporin A (CyA). Also, the recovery of mitochondrial membrane potential was found to be correlated with an overexpression of Bcl-XL at a late stage of TF-1 differentiation, and the role of Bcl-XL was subsequently manifested further by a significant retardation of erythroid differentiation in the siRNA Bcl-XL knocked down TF-1 cells.
The exact role of caspase-3 in erythroid differentiation is far from clear at this moment. Yet, its regulation in the process is equally intriguing. On the course of TF-1 maturation, activated caspase-3 was able to cleave and de-localize the Inhibitor of Caspase-activated DNase (ICAD) from the nucleus, but at the same time DNA fragmentation was not detected by TUNEL assay nor agarose electrophoresis. Furthermore, protection against DNA fragmentation was observed in the EPO-treated TF-1 cells when challenged with a potent apoptotic inducer staurosporine (STS). These observations are in contrast to our understanding that DNA is fragmented by CAD (Caspase-activated DNase) when ICAD in the ICAD-CAD complex is cleaved by caspase-3. For these apparently contradictory observations, we demonstrated that downregulation of CAD occurred at the mRNA and protein levels during the erythroid differentiation in TF-1. This provides a cell rescuing mechanism in non-apoptotic cells with activated caspases.
Lui Chun Kin Julian.
"September 2006."
Adviser: Siu Kai Kong.
Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1620.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (p. 239-253).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lin, Yi-Huey, and 林怡慧. "The Differentiation Characteristics of Human Adult Peripheral Blood Hematopoietic Stem/ Progenitor Cells in Erythropoiesis." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/81892760216997906890.

Повний текст джерела
Анотація:
碩士
臺北醫學大學
細胞及分子生物研究所
92
Erythropoiesis is a multistep process of the pluripotent hematopoietic stem cells differentiate to the mature red blood cells, which is influenced by extrinsic and intracellular environmental elements. However, the molecular regulation mechanism remains to clarify. In this study, we applied an two-stage in vitro erythropoiesis culture system to probe the cytokine effect, such as EPO and SCF, on adult peripheral blood CD34+ hematopoietic stem/ progenitor cells. The culture system produced enriched erythroid progenitors and allowing us to evaluate the differentiation characteristics of human adult peripheral blood hematopoietic stem/ progenitor cells in compare to the cord blood ones. We found that in the first (expansion) stage of the culture system, the proliferation capacity of adult peripheral blood is rather diminished in compare to the new born cord blood. In the second (differentiation) stage of the culture system, the adult peripheral blood has better proliferation capacity than cord blood while stimulated with EPO and SCF. However, SCF retards both of adult peripheral blood and cord blood erythropoiesis and re-actives the synthesis of γ-globin with different extend. The data also shows that the erythropoiesis kinetics of adult peripheral blood is rather faster than the cord blood. In the other hand, the c-kit receptor (CD117) and CXCR4 expression of adult peripheral blood is higher than cord blood in the day0 of second stage and its expression duration is shorter. These results suggest that hematopoietic stem/ progenitor cells response differently to the same surrounding cytokine stimulation to fit the growth physiological requirement, during the growth of our body from fetus to adult. A further functional genomic study will be need for further understanding the molecular mechanism of erythropoiesis during the body growth.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lo, Wei-Ching, and 羅偉菁. "Role of the Differentiation-Associated Intracellular Glutathione Contents and Oxidative Stress Status on the Regulation of Erythropoietin Gene Expression in Human Hepatocellular Carcinoma cell lines." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/43330936511581781071.

Повний текст джерела
Анотація:
碩士
國立中山大學
生物科學系研究所
90
Erythropoietin (EPO) is produced in the kidney and in fetal liver in response to hypoxia as well as to CoCl2. The EPO protein and mRNA can be induced in response to both stimuli in the human hepatoma cell (HCC) lines Hep 3B and Hep G2. An oxygen sensing mechanism in which a ligand dependent conformational change in the heme protein produces H2O2 in respone to either hypoxia or Cobalt has been demonstrated. However, an intriguing question can be raised as to why some HCC sublines, such as Hep G2 and Hep 3B are capable of expressing EPO gene, whereas in other HCC sublines, such as J5 and SK-Hep-I are completely devoid of the ability to express EPO gene. Along this line, does “differentiation status” of these HCC cells play a pivotal role in regulating the expression of EPO gene? Next in line, how a differentiation-associated upregulation of g-glutemylcysteine synthetase (g-GCS), which tightly regulating the biosynthesis of endogenous glutathione(GSH) can modulate the expression of EPO. The objective of this research project was designed to address all these questions. Reported herein are several lines of evidence to demonstrate that endogenous GSH contents do play a pivotal role in the control and regulation of the expression of EPO gene. Firstly, using a group of five HCC lines with varying degrees of differentiation as the experimental model, we demonstrated that the endogenous GSH contents of these HCC cells were differentially upregulated depending on the degree of differentiation with an order of abundance being Hep G2> Hep 3B> J5> Mahlavu> SK-Hep-I. Coincidently, we also found that g-GCS heavy subunit activities as well as its mRNA correlated precisely with this order. Among these HCC cell lines tested, only two well-differentiated sublines, Hep G2 and Hep 3B expressed EPO gene implying that the latter process was dependent upon GSH and suggested a notion that a threshold level might be required for its optimal reactivation. Secondly, to further obtain the evidence to substantiate this possible role of GSH, we then supplemented to the cell culture media with an excessive quantity of nonlethal N-acetylcysteine for the purpose of reinforcing the endogenous GSH biosynthesis. Interestingly, we found that this manipulation could revert the reactivation of EPO gene in cell lines, such as J5 and SK-Hep-I, in which their EPO gene expressions were ortherwise shut down under a normal circumstance. Finally, we were able to demonstrated using RT-PCR and western blotting that the expression of EPO gene was reverted in GCS30, a SK-Hep-I subline that was permanently transfected with g-GCSh and is capable of overly expressing endogenous GSH. Taken together, we demonstrated herein for the first time that, besides hypoxia and CoCl2, endogenous GSH contents can also act as a positive regulator for the expression of EPO gene. The underlying mechanism of how GSH exerts its action in the regulation of EPO expression awaits further clarification.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Páral, Petr. "Buněčný cyklus a diferenciace krvetvorných kmenových a progenitorových buněk." Doctoral thesis, 2019. http://www.nusl.cz/ntk/nusl-405192.

Повний текст джерела
Анотація:
Haematopoietic stem and progenitor cells (HSPCs) are crucial for lifelong blood cell production. We analysed the cell cycle and cell production rate in HSPCs in murine haematopoiesis. The labelling of DNA-synthesizing cells by two thymidine analogues, optimized for in-vivo use, enabled the determination of the cell cycle flow rate into the G2-phase, the duration of the S-phase and the average cell cycle time in Sca-1+ and Sca-1- HSPCs. The determination of cells with 2n DNA content and labelled during the preceding S-phase was used to establish the cell flow rates in the G1-phase. Our measurements revealed a significant difference in how Sca-1+ and Sca-1- HSPCs self-renew and differentiate. The division of Sca-1+ progenitors led to the loss of the Sca-1 marker in about half of newly produced cells, corresponding to asymmetric cell division. In contrast both Sca-1- progenitors, arising from mitotic cell division, entered a new round of the cell cycle. This corresponds to symmetric self-renewing cell division. The novel data also enabled us to estimate the cell production rates in the Sca-1+ and in three subtypes of Sca-1- HSPCs. We focused on adult murine erythroid differentiation in the next part of our study. We introduced an original flow cytometry approach for identifying and studying erythroid...
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії