Добірка наукової літератури з теми "Equivalent Material Model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Equivalent Material Model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Equivalent Material Model"
Jeon, Chi-Ho, Jae-Bin Lee, Sokanya Lon, and Chang-Su Shim. "Equivalent material model of corroded prestressing steel strand." Journal of Materials Research and Technology 8, no. 2 (April 2019): 2450–60. http://dx.doi.org/10.1016/j.jmrt.2019.02.010.
Повний текст джерелаAlamayrekh, Yekaterina Yu. "Model of the decryption and model of the abbreviation formal diversity in the abbreviation group “auto-”." Current Issues in Philology and Pedagogical Linguistics, no. 2(2020) (June 25, 2020): 91–102. http://dx.doi.org/10.29025/2079-6021-2020-2-91-102.
Повний текст джерелаCAI, Lailiang, Kan WU, Qisheng YU, and Jinpeng FENG. "A New Method of Equivalent Material Model Deformation Observation." International Journal of Modern Education and Computer Science 3, no. 5 (August 1, 2011): 40–46. http://dx.doi.org/10.5815/ijmecs.2011.05.06.
Повний текст джерелаGuo, Hongwei, Chuang Shi, Meng Li, Zongquan Deng, and Rongqiang Liu. "Design and Dynamic Equivalent Modeling of Double-Layer Hoop Deployable Antenna." International Journal of Aerospace Engineering 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/2941981.
Повний текст джерелаGyimóthy, Szabolcs. "Modeling stationary moving medium by static magneto-electric material." European Physical Journal Applied Physics 85, no. 1 (January 2019): 10901. http://dx.doi.org/10.1051/epjap/2018180161.
Повний текст джерелаFan, Pengxian, Haozhe Xing, Linjian Ma, Kaifeng Jiang, Mingyang Wang, Zechen Yan, and Xiang Fang. "Bulk Density Adjustment of Resin-Based Equivalent Material for Geomechanical Model Test." Advances in Materials Science and Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/363869.
Повний текст джерелаZanelli, L., A. Montanaro, E. L. Carniel, P. G. Pavan, and A. N. Natali. "The study of equivalent material parameters in a hyperelastic model." International Journal of Non-Linear Mechanics 89 (March 2017): 142–50. http://dx.doi.org/10.1016/j.ijnonlinmec.2016.12.014.
Повний текст джерелаGarala, Thejesh Kumar, Ge Cui, Naman Kantesaria, Charles M. Heron, Alec M. Marshall, and Lukáš Žižka. "Characterisation of spoil materials to develop an equivalent spoil material for physical model tests." Górnictwo Odkrywkowe LXIII, no. 4 (October 4, 2022): 23–29. http://dx.doi.org/10.5604/01.3001.0053.8055.
Повний текст джерелаWon Kim, Jae, Jae Ung Cho, Chan Ki Cho, and Jin Oh Kim. "A study on damage to mechanical seat cushion made from different materials of extension frame." International Journal of Engineering & Technology 7, no. 3.3 (June 8, 2018): 315. http://dx.doi.org/10.14419/ijet.v7i2.33.14176.
Повний текст джерелаXian, Xiang Ping, Yan Shuai Wang, Feng Xing, and Bi Qin Dong. "Measuring and Modeling Analysis of Electrochemical Impedance Spectroscopy for Hydration Procedure of Cement Materials." Advanced Materials Research 588-589 (November 2012): 1033–36. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.1033.
Повний текст джерелаДисертації з теми "Equivalent Material Model"
Al-wattar, Tahseen Abdulridha Ali. "Developing equivalent solid model for lattice cell structure using numerical approaches." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1610335304435815.
Повний текст джерелаAydincak, Ilke. "Investigation Of Design And Analyses Principles Of Honeycomb Structures." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608998/index.pdf.
Повний текст джерелаEriksson, Anna. "Carbon dioxide and Energy flows in Jämtland’s waste sector." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-29087.
Повний текст джерелаGuy, Philippe. "Contribution à l’étude et à la caractérisation des propriétés mécaniques de structures lattices métalliques obtenues par Fabrication Additive (fusion sur lit de poudre)." Electronic Thesis or Diss., Toulouse, ISAE, 2025. http://www.theses.fr/2025ESAE0005.
Повний текст джерелаAdditive manufacturing technology has created new possibilities in design for aerospace components, particularly using lattice structures. The industrial challenge remains to size these structures within a reasonable lead time.This research aimed to improve the understanding and prediction of the mechanical performance of lattice structures that are increasingly used in spacecraft components.Thales Alenia Space – France provided lattice core sandwich beams manufactured by the powder bed laser beam melting process. The mechanical properties of two types of cell, BCC and Dode-Thin, were investigated for two metal alloys, AS7G06 aluminium and TA6V titanium. We performed a number of static and vibration tests and predicted the mechanical behaviour of the specimens using both analytical and numerical calculations.Various Finite Element (FE) models were developed to calculate the effective mechanical properties of a defect-free structure and compared with the beam theory. In particular, we established a theory of cross-sectional properties for the specific Dode-Thin strut. This allowed the Dode-Thin lattice cell to be modelled as a set of 1D beam elements or an equivalent 3D-orthotropic homogenised material. Tests were also carried out to measure the stiffness of the sandwich beams. Optical and SEM observations and X-ray computed tomography (CT) determined the actual cross-sectional properties of the struts.The experiments in this study generally showed that theoretical and numerical predictions significantly overestimated the stiffnesses. Porosity rate and geometrical imperfections were the main causes of the discrepancy between the prediction and the as-built parts. In addition, the 3D-printed materials exhibited a lower Young’s modulus. An in-house code was developed to calculate the cross-sectional properties directly from the CT data and compare them with the nominal properties. These observations and results helped to explain the differences in stiffness and mass and were used to update the predictive models, resulting in a better correlation with the experimental results for static and dynamic behaviour.Finally, this study provided the engineer with a simple method for replacing BCC and Dode-Thin cells with equivalent beams of solid circular cross-section, or with homogenised mechanical properties. This study also deepened the knowledge of the as-built lattice structures and their mechanical behaviour.Further research should explore the effect of strut waviness and the misalignment of the junction centres. Additional tests with other samples manufactured more recently and benefiting from developments in the SLM technique could be conducted. The in-house code we have started to develop for post-processing digital CT images could be enhanced with new functions. We could envisage the construction of a full FE tetrahedral volumetric mesh capturing the geometric imperfections of each strut. This could make it possible to identify the true effective stiffness of the strut geometry. This approach could pave the way for the creation of a digital twin consisting of a FE lattice model constructed directly from CT data
Lago, Nicolò. "Characterization and modelling of organic devices for simultaneous stimulation and recording of cellular electrical activity with Reference-Less Electrolyte-Gated Organic Field-Effect Transistors." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426781.
Повний текст джерелаLo studio delle malattie neuronali e neuro-degenerative richiede lo sviluppo di nuovi strumenti e tecnologie per creare dispositivi neuro-elettronici funzionali che consentano sia la stimolazione che la registrazione dell'attività elettrica cellulare. Nell'ultimo decennio l'elettronica organica sta emergendo nel campo della bioelettronica e diversi gruppi di ricerca hanno iniziato a sviluppare interfacce neurali basate su semiconduttori organici. L'interesse per tali tecnologie deriva dalle proprietà intrinseche dei materiali organici quali basso costo, trasparenza, morbidezza e flessibilità, nonché la biocompatibilità e l'idoneità nella realizzazione di sistemi stampati completamente organici. In particolare, i biosensori basati sulla tecnologia a transistor ad effetto campo organico (OFET) integrano il sensing e l'amplificazione del segnale in un singolo dispositivo, aprendo la strada a nuove interfacce neurali impiantabili per applicazioni in vivo. Per padroneggiare le proprietà di rilevamento e amplificazione dei sensori basati su OFET, è obbligatorio acquisire una conoscenza approfondita dei singoli transistor (senza la presenza di analiti e/o cellule) che vadano oltre le caratterizzazioni di base o modelli generali. Inoltre, i transistor organici sono caratterizzati da diversi principi di funzionamento e diverse proprietà rispetto alla loro controparte inorganica. In questo lavoro abbiamo svolto caratterizzazioni impulsate e transienti su diversi OFET (sia di tipo p che di tipo n) mostrando che, anche se i transistor possono accendersi e spegnersi molto velocemente, l'accumulo e/o lo svuotamento del canale conduttivo continua per tempi che possono superare le decine di secondi. Tale fenomeno deve essere attentamente considerato nella realizzazione di un biosensore e nelle sue applicazioni, poiché il punto operativo DC del dispositivo può andare alla deriva durante la registrazione dei segnali cellulari, alterando così i dati raccolti. Questo fenomeno viene ulteriormente approfondito caratterizzano i dispositivi a diverse temperature e per mezzo della tecnica DLTS. Abbiamo dimostrato che il lento accumulo (e svuotamento) del canale è dovuto alla densità di stati del semiconduttore organico che devono poter essere occupati per portare il livello energetico di Fermi vicino alla banda di conduzione. Questo è un fenomeno che può richiedere diversi secondi che possiamo descrivere introducendo una mobilità dipendente dal tempo. Per comprendere i processi di trasduzione elettrochimica tra cellule viventi ed il biosensore organico, abbiamo realizzato una struttura a due elettrodi (STACK) in cui una goccia di soluzione salina viene messa direttamente a contatto con il semiconduttore organico. Su questi dispositivi, abbiamo eseguito la spettroscopia di impedenza elettrochimica a diverse polarizzazioni DC e abbiamo sviluppato un modello circuitale equivalente per le strutture metallo/semiconduttore organico/soluzione che vengono tipicamente utilizzate per la realizzazione di bio-trasduttori. Il nostro approccio prevede di estendere il range standard delle tensioni operative per questo genere di dispositivi. Ciò ha permesso di investigare e distinguere i diversi fenomeni che si verificano nei diversi strati e interfacce: adsorbimento di ioni nel semiconduttore; accumulo e scambio di cariche di portanti all'interfaccia semiconduttore/elettrolita; percolazione delle specie ioniche attraverso il semiconduttore organico; diffusione di ioni attraverso l'elettrolita; adsorbimento di ioni e scambio di carica all'interfaccia col metallo. Abbiamo evidenziato la presenza di percolazione ionica attraverso lo strato di semiconduttore organico, che è descritto nel modello circuitale per mezzo di un'impedenza di de Levie. La presenza di percolazione è stata dimostrata mediante microscopia elettronica a scansione ambientale e analisi profilometrica. Sebbene la percolazione sia molto più evidente a valori di bias negativi elevati, risulta presente anche a basse condizioni di bias. L'ottimo accordo tra il modello e i dati sperimentali rende il modello un valido strumento per studiare i meccanismi di trasduzione tra film organici e l'ambiente fisiologico. Quindi questo modello può essere uno strumento utile non solo per la caratterizzazione e l'analisi dei guasti dei dispositivi elettronici, come water-gated transistor, interfacce elettrofisiologiche, celle a combustibile e altri sistemi elettrochimici, ma anche nel caso in cui una soluzione è in intimo contatto con un altro materiale per determinare e/o quantificare se si verificano meccanismi indesiderati come percolazione e/o processi corrosivi. Infine, il bagaglio di conoscenze ottenuto studiando i dispositivi OFET e STACK è stato messo utillizato per realizzare dispositivi EGOFET. Abbiamo quindi sviluppato un modello per descrivere gli EGOFET come interfacce neurali. Abbiamo dimostrato che il nostro modello può essere applicato con successo per comprendere il comportamento di una classe più generale di dispositivi, compresi i transistor sia organici che inorganici. Abbiamo introdotto l'RL-EGOFET (reference-less EGOFET) e abbiamo dimostrato che questa struttura può essere utilizzata con successo come interfaccia neurale flessibile per il recording extracellulare in vivo senza la necessità di un elettrodo di riferimento, rendendo l'impianto meno invasivo e più facile da usare. I nostri risultati aprono la strada all'utilizzo e all'ottimizzazione di EGOFET e RL-EGOFET come interfacce neurali.
Riesco, Refoyo Javier. "Development of battery models for on-board health estimation in hybrid vehicles." Thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211680.
Повний текст джерелаGiljum, Stefan, Hanspeter Wieland, Franz Stephan Lutter, Nina Eisenmenger, Heinz Schandl, and Anne Owen. "The impacts of data deviations between MRIO models on material footprints: A comparison of EXIOBASE, Eora, and ICIO." Wiley, 2019. http://dx.doi.org/10.1111/jiec.12833.
Повний текст джерелаVENEZIANI, GLAUCO R. "Desenvolvimento de um objeto simulador "Canis Morphic" utilizando impressora 3D para aplicação em dosimetria na área de radioterapia veterinária." reponame:Repositório Institucional do IPEN, 2017. http://repositorio.ipen.br:8080/xmlui/handle/123456789/27967.
Повний текст джерелаMade available in DSpace on 2017-11-08T16:10:07Z (GMT). No. of bitstreams: 0
O aumento na longevidade humana fez surgir uma série de doenças com a idade; em contrapartida o avanço da medicina possibilitou o diagnóstico precoce e o tratamento de várias doenças antes incuráveis. Esse cenário atual estendese também aos animais domésticos (cães e gatos - PETs) que dobraram sua expectativa de vida nas últimas décadas, fato que os humanos demoraram séculos para alcançar. Do mesmo modo que os humanos, esse aumento na longevidade dos animais veio acompanhado de doenças relacionadas com a idade, entre elas o câncer. Uma das terapias utilizadas atualmente no tratamento do câncer é a radioterapia, técnica que utiliza a radiação ionizante para destruir as células tumorais (volume-alvo) com mínimo prejuízo aos tecidos circunvizinhos sadios (órgãos de risco). Essa técnica exige a realização periódica de testes de controle de qualidade, incluindo a dosimetria com a utilização de objetos simuladores equivalentes ao tecido, de modo a verificar a dose de radiação recebida pelo paciente em tratamento e compará-la posteriormente com a dose de radiação calculada pelo sistema de planejamento. A rápida expansão do mercado de impressoras 3D abriu caminho para uma revolução na área da saúde. Atualmente os objetos simuladores por impressão 3D estão sendo usados em planejamentos de Radioterapia para a localização espacial e mapeamento das curvas de isodose, realizando, assim, um planejamento mais personalizado para cada campo de radiação, além da confecção de implantes dentais, customização de próteses e confecção de bólus. Diante do exposto esse trabalho projetou e desenvolveu um objeto simulador chamado de \"Canis Morphic\" utilizando uma impressora 3D e materiais tecido-equivalentes para a realização dos testes de controle de qualidade e otimização das doses na área de Radioterapia em animais (cães). Os resultados obtidos demonstraram-se promissores na área de criação de simuladores por impressão 3D, com materiais de baixo custo, para aplicação no controle de qualidade em Radioterapia veterinária.
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Ouedraogo, Boureima. "Modélisation du rayonnement acoustique dans les guides traités par des matériaux absorbants à réaction localisée ou non localisée en présence d'écoulement par la méthode des éléments finis." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00674031.
Повний текст джерелаSjödin, Mattias. "Investigating Particle Cracking in Single- and Polycrystalline Nickel-Rich Cathodes using In Situ Impedance Spectroscopy." Thesis, Uppsala universitet, Strukturkemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449968.
Повний текст джерелаКниги з теми "Equivalent Material Model"
Pershina, K. D., and K. O. Kazdobin. Impedance spectroscopy of electrolytic materials. V.I. Vernadsky Institute of General and Inorganic Chemistry, 2012. http://dx.doi.org/10.33609/guide.2012.224.
Повний текст джерелаBažant, Zdenek P., Jia-Liang Le, and Marco Salviato. Quasibrittle Fracture Mechanics and Size Effect. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846242.001.0001.
Повний текст джерелаHenderson, Andrea. Analogy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809982.003.0005.
Повний текст джерелаVioli, Alessandra, Barbara Grespi, Andrea Pinotti, and Pietro Conte, eds. Bodies of Stone in the Media, Visual Culture and the Arts. Amsterdam University Press B.V., 2020. http://dx.doi.org/10.5040/9789048561582.
Повний текст джерелаDurham, Alan L. Patent Law Essentials. 2nd ed. Praeger Publishers, 2004. http://dx.doi.org/10.5040/9798216194569.
Повний текст джерелаЧастини книг з теми "Equivalent Material Model"
Sankrityayan, Rohit, Anoop Chawla, Sudipto Mukherjee, and Devendra K. Dubey. "Numerical Modeling of a Ceramic Honeycomb Using an Equivalent Material Model." In Lecture Notes in Mechanical Engineering, 233–40. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3651-5_22.
Повний текст джерелаRodríguez-Méndez, Francisco, Bruno Chiné, and Marcela Meneses-Guzmán. "Thermo-mechanical Stress Modeling of La(Fe,Co,Si)13 Thin Films Deposited on Porous Structures." In Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 84–90. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_13.
Повний текст джерелаWu, Song, Ming Zhang, and Yunbo Zhou. "Study on Blast Resistance of Armored Steel Welded Joint Structures." In Lecture Notes in Mechanical Engineering, 865–76. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_68.
Повний текст джерелаGupta, K. K., D. P. Singh, T. N. Singh, and B. Singh. "Prediction of stability of haul roads over old underground workings through equivalent material model studies." In Off-Highway Haulage in Surface Mines, 255–65. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203745090-38.
Повний текст джерелаHussain, Mazhar, Mohd Kaleem Khan, and Manabendra Pathak. "Modelling of Phase Change Material Embedded Li-Ion Battery Pack Under Different Load Conditions Using Equivalent Circuit Model." In Lecture Notes in Mechanical Engineering, 373–85. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7827-4_30.
Повний текст джерелаHeuts, Gijs, and Ieke Moerdijk. "Simplicial Operads and ∞-Operads." In Simplicial and Dendroidal Homotopy Theory, 555–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10447-3_14.
Повний текст джерелаSun, Chen, Minghua Dai, Liang Ying, Kai Du, Zhigang Chen, and Ping Hu. "Experimental and Numerical Simulation on Formability and Failure Behavior of Thermoplastic Carbon Fiber/AL Composite Laminates." In Lecture Notes in Mechanical Engineering, 383–93. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_30.
Повний текст джерелаMikhasev, Gennadi I., and Holm Altenbach. "Equivalent Single Layer Model for Thin Laminated Cylindrical Shells." In Advanced Structured Materials, 29–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12761-9_2.
Повний текст джерелаJaniczek, Tomasz, Dorota Nowak-Woźny, Witold Mielcarek, and Krystyna Prociów. "Equivalent Model of Modified Bismuth Oxides Described by Fractional Derivatives." In Key Engineering Materials, 676–79. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.676.
Повний текст джерелаGuo, Rongjiao, and Renjun Yan. "Prediction of Mechanical Properties and Analysis of Damage Evolution of Fiber Bundles in Carbon Fiber Reinforced Composite Materials." In Lecture Notes in Mechanical Engineering, 633–46. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_50.
Повний текст джерелаТези доповідей конференцій з теми "Equivalent Material Model"
Li, Yu-Qian, Jia-Yu Wu, Hao-Wei Gu, Zong-Yong Chen, Xiao-Bing Shi, and Hong Yuan. "An Equivalent Model of Corrugated Structures." In 2nd Annual International Conference on Advanced Material Engineering (AME 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ame-16.2016.75.
Повний текст джерелаNouir-Masmoudi, Haifa, and Nabila Dhahbi-Megriche. "Stress Grading Material Evaluation Using Equivalent Electric Network Model." In 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2020. http://dx.doi.org/10.1109/ic_aset49463.2020.9318303.
Повний текст джерелаCai, Lailiang, Kan Wu, Gang Hao, and Yanan Xu. "Notice of Retraction: Deformation Monitoring Study of Equivalent Material Model." In 2010 2nd International Conference on Information Engineering and Computer Science (ICIECS). IEEE, 2010. http://dx.doi.org/10.1109/iciecs.2010.5677715.
Повний текст джерелаWei Zhang, Jianying Li, Guangwei Yang, Rui Xu, and Feng Liu. "Equivalent circuit model for cross-shaped frequency selective surface absorbing material." In 12th European Conference on Antennas and Propagation (EuCAP 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.0515.
Повний текст джерелаZhang, Jun. "Equivalent Laminated Model of the Aluminum Honeycomb Sandwich Panel." In 2015 International Conference on Material Science and Applications (icmsa-15). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmsa-15.2015.58.
Повний текст джерелаCui, Han, Zhi Yao, Cheng Tao, and Yuanxun Ethan Wang. "Nonlinear Equivalent-Circuit Model for Thin-Film Magnetic Material Based RF Devices." In 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2018. http://dx.doi.org/10.1109/imws-amp.2018.8457165.
Повний текст джерелаKarami, G. "An Equivalent Continuum-Atomistic Characterization Model for Nanographitic Materials." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81858.
Повний текст джерелаProvasi, Rodrigo, Fernando Geremias Toni, and Clóvis de Arruda Martins. "Equivalent Model for Interlocked Carcass Under Axial Loads." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54381.
Повний текст джерелаMiranda, E., J. Sune, C. Pan, M. Villena, N. Xiao, and M. Lanza. "Equivalent circuit model for the electron transport in 2D resistive switching material systems." In ESSDERC 2017 - 47th IEEE European Solid-State Device Research Conference (ESSDERC). IEEE, 2017. http://dx.doi.org/10.1109/essderc.2017.8066598.
Повний текст джерелаOhadi, A. R., and M. Moghaddami. "Sound Absorption Prediction Using Finite Element Model Based on Modified Biot Poroelastic Model." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95126.
Повний текст джерелаЗвіти організацій з теми "Equivalent Material Model"
Bruce and Yushanov. L52056 Enhancement of PRCI Thermal Analysis Model for Assessment of Attachments. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2004. http://dx.doi.org/10.55274/r0010436.
Повний текст джерелаSparks, Paul, Jesse Sherburn, William Heard, and Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41963.
Повний текст джерелаSnyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Повний текст джерелаCheng and Wang. L52025 Calibration of the PRCI Thermal Analysis Model for Hot Tap Welding. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2004. http://dx.doi.org/10.55274/r0010298.
Повний текст джерелаFischer, Eric, Rebecca McCaughrin, Saketh Prazad, and Mark Vandergon. Fed Transparency and Policy Expectation Errors: A Text Analysis Approach. Federal Reserve Bank of New York, November 2023. http://dx.doi.org/10.59576/sr.1081.
Повний текст джерелаLui, Mortimer, and Wood. PR-273-0323-R02 Corrosion Assessment Guidance for High Strength Steels (Phase 2). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2009. http://dx.doi.org/10.55274/r0010703.
Повний текст джерелаWelch, David, and Gregory Deierlein. Technical Background Report for Structural Analysis and Performance Assessment (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/yyqh3072.
Повний текст джерелаMcKenna, Patrick, and Mark Evans. Emergency Relief and complex service delivery: Towards better outcomes. Queensland University of Technology, June 2021. http://dx.doi.org/10.5204/rep.eprints.211133.
Повний текст джерелаCOLD FORMED STEEL SHEAR WALL RACKING ANALYSIS THROUGH A MECHANISTIC APPROACH: CFS-RAMA. The Hong Kong Institute of Steel Construction, September 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.2.
Повний текст джерела