Дисертації з теми "Epitaxie van der Waals"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Epitaxie van der Waals".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Journot, Timotée. "Epitaxie van der Waals de GaN sur graphène pour des applications en photonique." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI078/document.
Повний текст джерелаDue to its outstanding physical properties, GaN is a very attractive material to conceive photonic devices. However its synthesis is very complex and remains an obstacle to its use. For now, heteroepitaxy is the most used technique but the lack of crystalline substrates with properties close to those of GaN leads to the growth of highly defective epitaxial thin films. Although GaN based devices are already functional, an increase in the crystalline quality of the material will improve their performances.Van derWaals (VdW) epitaxy is an alternative that differs from classical epitaxy by the nature of the interaction at the interface between the substrate and the deposited material. The former is then no longer governed by strong forces (covalent bonds, ionic bonds, etc) but by weak forces of VdW type. VdW heteroepitaxy, which might allow a compliant growth interface, thus appears as a beneficial alternative to improve the cristalline quality of the epitaxial layers. This thesis proposes to explore in detail the feasability of the VdW epitaxy in the particular case of the growth of GaN on graphene by MOVPE.The use of a new type of surface with a very low surface energy, to support the GaN epitaxy requires the developpement of a new growth strategy. In this work, a three step process was set up for the nucleation of GaN on graphene. The resultant micronic GaN crystals exhibit high crystalline quality, being free of stress and having a unique cristallographic orientation. An epitaxial relationship can thus be implemented through a weak interface that turns out to be compliant. The feasibility of the VdW epitaxy as well as its advantages is demonstrated experimentally. Specifically, we have highlighted the role of the substrate underlying graphene in the epitaxial relationship - in particular its polar character seems required for a remote epitaxial relationship to exist through the graphene.This study allowed to highlight the full potential of the VdW epitaxy of 3D materials on 2D, to identify some limitations and also to demonstrate the possibilities opened by the formation of new 3D / 2D interfaces
Rudolph, Reiner. "Quasi-van der Waals-Epitaxie von GaSe auf Si und GaAs Struktur und elektronische Eigenschaften /." [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/1999/65/index.html.
Повний текст джерелаMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Повний текст джерелаWisotzki, Elmar. "Quasi-van-der-Waals-Epitaxie von II-VI-Halbleitern auf Schichtgitterchalkogeniden und GaSe-terminierten Si(111)-Oberflächen." [S.l. : s.n.], 2002. http://elib.tu-darmstadt.de/diss/000330.
Повний текст джерелаVergnaud, Céline. "Optimisation de la croissance de MoSe2 - WSe2 par épitaxie de Van der Waals pour la valleytronique." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY038.
Повний текст джерелаThe purpose of this thesis is to optimize growth by molecular beam epitaxy in the van der Waals regime of two-dimensional (2D) semiconductor layers of transition metal diselenides (MoSe2, WSe2) for magneto-optical and electric studies. This optimization involves improving the crystallographic quality of the layers over large areas by adjusting the growth parameters (temperature and flux). In particular, the control of the surface state of the substrate is decisive on the growth mechanisms of these layers. The development of these low-dimensional materials required the use of advanced characterization techniques (Grazing incidence X-ray diffraction, High Resolved Transmission Electronic Microscopy, ect). In this thesis, we focused on two specific substrates : silicon oxide and mica. They both have the particularity of being insulating and inert from an electronic point of view, which is essential to probe the optical and electrical intrinsic properties of 2D layers. Finally, we developed electrical doping (p doping) for microelectronics and magnetic (Mn doping) for valleytronics
Duraz, Jules. "LEDs flexibles exploitant l'épitaxie van der Waals avec les semi-conducteurs nitrures : application aux implants cochléaires optiques." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST101.
Повний текст джерелаThe development of optogenetics is opening up a new field of application for semiconductor-based light sources.Gallium nitride-based LEDs, for example, can be used in prototype implants to restore hearing.There are particular constraints for these applications, with specific emission criteria that must be met for radii of curvature of the order of a millimetre.The aim of this thesis is to produce flexible LEDs capable of achieving these bending radii and to characterise the evolution of the properties of the LEDs produced as a function of their bending. The fabrication of flexible LEDs is mainly based on "van der Waals" epitaxy on a sapphire substrate, but LED structures on silicon are also studied. Various manufacturing and transfer techniques are developed.A measurement bench is designed and assembled to characterise the flexible LEDs in order to meet the needs of the application. The electro-optical properties of the LEDs are measured down to a radius of curvature of 3 mm
Sant, Roberto. "Exploration par rayonnement synchrotron X de la croissance et de la structure de dichalcogénures 2D." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY075.
Повний текст джерелаTwo-dimensional transition metal dichalcogenides (TMDCs) are promising materials for a variety of applications, especially in optoelectronics. However, the lack of understanding of their epitaxy - i.e. growth mechanism, microscopic structure, nature of the 2D layer-substrate interaction, etc. - is still a crucial issue to address. In this PhD thesis we explored a series of epitaxial growths of monolayer and thin film TMDCs grown by molecular beam epitaxy (MBE) on a variety of substrates. We studied their atomic structures and we attempted the modifications of some of them with various in situ methods. Several systems and processes have been investigated: (i) transition metal ditellurides, ZrTe2 , MoTe2 and TiTe2 on InAs(111) substrate, (ii) the intercalation of alkali metal species between single layer MoS2 and its Au(111) substrate, (iii) the growth and the thermal treatments in H2S atmosphere of monolayer PtSe2 on Pt(111). Our work relies on both phenomenological and quantitative methods based on surface X-ray diffraction, often complemented by parallel analysis performed with other probes, e.g. STM, TEM, XPS, ARPES. Most notably, we found that: (i) a metastable orthorhombic phase and a charge density wave phase can be stabilized at room temperature in MoTe2 and TiTe2 owing to the epitaxial strain in the materials; (ii) the intercalation of Cs atoms under MoS2 induces structural and electronic decoupling of the 2D MoS2 layer from its Au(111) substrate; (iii) the sulfurization of PtSe2 promotes the Se-by-S substitution in one (or both) of its two chalcogen layers, leading either to the full conversion of the selenide into a sulfide or even to an ordered Janus alloy
Wagner, Christian. "Potential Energy Minimization as the Driving Force for Order and Disorder in Organic Layers." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38242.
Повний текст джерелаThema dieser Arbeit ist die strukturelle Charakterisierung von organischen Einfach- und Heterolagen sowie deren theoretische Beschreibung und Modellierung. Es wurden Submonolagen und Monolagen (ML) der polyzyklischen Kohlenwasserstoffe Quaterrylen (QT) und Hexa-peri-hexabenzocoronen (HBC) auf Ag(111) und Au(111) Einkristallen untersucht und ein Übergang von einer ungeordneten, isotropen Phase zu einer geordneten Phase mit steigender Bedeckung beobachtet. Die geordnete Phase wies dabei bedeckungsabhängige Gitterkonstanten auf. Das intermolekulare Potential wurde unter Berücksichtigung von Coulomb und van der Waals Anteilen mittels Kraftfeldmethoden modelliert. Der postulierte repulsive Charakter des Potentials konnte auf die Ladungsverteilung im Molekül und eine Abschwächung des van der Waals Potentials zurückgeführt werden. Weiterhin wurde der Einfluss der variablen HBC Gitterkonstante auf die epitaktische Relation des Gitters zum Metallsubstrat untersucht. Der zweite Teil der Arbeit widmet sich der Untersuchung einer ML 3,4,9,10-Perylenetetracarboxylic dianhydrid (PTCDA) auf einer ML HBC. Dabei wurden, in Abhängigkeit von der HBC Gitterkonstante, insgesamt drei verschiedene Typen von line-on-line bzw. point-on-line Epitaxie nachgewiesen. Im Anschluss an eine Analyse der generellen Eigenschaften solcher epitaktischer Lagen mittels Kraftfeldrechnungen wird eine neue Methode zur Vorhersage der Struktur konkreter Systeme vorgestellt
Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.
Повний текст джерелаThe topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Bradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Повний текст джерелаBezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Знайти повний текст джерелаBoddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Повний текст джерелаTiller, Andrew R. "Spectra of Van der Waals complexes." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.
Повний текст джерелаMauro, Diego. "Electronic properties of Van der Waals heterostructures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.
Повний текст джерелаKlein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.
Повний текст джерелаOdeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.
Повний текст джерелаConnelly, James Patrick. "Microwave studies of Van der Waals complexes." Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:3865eb1d-d288-44c9-8d42-84f7ff2c0608.
Повний текст джерелаWright, Nicholas J. "Bound states of Van der Waals trimers." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5048/.
Повний текст джерелаBryan, Robert. "Theoretical studies of Van der Waals clusters." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4712/.
Повний текст джерелаTulegenov, Akyl S. "SIMPER method for van der Waals complexes." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431329.
Повний текст джерелаMcDowell, Sean Alistair Courtney. "Theoretical studies of Van der Waals molecules." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259733.
Повний текст джерелаLe, Sueur Catherine Ruth. "Induction effects in Van der Waals complexes." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385523.
Повний текст джерелаWillberg, Dean Michael Zewail Ahmed H. "Picosecond spectroscopy of van der Waals clusters /." Diss., Pasadena, Calif. : California Institute of Technology, 1994. http://resolver.caltech.edu/CaltechETD:etd-04042008-110156.
Повний текст джерелаColumberg, Gieri. "Mikrowellen-Spektroskopie T-förmiger Van der Waals Komplexe /." [S.l.] : [s.n.], 1996. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11636.
Повний текст джерелаCoy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.
Повний текст джерелаLawrence, Stuart John. "High-resolution spectroscopy of van der Waals molecules." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318824.
Повний текст джерелаKettley, J. C. "Van der Waals complexes of large aromatic molecules." Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371128.
Повний текст джерелаAlthorpe, Stuart C. "Bound state calculations for van der Waals dimers." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319937.
Повний текст джерелаMa, Qiong Ph D. Massachusetts Institute of Technology. "Optoelectronics of graphene-based Van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104523.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references.
Research on van der Waals (vdW) materials (homo- or hetero-) is a rapidly emerging field in condensed matter physics. They are layered structures with strong chemical bonding within layers and relatively weak van der Waals force to combine layers together. This unique layer-bylayer nature makes it easy to exfoliate layers out and at the same time to re-assemble in arbitrary sequences with different combinations. The versatility, flexibility, and relatively low cost of production make the scientific community enthusiastic about their future. In this thesis, I investigate the fundamental physical processes of light-matter interactions in these layered structures, including graphene, boron nitride, transition metal dichalcogenides and heterostructures formed from these materials. My research involves state-of-the-art nanoscale fabrication and microscale photocurrent spectroscopy and imaging. In Chapter 1, 1 will briefly discuss basic physical properties of the vdW materials involved in this thesis and introduce the main nanofabrication and measurement techniques. Chapter 2-4 are about hot electron dynamics and electron-phonon coupling in intrinsic graphene systems, among which Chapter 2 is focusing on the generation mechanism of the photocurrent at the p-n interface, which is demonstrated to have a photothermoelectric origin. This indicates a weak electron-phonon coupling strength in graphene. Chapter 3 is a direct experimental follow-up of the work in Chapter 2 and reveals the dominant electron-phonon coupling mechanism at different temperature and doping regimes. In Chapter 4, I present the observation of anomalous geometric photocurrent patterns in various devices at the charge neutral point. The spatial pattern can be understood as a local photo-generated current near edges being collected by remote electrodes. The anomalous behavior as functions of change density and temperature indicates an interesting regime of energy and charge dynamics. In Chapter 5 and 6, 1 will show the photoresponse of graphene-BN heterostuctures. In graphene-BN stack directly on SiO₂, we observed strong photo-induced doping phenomenon, which can be understood as charge transfer from graphene across BN and eventually trapped at the interface between BN and SiO₂. By inserting another layer of graphene between BN and SiO₂ , we can measure an electrical current after photoexcitation due to such charge transfer. We further studied the competition between this vertical charge transfer and in-plane carrier-carrier scattering in different regimes. In Chapter 7, I will briefly summarize collaborated work with Prof. Dimitri Basov's group on near-field imaging of surface polariton in two-dimensional materials. This technique provides a complementary tool to examine the intriguing light-matter interaction (for large momentum excitations) in low-dimensional materials. Chapter 8 is the outlook, from my own point of view, what more can be done following this thesis.
by Qiong Ma.
Ph. D.
Waage, Magnus Heskestad. "Radiative corrections to van der Waals interaction in fluids." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18872.
Повний текст джерелаDelRio, Frank William. "Van der Waals and capillary adhesion in microelectromechanical systems." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239374.
Повний текст джерелаPeet, Andrew Charles. "Vibrational predissociation of Van der Waals complexes containing ethylene." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329168.
Повний текст джерелаHowson, Joanna M. M. "Obtaining potential energy surfaces of Van der Waals molecules." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4488/.
Повний текст джерелаSanz-Garcia, Aranzazu. "Modelling the dispersion energy for Van der Waals complexes." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252013.
Повний текст джерелаMusgrave, Adam. "Electronic spectroscopy of Van der Waals clusters and complexes." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445684.
Повний текст джерелаKhestanova, Ekaterina. "Van der Waals heterostructures : fabrication, mechanical and electronic properties." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/van-der-waals-heterostructures-fabrication-mechanical-and-electronic-properties(047ce24b-7a58-4192-845d-54c7506f179f).html.
Повний текст джерелаSchofield, Robert Christopher. "Raman studies of 2-dimensional van der Waals materials." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21313/.
Повний текст джерелаDavid, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Повний текст джерелаDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Gée, Christelle. "Reactions chimiques isolees sur agregats de van der waals." Paris 11, 1997. http://www.theses.fr/1997PA112092.
Повний текст джерелаYu, Geliang. "Transport properties of graphene based van der Waals heterostructures." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/transport-properties-of-graphene-based-van-der-waals-heterostructures(5cbb782f-4d49-42da-a05e-15b26606e263).html.
Повний текст джерелаGani, Yohanes Satrio. "Electronic Properties of Two-Dimensional Van Der Waals Systems." W&M ScholarWorks, 2019. https://scholarworks.wm.edu/etd/1563899012.
Повний текст джерелаTomarken, Spencer Louis. "Thermodynamic and tunneling measurements of van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123567.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-212).
In certain electronic systems, strong Coulomb interactions between electrons can favor novel electronic phases that are difficult to anticipate theoretically. Accessing fundamental quantities such as the density of states in these platforms is crucial to their analysis. In this thesis, I explore the application of two measurement techniques towards this goal: capacitance measurements that probe the thermodynamic ground state of an electronic system and planar tunneling measurements that access its quasiparticle excitation spectrum. Both techniques were applied to van der Waals materials, a class of crystals composed of layered atomic sheets with weak interplane bonding which permits the isolation of single and few-layer sheets that can be manually assembled into heterostructures. Capacitance measurements were performed on a material system commonly known as magic-angle twisted bilayer graphene (MATBG).
When two monolayers of graphene, a single sheet of graphite, are stacked on top of one another with a relative twist between their crystal axes, the resultant band structure is substantially modified from the cases of both monolayer graphene and Bernal-stacked (non-twisted) bilayer graphene. At certain magic angles, the low energy bands become extremely flat, quenching the electronic kinetic energy and allowing strong electron-electron interactions to become relevant. Exotic insulating and superconducting phases have been observed using conventional transport measurements. By accessing the thermodynamic density of states of MATBG, we estimate its low energy bandwidth, Fermi velocity, and interaction-driven energy gaps. Time-domain planar tunneling was performed on a heterostructure that consisted of monolayer graphene and hexagonal boron nitride (serving as the dielectric and tunnel barrier) sandwiched between a graphite tunneling probe and metal gate.
Tunneling currents were induced by applying a sudden voltage pulse across the full parallel plate structure. The lack of in-plane charge motion allowed access to the tunneling density of states even when the heterostructure was electrically insulating in the quantum Hall regime. These measurements represent the first application of time-domain planar tunneling to the van der Waals class of materials, an important step in extending the technique to new material platforms.
by Spencer Louis Tomarken.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Henck, Hugo. "Hétérostructures de van der Waals à base de Nitrure." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Повний текст джерелаThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Scheele, Iris. "Hochauflösende Infrarot-Spektroskopie an schwach gebundenen Van-der-Waals-Systemen." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963558668.
Повний текст джерелаQuayle, Christopher John Kendrick. "Alignment effects in the photodissociation of van der Waals molecules." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357431.
Повний текст джерелаLuo, Yuanhong Ph D. Massachusetts Institute of Technology. "Twist angle physics in graphene based van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119050.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged student-submitted from PDF version of thesis.
Includes bibliographical references (pages 121-131).
In this thesis, I present my experimental work on twisted bilayer graphene, a van der Waals heterostructure consisting of two graphene sheets stack on top of each other. In particular, the twist angle is a new degree of freedom in this system, and has an important effect in the determination of its transport properties. The work presented will explore the twist-dependent physics in two regimes: the large twist angle and small twist angle regimes. In the large-twist angle limit, the two sheets have little interlayer interactions and are strongly decoupled, allowing us to put independent quantum Hall edge modes in both layers. We study the edge state interactions in this system, culminating in the formation of a quantum spin Hall state in twisted bilayer graphene. In the small twist angle limit, interlayer interactions are strong and the layers are strongly hybridized. Additionally, a new long-range moiré phenomenon emerges, and we study the effects of the interplay between moiré physics and interlayer interactions on its transport properties.
by Yuanhong Luo.
Ph. D.
Yankowitz, Matthew Abraham. "Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594649.
Повний текст джерелаMatope, Stephen. "Application of Van-der-Waals forces in micro-material handling." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71608.
Повний текст джерелаThis doctoral dissertation focuses on the application of Van-der-Waals’ forces in micromaterial handling. A micro-material handling system consists of four main elements, which include: the micro-gripper, the micro-workpart, the picking up position and the placement position. The scientific theoretical frameworks of Van-der-Waals’ forces, presented by Van der Waals, Hamaker, London, Lifshitz, Israelachvilli, Parsegian, Rumpf and Rabinovich, are employed in exploring the extent to which these forces could be applied in a micromanufacturing situation. Engineering theoretical frameworks presented by Fearing, Bohringer, Sitti, Feddema, Arai and Fukuda, are employed in order to provide an in-depth synthesis of the application of Van-der-Waals’ forces in micro-material handling. An empirical or pragmatic methodology was adopted in the research. The Electron Beam Evaporation (e-beam) method was used in generating interactive surfaces of uniform surface roughness values. E-beam depositions of copper, aluminum and silver on silicon substrates were developed. The deposition rates were in the range of 0.6 – 1.2 Angstrom/s, at an average vacuum pressure of 2 x 10-6 mbar. The topographies were analysed and characterised using an Atomic Force Microscope and the corresponding rms surface roughness values were obtained. The Rumpf-Rabinovich equation, which gives the relationship of the exerted Van-der-Waals’ forces and the rms surface roughness values, is used to numerically model the results. In the final synthesis it is observed that the e-beam depositions of copper are generally suited for the pick-up position. Aluminum is suited for the micro-gripper and silver is suited for the placement position in an optimised micro-material handling system. Another Atomic Force Microscope was used in order to validate the numerically modelled results of the exerted Van- der-Waals’ forces. The aim was to measure the magnitude of Vander- Waals’ forces exerted by the e-beam depositions and to evaluate their applicability in micro-material handling operations. The measurements proved that Van-der-Waals’ forces exerted by the samples could be used for micro-material handling purposes on condition that they exceeded the weight of the micro-part being handled. Three fundamental parameters, ie: material type, geometrical configuration and surface topography were used to develop strategies of manipulation of micro-materials by Van-der- Waals’ forces. The first strategy was based on the material type variation of the interactive surfaces in a micro-material handling operation. This strategy hinged on the fact that materials have different Hamaker coefficients, which resulted in them experiencing a specific Van-der- Waals’ forces’ intensity during handling. The second strategy utilised variation in the geometrical configuration of the interacting surfaces. The guiding principle in this case was that, the larger the contact area was, the greater the exerted Van-der-Waals’ forces would be In the analytical modelling of Van-der-Waals’ forces with reference to geometrical configuration, a flat surface was found to exert more force than other configurations. The application of the design, for purposes of manufacturing and assembling (DFMA) criteria, also proved that flat interactive surfaces have high design efficiency. The third strategy was based on surface roughness. The rougher the topography of a given surface was, the lesser the Van-der-Waals’ forces exerted were. It was synthesised that in order for a pick-transfer-place cycle to be realised, the root-mean-square (rms) interactive surface roughness values of the micro-part (including the picking position, the micro-gripper, and the placement position) should decrease successively. Hybrid strategies were also identified in this research in order to deal with some complex cases. The hybrids combined at least two of the aforementioned strategies.
Economides, George. "Investigations of open-shell open-shell Van der Waals complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.
Повний текст джерелаDhont, Guillaume. "Spectroscopie Renner-Teller dans des complexes van der Waals chargés." Université de Marne-la-Vallée, 2003. http://www.theses.fr/2003MARN0175.
Повний текст джерела