Статті в журналах з теми "Environmental biogeochemistry"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Environmental biogeochemistry.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Environmental biogeochemistry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Osborn, D. "Environmental biogeochemistry." Biological Conservation 32, no. 2 (1985): 189–90. http://dx.doi.org/10.1016/0006-3207(85)90085-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Poorter, R. P. E. "Environmental biogeochemistry." Palaeogeography, Palaeoclimatology, Palaeoecology 52, no. 1-2 (November 1985): 179–80. http://dx.doi.org/10.1016/0031-0182(85)90049-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tardy, Y. "Environmental biogeochemistry." Earth-Science Reviews 22, no. 3 (November 1985): 243. http://dx.doi.org/10.1016/0012-8252(85)90065-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Inskeep, William P. "Diversity of Environmental Biogeochemistry." Journal of Environmental Quality 21, no. 3 (July 1992): 513. http://dx.doi.org/10.2134/jeq1992.00472425002100030038x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Greenland, D. J. "Diversity of Environmental Biogeochemistry." Geoderma 58, no. 3-4 (October 1993): 245. http://dx.doi.org/10.1016/0016-7061(93)90045-m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bianchi, Thomas S., Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson. "Ideas and perspectives: Biogeochemistry – some key foci for the future." Biogeosciences 18, no. 10 (May 19, 2021): 3005–13. http://dx.doi.org/10.5194/bg-18-3005-2021.

Повний текст джерела
Анотація:
Abstract. Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ashraf, Muhammad Aqeel, and Muhammad Faheem. "Environmental toxicology and biogeochemistry of ecosystems." Environmental Science and Pollution Research 27, no. 30 (April 12, 2020): 37173–75. http://dx.doi.org/10.1007/s11356-020-08699-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xia, Xuelian, Yanguo Teng, and Yuanzheng Zhai. "Biogeochemistry of Iron Enrichment in Groundwater: An Indicator of Environmental Pollution and Its Management." Sustainability 14, no. 12 (June 9, 2022): 7059. http://dx.doi.org/10.3390/su14127059.

Повний текст джерела
Анотація:
Iron (Fe) is one of the most biochemically active and widely distributed elements and one of the most important elements for biota and human activities. Fe plays important roles in biological and chemical processes. Fe redox reactions in groundwater have been attracting increasing attention in the geochemistry and biogeochemistry fields. This study reviews recent research into Fe redox reactions and biogeochemical Fe enrichment processes, including reduction, biotic and abiotic oxidation, adsorption, and precipitation in groundwater. Fe biogeochemistry in groundwater and the water-bearing medium (aquifer) often involves transformation between Fe(II) and Fe(III) caused by the biochemical conditions of the groundwater system. Human activities and anthropogenic pollutants strongly affect these conditions. Generally speaking, acidification, anoxia and warming of groundwater environments, as well as the inputs of reducing pollutants, are beneficial to the migration of Fe into groundwater (Fe(III)→Fe(II)); conversely, it is beneficial to the migration of it into the media (Fe(II)→Fe(III)). This study describes recent progress and breakthroughs and assesses the biogeochemistry of Fe enrichment in groundwater, factors controlling Fe reactivity, and Fe biogeochemistry effects on the environment. This study also describes the implications of Fe biogeochemistry for managing Fe in groundwater, including the importance of Fe in groundwater monitoring and evaluation, and early groundwater pollution warnings.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hmielowski, Tracy. "Synchrotron Radiation-Based Methods for Environmental Biogeochemistry." CSA News 62, no. 11 (November 2017): 10–16. http://dx.doi.org/10.2134/csa2017.62.1110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bargagli, Roberto, Fabrizio Monaci, and Charlie Bucci. "Environmental biogeochemistry of mercury in Antarctic ecosystems." Soil Biology and Biochemistry 39, no. 1 (January 2007): 352–60. http://dx.doi.org/10.1016/j.soilbio.2006.08.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wang, Yanxin, Ping Li, Qinghai Guo, Zhou Jiang, and Mingliang Liu. "Environmental biogeochemistry of high arsenic geothermal fluids." Applied Geochemistry 97 (October 2018): 81–92. http://dx.doi.org/10.1016/j.apgeochem.2018.07.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Luo, Xiao-San, and Peng Wang. "Environmental Biogeochemistry of Elements and Emerging Contaminants." Journal of Chemistry 2018 (July 5, 2018): 1–2. http://dx.doi.org/10.1155/2018/2763620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Oremland, R. S., and J. J. McCarthy. "Foreword: Methane Biogeochemistry." Global Biogeochemical Cycles 2, no. 4 (December 1988): ii. http://dx.doi.org/10.1029/gb002i004p000ii.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Duursma, Egbert K. "Perspectives on Biogeochemistry." Marine Chemistry 37, no. 3-4 (April 1992): 286–88. http://dx.doi.org/10.1016/0304-4203(92)90084-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Huang, Qiaoyun. "Introduction to the Special Issue “The 21st International Symposium on Environmental Biogeochemistry sponsored by the International Society for Environmental Biogeochemistry (ISEB)”." Geomicrobiology Journal 32, no. 7 (August 9, 2015): 563. http://dx.doi.org/10.1080/01490451.2015.1060786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Turner, Andrew, and Jörg Schäfer. "Twelfth International Estuarine Biogeochemistry Symposium — “An integrated approach to estuarine biogeochemistry”." Marine Chemistry 167 (December 2014): 1. http://dx.doi.org/10.1016/j.marchem.2014.09.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Van Miegroet, Helga. "Biogeochemistry of small catchments—A tool for environmental research." Geochimica et Cosmochimica Acta 59, no. 5 (March 1995): 1029–30. http://dx.doi.org/10.1016/0016-7037(95)90142-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hornung, M. "Biogeochemistry of small catchments: A tool for environmental research." Journal of Hydrology 171, no. 1-2 (September 1995): 205–8. http://dx.doi.org/10.1016/0022-1694(95)90044-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Faganeli, Jadran, and Nives Ogrinc. "Introduction to the Special Issue on the 22nd International Symposium on Environmental Biogeochemistry Sponsored by the International Society for Environmental Biogeochemistry (ISEB)." Geomicrobiology Journal 34, no. 7 (August 9, 2017): 577–78. http://dx.doi.org/10.1080/01490451.2017.1328944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ussher, Simon J., Eric P. Achterberg, and Paul J. Worsfold. "Marine Biogeochemistry of Iron." Environmental Chemistry 1, no. 2 (2004): 67. http://dx.doi.org/10.1071/en04053.

Повний текст джерела
Анотація:
Environmental Context. Several trace elements are essential to the growth of microorganisms, iron being arguably the most important. Marine microorganisms, which affect the global carbon cycle and consequently indirectly influence the world’s climate, are therefore sensitive to the presence of iron. This link means iron-related oceanic processes are a significant ecological and political issue. Abstract. The importance of the role of iron as a limiting micronutrient for primary production in the World Ocean has become increasingly clear following large-scale in situ iron fertilization experiments in high-nutrient, low-chlorophyll (HNLC) regions.[1] This has led to intensive international research with the aim of understanding the marine biogeochemistry of iron and quantifying the spatial distribution and transport of the element in the oceans. Recent studies have benefited from improved trace metal handling protocols and sensitive analytical techniques, but uncertainties remain concerning fundamental processes such as redox transfer, solubility, adsorption, biological uptake, and remineralization. This review summarizes our present knowledge of iron biogeochemistry. It begins with a discussion of the effects of the physicochemical speciation of iron in seawater from a thermodynamic perspective, including important topics such as inorganic and organic complexation and redox chemistry. This is followed by an overview of the fluxes of iron to the ocean interface and a description of iron cycling within the open ocean water column. Current uncertainties of iron biogeochemistry are highlighted and suggestions of future work provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

R. Townsend, Alan. "The lessons of biogeochemistry." Biogeochemistry 133, no. 3 (March 30, 2017): 241–43. http://dx.doi.org/10.1007/s10533-017-0329-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wangersky, Peter J. "Introduction to marine biogeochemistry." Marine Chemistry 42, no. 3-4 (June 1993): 253–54. http://dx.doi.org/10.1016/0304-4203(93)90016-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wangersky, Peter J., Rolf J. Hermes, and Michael Matthies. "Biogeochemistry of small catchments." Environmental Science and Pollution Research 1, no. 4 (December 1994): 284–85. http://dx.doi.org/10.1007/bf02986547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lohse, Kathleen A., Paul D. Brooks, Jennifer C. McIntosh, Thomas Meixner, and Travis E. Huxman. "Interactions Between Biogeochemistry and Hydrologic Systems." Annual Review of Environment and Resources 34, no. 1 (November 2009): 65–96. http://dx.doi.org/10.1146/annurev.environ.33.031207.111141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Mahowald, Natalie, Daniel S. Ward, Silvia Kloster, Mark G. Flanner, Colette L. Heald, Nicholas G. Heavens, Peter G. Hess, Jean-Francois Lamarque, and Patrick Y. Chuang. "Aerosol Impacts on Climate and Biogeochemistry." Annual Review of Environment and Resources 36, no. 1 (November 21, 2011): 45–74. http://dx.doi.org/10.1146/annurev-environ-042009-094507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Christensen, Thomas H., Peter Kjeldsen, Poul L. Bjerg, Dorthe L. Jensen, Jette B. Christensen, Anders Baun, Hans-Jørgen Albrechtsen, and Gorm Heron. "Biogeochemistry of landfill leachate plumes." Applied Geochemistry 16, no. 7-8 (June 2001): 659–718. http://dx.doi.org/10.1016/s0883-2927(00)00082-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Winkel, Lenny H. E., and Elsie M. Sunderland. "Introduction to the biogeochemistry of the trace elements themed issue." Environmental Science: Processes & Impacts 24, no. 9 (2022): 1277–78. http://dx.doi.org/10.1039/d2em90031a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Hattori, Tsutomu, and Philip A. Meyers. "Selected papers from the 16th International Symposium on Environmental Biogeochemistry." Organic Geochemistry 35, no. 10 (October 2004): 1081–82. http://dx.doi.org/10.1016/j.orggeochem.2004.06.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ondrasek, Gabrijel, Helena Bakić Begić, Monika Zovko, Lana Filipović, Cristian Meriño-Gergichevich, Radovan Savić, and Zed Rengel. "Biogeochemistry of soil organic matter in agroecosystems & environmental implications." Science of The Total Environment 658 (March 2019): 1559–73. http://dx.doi.org/10.1016/j.scitotenv.2018.12.243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Hinckley, Eve-Lyn S., Suzanne P. Anderson, Jill S. Baron, Peter D. Blanken, Gordon B. Bonan, William D. Bowman, Sarah C. Elmendorf, et al. "Optimizing Available Network Resources to Address Questions in Environmental Biogeochemistry." BioScience 66, no. 4 (February 17, 2016): 317–26. http://dx.doi.org/10.1093/biosci/biw005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Maher, Bill. "Foreword: Research Front—Arsenic Biogeochemistry." Environmental Chemistry 2, no. 3 (2005): 139. http://dx.doi.org/10.1071/en05063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Schlesinger, William H., Michael C. Dietze, Robert B. Jackson, Richard P. Phillips, Charles C. Rhoades, Lindsey E. Rustad, and James M. Vose. "Forest biogeochemistry in response to drought." Global Change Biology 22, no. 7 (November 18, 2015): 2318–28. http://dx.doi.org/10.1111/gcb.13105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Hsu-Kim, Heileen, Chris S. Eckley, and Noelle E. Selin. "Modern science of a legacy problem: mercury biogeochemical research after the Minamata Convention." Environmental Science: Processes & Impacts 20, no. 4 (2018): 582–83. http://dx.doi.org/10.1039/c8em90016g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sheppard, Stephen C. "Biogeochemistry of Trace Metals." Journal of Environmental Quality 22, no. 2 (April 1993): 381–82. http://dx.doi.org/10.2134/jeq1993.00472425002200020028x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Beck, M., T. Riedel, J. Graue, J. Köster, N. Kowalski, C. S. Wu, G. Wegener, et al. "Paleo-environmental imprint on microbiology and biogeochemistry of coastal quaternary sediments." Biogeosciences Discussions 7, no. 4 (July 15, 2010): 5463–96. http://dx.doi.org/10.5194/bgd-7-5463-2010.

Повний текст джерела
Анотація:
Abstract. To date, North Sea tidal flat sediments have been intensively studied down to a depth of 5 m below sea floor (mbsf). However, little is known about the biogeochemistry, microbial abundance, and activity of sulfate reducers as well of methanogens in deeper layers. For this study, we hypothesized that the imprint of the paleo-environment is reflected in current microbiogeochemical processes. Therefore, 20 m-long cores were retrieved from the tidal-flat area of Spiekeroog Island, NW Germany. Two drill sites were selected with a close distance of only 900 meters, but where sedimentation occurred under different environmental conditions: first, a paleo-channel filled with Holocene sediments and second, a mainly Pleistocene sedimentary succession. In general, the numbers of bacterial 16S rRNA genes are one to two orders of magnitude higher than those of Archaea. The abundances of key genes for sulfate reduction and methanogenesis (dsrA and mcrA) correspond to the sulfate and methane profiles. A co-variance of these key genes at sulfate-methane interfaces and enhanced potential AOM rates suggest that anaerobic oxidation of methane may occur in these layers. Microbial and biogeochemical profiles are vertically stretched relative to 5 m-deep cores from shallower sediments in the same study area. Compared to the deep marine environment, the profiles are transitional between the shallow subsurface and the marine deep biosphere. Our interdisciplinary analysis shows that the microbial abundances and metabolic rates are elevated in the Holocene compared to Pleistocene sediments. However, this is mainly due to present environmental conditions such as pore water flow and organic matter availability. The paleo-environmental imprint is still visible but superimposed by these processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

HERMAN, E. K., and L. R. KUMP. "Biogeochemistry of microbial mats under Precambrian environmental conditions: a modelling study." Geobiology 3, no. 2 (April 2005): 77–92. http://dx.doi.org/10.1111/j.1472-4669.2005.00048.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ehrlich, Henry L. "A brief history of the International Symposia on Environmental Biogeochemistry (ISEB)." Soil Science and Plant Nutrition 50, no. 6 (February 2004): 789–91. http://dx.doi.org/10.1080/00380768.2004.10408538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Arsenault, Julien, Julie Talbot, and Tim R. Moore. "Environmental controls of C, N and P biogeochemistry in peatland pools." Science of The Total Environment 631-632 (August 2018): 714–22. http://dx.doi.org/10.1016/j.scitotenv.2018.03.064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Clipson, Nicholas, and Deirdre B. Gleeson. "Fungal Biogeochemistry: A Central Role in the Environmental Fate of Lead." Current Biology 22, no. 3 (February 2012): R82—R84. http://dx.doi.org/10.1016/j.cub.2011.12.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ormerod, Steve. "Scope 51. Biogeochemistry of small catchments: A tool for environmental research." Environmental Pollution 89, no. 2 (1995): 215. http://dx.doi.org/10.1016/0269-7491(95)90022-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Walling, Des. "Biogeochemistry of small catchments: a tool for environmental research (SCOPE 51)." Applied Geography 15, no. 3 (July 1995): 300–301. http://dx.doi.org/10.1016/0143-6228(95)90021-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

De Haan, H. "Impacts of environmental changes on the biogeochemistry of aquatic humic substances." Hydrobiologia 229, no. 1 (February 1992): 59–71. http://dx.doi.org/10.1007/bf00006991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Dalling, James W., Katherine Heineman, Grizelle González, and Rebecca Ostertag. "Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests." Journal of Tropical Ecology 32, no. 5 (November 20, 2015): 368–83. http://dx.doi.org/10.1017/s0266467415000619.

Повний текст джерела
Анотація:
Abstract:Tropical montane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry. With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests. However, within TMF there is considerable variation in substrate age, parent material, disturbance and species composition. Here we emphasize that many TMFs are likely to be co-limited by multiple nutrients, and that feedback among soil properties, species traits, microbial communities and environmental conditions drive forest productivity and soil carbon storage. To date, studies of the biogeochemistry of montane forests have been restricted to a few, mostly neotropical, sites and focused mainly on trees while ignoring mycorrhizas, epiphytes and microbial community structure. Incorporating the geographic, environmental and biotic variability in TMF will lead to a greater recognition of plant–soil feedbacks that are critical to understanding constraints on productivity, both under present conditions and under future climate, nitrogen-deposition and land-use scenarios.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Calhoun, Frank G. "Phosphorus Biogeochemistry in Subtropical Ecosystems." Journal of Environmental Quality 29, no. 4 (July 2000): 1368. http://dx.doi.org/10.2134/jeq2000.00472425002900040049x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kattner, Gerhard. "The 7th International Estuarine Biogeochemistry Symposium." Marine Chemistry 83, no. 3-4 (November 2003): 101. http://dx.doi.org/10.1016/s0304-4203(03)00104-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Mason, Robert P., Janina M. Benoit, and Rodney T. Powell. "8th International Estuarine Biogeochemistry Symposium: Introduction." Marine Chemistry 102, no. 1-2 (November 2006): 1. http://dx.doi.org/10.1016/j.marchem.2006.03.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Likens, Gene E. "Biogeochemistry, the watershed approach: some uses and limitations." Marine and Freshwater Research 52, no. 1 (2001): 5. http://dx.doi.org/10.1071/mf99188.

Повний текст джерела
Анотація:
The watershed (catchment) approach provides a powerful conceptual model for quantitatively evaluating the structure, function and change within a landscape or region. The values and limitations of this approach are considered in this paper, with particular reference to the Hubbard Brook watershed–ecosystem model. The need for informed long-term (sustained) research is stressed; a haphazard collection of data is rarely valuable. Team-building efforts will be needed increasingly in the future to enhance the success of multidisciplinary teams tackling large and complex environmental problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Vodyanitskii, Yu N., and O. B. Rogova. "The Biogeochemistry of Lantanides in Soils." Dokuchaev Soil Bulletin, no. 84 (July 1, 2016): 101–18. http://dx.doi.org/10.19047/0136-1694-2016-84-101-118.

Повний текст джерела
Анотація:
The lithogenous minerals containing lantanides (Ln) are unsustainable within the zone of hypergenesis. Their dilution impoverish soils in terms of lantanides content, especially in humid regions. In conditions of neutral environmental pH in dry steppe zone, the lantanides loose their mobility, and, hence, become unavailable for plants. The lantanides are characterized by the high biochemical and biological activity. The physiologic impact of lantanides on plants is set. The separate parts of vascular plants accumulate lantanides in different degree. The difference may reach 100-fold level. For many plants the accumulation of lantanides occurs at the reverse order: roots > leaves > stalks > grain/fruits. Lantanides accumulators (such as brackens), promote their accumulation within the humus layer of soils. Fertilizers with lantanides are widely implemented in China. They powder seeds and implement top dressing in soils with lantanides deficit, i.e., with low bulk content and/or with low availability for plants. Although at moderate increasing of Ln concentration in solution, there is often observed the increasing of the crop yield in laboratory conditions. However, the implementation of lantanides in the soil does not always give the positive effect. The main share of Ln in the soils with high sorption capacity is sorbed, and the increasing of doses leads to the decrease of the yield. The light lantanides are characterized by physical and chemical properties equal to Cа2+. And the mass replacement of Cа2+ by lantanides harms the development of plants. The high doses of lantanides have a negative impact on the biochemical processes in plants. The competition with iron and phosphorus is stipulated by the close solubility of iron and lanthanum phosphates: the accumulation of La in plants tissues affects the content of P and Fe within them.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Spagnoli, Federico, and Annamaria Andresini. "Biogeochemistry and sedimentology of Lago di Lesina (Italy)." Science of The Total Environment 643 (December 2018): 868–83. http://dx.doi.org/10.1016/j.scitotenv.2018.06.165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kang, Hojeong, Chris Freeman, and Trevor W. Ashendon. "Effects of elevated CO2 on fen peat biogeochemistry." Science of The Total Environment 279, no. 1-3 (November 2001): 45–50. http://dx.doi.org/10.1016/s0048-9697(01)00724-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії