Добірка наукової літератури з теми "Entropic optimal transport"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Entropic optimal transport".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Entropic optimal transport"
Altschuler, Jason M., Jonathan Niles-Weed, and Austin J. Stromme. "Asymptotics for Semidiscrete Entropic Optimal Transport." SIAM Journal on Mathematical Analysis 54, no. 2 (March 14, 2022): 1718–41. http://dx.doi.org/10.1137/21m1440165.
Повний текст джерелаKeriven, Nicolas. "Entropic Optimal Transport on Random Graphs." SIAM Journal on Mathematics of Data Science 5, no. 4 (November 29, 2023): 1028–50. http://dx.doi.org/10.1137/22m1518281.
Повний текст джерелаAmari, Shun-ichi, Ryo Karakida, Masafumi Oizumi, and Marco Cuturi. "Information Geometry for Regularized Optimal Transport and Barycenters of Patterns." Neural Computation 31, no. 5 (May 2019): 827–48. http://dx.doi.org/10.1162/neco_a_01178.
Повний текст джерелаRigollet, Philippe, and Jonathan Weed. "Entropic optimal transport is maximum-likelihood deconvolution." Comptes Rendus Mathematique 356, no. 11-12 (November 2018): 1228–35. http://dx.doi.org/10.1016/j.crma.2018.10.010.
Повний текст джерелаClason, Christian, Dirk A. Lorenz, Hinrich Mahler, and Benedikt Wirth. "Entropic regularization of continuous optimal transport problems." Journal of Mathematical Analysis and Applications 494, no. 1 (February 2021): 124432. http://dx.doi.org/10.1016/j.jmaa.2020.124432.
Повний текст джерелаJunge, Oliver, Daniel Matthes, and Bernhard Schmitzer. "Entropic transfer operators." Nonlinearity 37, no. 6 (April 16, 2024): 065004. http://dx.doi.org/10.1088/1361-6544/ad247a.
Повний текст джерелаAmid, Ehsan, Frank Nielsen, Richard Nock, and Manfred K. Warmuth. "Optimal Transport with Tempered Exponential Measures." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (March 24, 2024): 10838–46. http://dx.doi.org/10.1609/aaai.v38i10.28957.
Повний текст джерелаPEYRÉ, GABRIEL, LÉNAÏC CHIZAT, FRANÇOIS-XAVIER VIALARD, and JUSTIN SOLOMON. "Quantum entropic regularization of matrix-valued optimal transport." European Journal of Applied Mathematics 30, no. 6 (September 28, 2017): 1079–102. http://dx.doi.org/10.1017/s0956792517000274.
Повний текст джерелаIto, Kaito, and Kenji Kashima. "Entropic model predictive optimal transport over dynamical systems." Automatica 152 (June 2023): 110980. http://dx.doi.org/10.1016/j.automatica.2023.110980.
Повний текст джерелаLo, Chi-Jen (Roger), Mahesh K. Marina, Nishanth Sastry, Kai Xu, Saeed Fadaei, and Yong Li. "Shrinking VOD Traffic via Rényi-Entropic Optimal Transport." Proceedings of the ACM on Measurement and Analysis of Computing Systems 8, no. 1 (February 16, 2024): 1–34. http://dx.doi.org/10.1145/3639033.
Повний текст джерелаДисертації з теми "Entropic optimal transport"
DE, PONTI NICOLÒ. "Optimal transport: entropic regularizations, geometry and diffusion PDEs." Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1292130.
Повний текст джерелаThurin, Gauthier. "Quantiles multivariés et transport optimal régularisé." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0262.
Повний текст джерелаThis thesis is concerned with the study of the Monge-Kantorovich quantile function. We first address the crucial question of its estimation, which amounts to solve an optimal transport problem. In particular, we try to take advantage of the knowledge of the reference distribution, that represents additional information compared with the usual algorithms, and which allows us to parameterize the transport potentials by their Fourier series. Doing so, entropic regularization provides two advantages: to build an efficient and convergent algorithm for solving the semi-dual version of our problem, and to obtain a smooth and monotonic empirical quantile function. These considerations are then extended to the study of spherical data, by replacing the Fourier series with spherical harmonics, and by generalizing the entropic map to this non-Euclidean setting. The second main purpose of this thesis is to define new notions of multivariate superquantiles and expected shortfalls, to complement the information provided by the quantiles. These functions characterize the law of a random vector, as well as convergence in distribution under certain assumptions, and have direct applications in multivariate risk analysis, to extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk
Nenna, Luca. "Numerical Methods for Multi-Marginal Optimal Transportation." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED017/document.
Повний текст джерелаIn this thesis we aim at giving a general numerical framework to approximate solutions to optimal transport (OT) problems. The general idea is to introduce an entropic regularization of the initialproblems. The regularized problem corresponds to the minimization of a relative entropy with respect a given reference measure. Indeed, this is equivalent to find the projection of the joint coupling with respect the Kullback-Leibler divergence. This allows us to make use the Bregman/Dykstra’s algorithm and solve several variational problems related to OT. We are especially interested in solving multi-marginal optimal transport problems (MMOT) arising in Physics such as in Fluid Dynamics (e.g. incompressible Euler equations à la Brenier) and in Quantum Physics (e.g. Density Functional Theory). In these cases we show that the entropic regularization plays a more important role than a simple numerical stabilization. Moreover, we also give some important results concerning existence and characterization of optimal transport maps (e.g. fractal maps) for MMOT
Tamanini, Luca. "Analysis and Geometry of RCD spaces via the Schrödinger problem." Thesis, Paris 10, 2017. http://www.theses.fr/2017PA100082/document.
Повний текст джерелаMain aim of this manuscript is to present a new interpolation technique for probability measures, which is strongly inspired by the Schrödinger problem, an entropy minimization problem deeply related to optimal transport. By means of the solutions to the Schrödinger problem, we build an efficient approximation scheme, robust up to the second order and different from Brenier-McCann's classical one. Such scheme allows us to prove the second order differentiation formula along geodesics in finite-dimensional RCD* spaces. This formula is new even in the context of Alexandrov spaces and we provide some applications.The proof relies on new, even in the smooth setting, estimates concerning entropic interpolations which we believe are interesting on their own. In particular we obtain:- equiboundedness of the densities along the entropic interpolations,- equi-Lipschitz continuity of the Schrödinger potentials,- a uniform weighted L2 control of the Hessian of such potentials. These tools are very useful in the investigation of the geometric information encoded in entropic interpolations. The techniques used in this work can be also used to show that the viscous solution of the Hamilton-Jacobi equation can be obtained via a vanishing viscosity method, in accordance with the smooth case. Throughout the whole manuscript, several remarks on the physical interpretation of the Schrödinger problem are pointed out. Hopefully, this will allow the reader to better understand the physical and probabilistic motivations of the problem as well as to connect them with the analytical and geometric nature of the dissertation
Genevay, Aude. "Entropy-regularized Optimal Transport for Machine Learning." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED002/document.
Повний текст джерелаThis thesis proposes theoretical and numerical contributions to use Entropy-regularized Optimal Transport (EOT) for machine learning. We introduce Sinkhorn Divergences (SD), a class of discrepancies betweenprobabilitymeasuresbasedonEOTwhichinterpolatesbetween two other well-known discrepancies: Optimal Transport (OT) and Maximum Mean Discrepancies (MMD). We develop an ecient numerical method to use SD for density fitting tasks, showing that a suitable choice of regularization can improve performance over existing methods. We derive a sample complexity theorem for SD which proves that choosing a large enough regularization parameter allows to break the curse of dimensionality from OT, and recover asymptotic ratessimilartoMMD.Weproposeandanalyzestochasticoptimization solvers for EOT, which yield online methods that can cope with arbitrary measures and are well suited to large scale problems, contrarily to existing discrete batch solvers
Baradat, Aymeric. "Transport optimal incompressible : dépendance aux données et régularisation entropique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX016/document.
Повний текст джерелаThis thesis focuses on Incompressible Optimal Transport, a minimization problem introduced by Brenier in the late 80's, aiming at describing the evolution of an incompressible and inviscid fluid in a Lagrangian way , i.e. by prescribing the state of the fluid at the initial and final times and by minimizing some functional among the set of admissible dynamics. This text is divided into two parts.In the first part, we study the dependence of this optimization problem with respect to the data. More precisely, we analyse the dependence of the pressure field, the Lagrange multiplier corresponding to the incompressibility constraint, with respect to the endpoint conditions, described by a probability measure γ determining the state of the fluid at the initial and final times. We show in Chapter 2 by purely variational methods that the gradient of the pressure field, as an element of a space that is close to the dual of C^1, is a Hölder continuous function of γ for the Monge-Kantorovic distance. On the other hand, we prove in Chapter 4 that for all r>1 the pressure field, as an element of L^r_t L^1_x, cannot be a Lipschitz continuous function of γ for the Monge-Kantorovic distance. This last statement is linked to an ill-posedness result proved in Chapter 3 for the so-called kinetic Euler equation, a kinetic PDE interpreted as the optimality equation of the Incompressible Optimal Transport problem.In the second part, we are interested in the entropic regularization of the Incompressible Optimal Transport problem: the so-called Brödinger problem, introduced by Arnaudon, Cruzeiro, Léonard and Zambrini in 2017. On the one hand, we prove in Chapter 5 that similarly to what happens in the Incompressible Optimal Transport case, to a solution always corresponds a scalar pressure field acting as the Lagrange multiplier for the incompressibility constraint. On the other hand, we prove in Chapter 6 that when the diffusivity coefficient tends to zero, the Brödinger problem converges towards the Incompressible Optimal Transport problem in the sense of Gamma-convergence, and with convergence of the pressure fields. The results of Chapter 6 come from a joint work with L. Monsaingeon
Ripani, Luigia. "Le problème de Schrödinger et ses liens avec le transport optimal et les inégalités fonctionnelles." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1274/document.
Повний текст джерелаIn the past 20 years the optimal transport theory revealed to be an efficient tool to study the asymptotic behavior for diffusion equations, to prove functional inequalities, to extend geometrical properties in extremely general spaces like metric measure spaces, etc. The curvature-dimension of the Bakry-Émery theory appears as the cornerstone of those applications. Just think to the easier and most important case of the quadratic Wasserstein distance W2: contraction of the heat flow in W2 characterizes uniform lower bounds for the Ricci curvature; the transport Talagrand inequality, comparing W2 to the relative entropy is implied and implies via the HWI inequality the log-Sobolev inequality; McCann geodesics in the Wasserstein space (P2(Rn),W2) allow to prove important functional properties like convexity, and standard functional inequalities, such as isoperimetry, measure concentration properties, the Prékopa Leindler inequality and so on. However the lack of regularity of optimal maps, requires non-smooth analysis arguments. The Schrödinger problem is an entropy minimization problem with marginal constraints and a fixed reference process. From the Large deviation theory, when the reference process is driven by the Brownian motion, its minimal value A converges to W2 when the temperature goes to zero. The entropic interpolations, solutions of the Schrödinger problem, are characterized in terms of Markov semigroups, hence computation along them naturally involves Γ2 computations and the curvature-dimension condition. Dating back to the 1930s, and neglected for decades, the Schrödinger problem recently enjoys an increasing popularity in different fields, thanks to this relation to optimal transport, smoothness of solutions and other well performing properties in numerical computations. The aim of this work is twofold. First we study some analogy between the Schrödinger problem and optimal transport providing new proofs of the dual Kantorovich and the dynamic Benamou-Brenier formulations for the entropic cost A. Secondly, as an application of these connections we derive some functional properties and inequalities under curvature-dimensions conditions. In particular, we prove the concavity of the exponential entropy along entropic interpolations under the curvature-dimension condition CD(0, n) and regularity of the entropic cost along the heat flow. We also give different proofs the Evolutionary Variational Inequality for A and contraction of the heat flow in A, recovering as a limit case the classical results in W2, under CD(κ,∞) and also in the flat dimensional case. Finally we propose an easy proof of the Gaussian concentration property via the Schrödinger problem as an alternative to classical arguments as the Marton argument which is based on optimal transport
Chizat, Lénaïc. "Transport optimal de mesures positives : modèles, méthodes numériques, applications." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED063/document.
Повний текст джерелаThis thesis generalizes optimal transport beyond the classical "balanced" setting of probability distributions. We define unbalanced optimal transport models between nonnegative measures, based either on the notion of interpolation or the notion of coupling of measures. We show relationships between these approaches. One of the outcomes of this framework is a generalization of the p-Wasserstein metrics. Secondly, we build numerical methods to solve interpolation and coupling-based models. We study, in particular, a new family of scaling algorithms that generalize Sinkhorn's algorithm. The third part deals with applications. It contains a theoretical and numerical study of a Hele-Shaw type gradient flow in the space of nonnegative measures. It also adresses the case of measures taking values in the cone of positive semi-definite matrices, for which we introduce a model that achieves a balance between geometrical accuracy and algorithmic efficiency
DOLDI, ALESSANDRO. "EQUILIBRIUM, SYSTEMIC RISK MEASURES AND OPTIMAL TRANSPORT: A CONVEX DUALITY APPROACH." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/812668.
Повний текст джерелаHillion, Erwan. "Analyse et géométrie dans les espaces métriques mesurés : inégalités de Borell-Brascamp-Lieb et conjecture de Olkin-Shepp." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1592/.
Повний текст джерелаThe work done during this PhD thesis is based on the theory of Ricci curvature bounds in measured length spaces, developed by Sturm, Lott and Villani, using deep results coming from the optimal transportation theory. In a first part, we study two families of functional inequalities, called Prékopa-Leindler and Borell-Brascamp-Lieb inequalities, and show that they allows us to give an alternate definition to Ricci curvature bounds, satisfying a "wishlist" similar to the one fulfilled by the Sturm-Lott- Villani condition CD(K,N). The second part is about a possible generalization of Sturm-Lott-Villani definition in a discrete setting. We emphasise the case of the translation of probability measures on a linear graph, and study the convexity of entropy along such a translation. The expression of this translation as a binomial convolution enlightens a conjecture stated by Olkin and Shepp about the entropy of sums of idependent Bernoulli random variables, for which we give a partial proof
Частини книг з теми "Entropic optimal transport"
Stromme, Austin J. "Minimum Intrinsic Dimension Scaling for Entropic Optimal Transport." In Advances in Intelligent Systems and Computing, 491–99. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65993-5_60.
Повний текст джерелаPortinale, Lorenzo. "Entropic Regularised Optimal Transport in a Noncommutative Setting." In Bolyai Society Mathematical Studies, 241–61. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50466-2_5.
Повний текст джерелаRioul, Olivier. "Optimal Transport to Rényi Entropies." In Lecture Notes in Computer Science, 143–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68445-1_17.
Повний текст джерелаYamaka, Woraphon. "Maximum Entropy Learning with Neural Networks." In Optimal Transport Statistics for Economics and Related Topics, 150–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35763-3_8.
Повний текст джерелаGu, Wen, Teng Zhang, and Hai Jin. "Entropy Weight Allocation: Positive-unlabeled Learning via Optimal Transport." In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), 37–45. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2022. http://dx.doi.org/10.1137/1.9781611977172.5.
Повний текст джерелаTarkhamtham, Payap, and Woraphon Yamaka. "A Generalized Maximum Renyi Entropy Approach in Kink Regression Model." In Credible Asset Allocation, Optimal Transport Methods, and Related Topics, 411–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97273-8_28.
Повний текст джерелаCarlen, Eric. "Dynamics and Quantum Optimal Transport: Three Lectures on Quantum Entropy and Quantum Markov Semigroups." In Bolyai Society Mathematical Studies, 29–89. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50466-2_2.
Повний текст джерелаТези доповідей конференцій з теми "Entropic optimal transport"
Wang, Tao, and Ziv Goldfeld. "Neural Estimation of Entropic Optimal Transport." In 2024 IEEE International Symposium on Information Theory (ISIT), 2116–21. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619399.
Повний текст джерелаReshetova, Daria, Wei-Ning Chen, and Ayfer Özgür. "Training Generative Models from Privatized Data via Entropic Optimal Transport." In 2024 IEEE International Symposium on Information Theory (ISIT), 605–10. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619114.
Повний текст джерелаLo, Chi-Jen (Roger), Mahesh K. Marina, Nishanth Sastry, Kai Xu, Saeed Fadaei, and Yong Li. "Shrinking VOD Traffic via Rényi-Entropic Optimal Transport." In SIGMETRICS/PERFORMANCE '24: ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3652963.3655081.
Повний текст джерелаHundrieser, Shayan, Marcel Klatt, and Axel Munk. "Entropic Optimal Transport on Countable Spaces: Statistical Theory and Asymptotics." In Entropy 2021: The Scientific Tool of the 21st Century. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/entropy2021-09837.
Повний текст джерелаYan, Yuguang, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao Wu. "Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/412.
Повний текст джерелаLiu, Dong, Minh Thanh Vu, Saikat Chatterjee, and Lars K. Rasmussen. "Entropy-regularized Optimal Transport Generative Models." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682721.
Повний текст джерелаColeman, Todd P., Justin Tantiongloc, Alexis Allegra, Diego Mesa, Dae Kang, and Marcela Mendoza. "Diffeomorphism learning via relative entropy constrained optimal transport." In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016. http://dx.doi.org/10.1109/globalsip.2016.7906057.
Повний текст джерелаElvander, Filip, Isabel Haasler, Andreas Jakobsson, and Johan Karlsson. "Non-coherent Sensor Fusion via Entropy Regularized Optimal Mass Transport." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682186.
Повний текст джерелаAdeyinka, O. B., and G. F. Naterer. "Towards Optical Measurement of Entropy Transport in Turbulent Flows." In 39th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-4052.
Повний текст джерелаCao, Nan, Teng Zhang, Xuanhua Shi, and Hai Jin. "Posistive-Unlabeled Learning via Optimal Transport and Margin Distribution." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/393.
Повний текст джерела