Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Entanglement generation.

Статті в журналах з теми "Entanglement generation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Entanglement generation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Riera-Sàbat, Ferran, Pavel Sekatski, and Wolfgang Dür. "Remotely Controlled Entanglement Generation." Quantum 7 (January 24, 2023): 904. http://dx.doi.org/10.22331/q-2023-01-24-904.

Повний текст джерела
Анотація:
We consider a system of multiple qubits without any quantum control. We show that one can mediate entanglement between different subsystems in a controlled way by adding a (locally) controlled auxiliary system of the same size that couples via an always-on, distant dependent interaction to the system qubits. Solely by changing the internal state of the control system, one can selectively couple it to selected qubits, and ultimately generate different kinds of entanglement within the system. This provides an alternative way for quantum control and quantum gates that does not rely on the ability to switch interactions on and off at will, and can serve as a locally controlled quantum switch where all entanglement patterns can be created. We demonstrate that such an approach also offers an increased error tolerance w.r.t. position fluctuations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xie, Dong, and An Min Wang. "Generation of multi-photon entanglement." International Journal of Quantum Information 13, no. 03 (April 2015): 1550018. http://dx.doi.org/10.1142/s0219749915500185.

Повний текст джерела
Анотація:
We propose a new scheme to generate multi-photon entanglement in two steps. First, we utilize a superconductor to create multi-quantum-dot entanglement; secondly, we use the input photon to transfer it into multi-photon entanglement. Moreover, the maximum probability for the swap of photon and quantum-dot qubits is close to unity for a single input Gaussian photon. More importantly, by mapping the multi-quantum-dot state into coherent states of oscillators, such as cavity modes, the multi-quantum-dot entanglement in our scheme can be protected from the decoherence induced by the noise. Thus, it is possible to generate more than eight spatially separated entangled photons in the realistic experimental conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Shijiao, Xiao San Ma, and Mu-Tian Cheng. "Multipartite Entanglement Generation in a Structured Environment." Entropy 22, no. 2 (February 7, 2020): 191. http://dx.doi.org/10.3390/e22020191.

Повний текст джерела
Анотація:
In this paper, we investigate the entanglement generation of n-qubit states in a model consisting of n independent qubits, each coupled to a harmonic oscillator which is in turn coupled to a bath of N additional harmonic oscillators with nearest-neighbor coupling. With analysis, we can find that the steady multipartite entanglement with different values can be generated after a long-time evolution for different sizes of the quantum system. Under weak coupling between the system and the harmonic oscillator, multipartite entanglement can monotonically increase from zero to a stable value. Under strong coupling, multipartite entanglement generation shows a speed-up increase accompanied by some oscillations as non-Markovian behavior. Our results imply that the strong coupling between the harmonic oscillator and the N additional harmonic oscillators, and the large size of the additional oscillators will enhance non-Markovian dynamics and make it take a very long time for the entanglement to reach a stable value. Meanwhile, the couplings between the additional harmonic oscillators and the decay rate of additional harmonic oscillators have almost no effect on the multipartite entanglement generation. Finally, the entanglement generation of the additional harmonic oscillators is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Isar, Aurelian. "Entanglement Generation and Evolution in Open Quantum Systems." Open Systems & Information Dynamics 16, no. 02n03 (September 2009): 205–19. http://dx.doi.org/10.1142/s1230161209000153.

Повний текст джерела
Анотація:
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we study the continuous variable entanglement for a system consisting of two independent harmonic oscillators interacting with a general environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement in terms of the covariance matrix for an arbitrary Gaussian input state. Using Peres–Simon necessary and sufficient criterion for separability of two-mode Gaussian states, we show that for certain values of diffusion and dissipation coefficients describing the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse and revival of entanglement take place. We analyze also the time evolution of the logarithmic negativity, which characterizes the degree of entanglement of the quantum state.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Herrera Valencia, Natalia, Vatshal Srivastav, Matej Pivoluska, Marcus Huber, Nicolai Friis, Will McCutcheon, and Mehul Malik. "High-Dimensional Pixel Entanglement: Efficient Generation and Certification." Quantum 4 (December 24, 2020): 376. http://dx.doi.org/10.22331/q-2020-12-24-376.

Повний текст джерела
Анотація:
Photons offer the potential to carry large amounts of information in their spectral, spatial, and polarisation degrees of freedom. While state-of-the-art classical communication systems routinely aim to maximize this information-carrying capacity via wavelength and spatial-mode division multiplexing, quantum systems based on multi-mode entanglement usually suffer from low state quality, long measurement times, and limited encoding capacity. At the same time, entanglement certification methods often rely on assumptions that compromise security. Here we show the certification of photonic high-dimensional entanglement in the transverse position-momentum degree-of-freedom with a record quality, measurement speed, and entanglement dimensionality, without making any assumptions about the state or channels. Using a tailored macro-pixel basis, precise spatial-mode measurements, and a modified entanglement witness, we demonstrate state fidelities of up to 94.4% in a 19-dimensional state-space, entanglement in up to 55 local dimensions, and an entanglement-of-formation of up to 4 ebits. Furthermore, our measurement times show an improvement of more than two orders of magnitude over previous state-of-the-art demonstrations. Our results pave the way for noise-robust quantum networks that saturate the information-carrying capacity of single photons.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hao, X., and S. Zhu. "Entanglement generation in trapped atoms." European Physical Journal D 41, no. 1 (September 20, 2006): 199–203. http://dx.doi.org/10.1140/epjd/e2006-00213-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ma, Xiongfeng. "High-performance Photonic Entanglement Generation." Quantum Views 6 (October 31, 2022): 69. http://dx.doi.org/10.22331/qv-2022-10-31-69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Daskin, Anmer, Ananth Grama, and Sabre Kais. "Quantum random state generation with predefined entanglement constraint." International Journal of Quantum Information 12, no. 05 (August 2014): 1450030. http://dx.doi.org/10.1142/s0219749914500300.

Повний текст джерела
Анотація:
Entanglement plays an important role in quantum communication, algorithms, and error correction. Schmidt coefficients are correlated to the eigenvalues of the reduced density matrix. These eigenvalues are used in von Neumann entropy to quantify the amount of the bipartite entanglement. In this paper, we map the Schmidt basis and the associated coefficients to quantum circuits to generate random quantum states. We also show that it is possible to adjust the entanglement between subsystems by changing the quantum gates corresponding to the Schmidt coefficients. In this manner, random quantum states with predefined bipartite entanglement amounts can be generated using random Schmidt basis. This provides a technique for generating equivalent quantum states for given weighted graph states, which are very useful in the study of entanglement, quantum computing, and quantum error correction.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu Ming-Hui, Liu Xiao-Min, Shi Jia-Jia, Zhang chong, Zhang Jing, Yang Rong-Guo, and Gao Jiang-Rui. "Generation of microwave-mechanics and magnon-optics entangled states." Acta Physica Sinica 74, no. 5 (2025): 0. https://doi.org/10.7498/aps.74.20241664.

Повний текст джерела
Анотація:
Quantum entanglement is a key resource for performing quantum computing and building quantum communication networks. By injecting a microwave-optical dual-mode entanglement field into the system, as well as pumping the optical and microwave cavities, and by appropriately choosing the detuning relation between the pumping field and the modes, the paper shows that microwave-mechanics entanglement <i>E<sub>ab</sub></i>and magnon-optics entanglement <i>E<sub>cm</sub></i>can be generated simultaneously in the cavity opto-magnomechanics system, and the entanglement can be in a steady state. Specifically, the model is based on a hybrid quantum system of magnons, where a microwave-light entanglement generated by an optically pulsed superconducting electro-optical device through spontaneous parametric down-conversion process is injected as the intracavity field, and a blue-detuned microwave field is used to excite the magnon modes to produce magnon-phonon entanglement. By interacting with an optomechanical beam splitter and microwave-magnon state-swap interaction, steady microwave-mechanics entanglement <i>E<sub>ab</sub></i> and magnon-optics entanglement<i> E<sub>cm</sub></i> are successfully realized. The entanglement <i>E<sub>ab</sub></i>and <i>E<sub>cm</sub></i> in the system is analyzed using the logarithmic negativity. This paper mainly investigates the effect of several parameters of the system, such as environment temperature, coupling strength and dissipation rate, on the degree of entanglement. In particular, the entanglement <i>E<sub>ab</sub></i> and <i>E<sub>cm</sub></i> generated in this system can exist both simultaneously and individually. Especially when <i>g<sub>am</sub></i>=0, the entanglement <i>E<sub>ab</sub></i> and <i>E<sub>cm</sub></i> still exist. Moreover, directly injecting entangled microwave-light into the system can significantly enhance the robustness of the entanglement against temperature, which will have broad application prospects in quantum information processing in quantum networks and hybrid quantum systems. Notably, the entanglement <i>E<sub>ab</sub></i> and <i>E<sub>cm</sub></i> exist even at a temperature of 1.3K. The implications of our research has potential value for applications in the field of quantum information processing and quantum networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thomas, Philip, Leonardo Ruscio, Olivier Morin, and Gerhard Rempe. "Efficient generation of entangled multiphoton graph states from a single atom." Nature 608, no. 7924 (August 24, 2022): 677–81. http://dx.doi.org/10.1038/s41586-022-04987-5.

Повний текст джерела
Анотація:
AbstractThe central technological appeal of quantum science resides in exploiting quantum effects, such as entanglement, for a variety of applications, including computing, communication and sensing1. The overarching challenge in these fields is to address, control and protect systems of many qubits against decoherence2. Against this backdrop, optical photons, naturally robust and easy to manipulate, represent ideal qubit carriers. However, the most successful technique so far for creating photonic entanglement3 is inherently probabilistic and, therefore, subject to severe scalability limitations. Here we report the implementation of a deterministic protocol4–6 for the creation of photonic entanglement with a single memory atom in a cavity7. We interleave controlled single-photon emissions with tailored atomic qubit rotations to efficiently grow Greenberger–Horne–Zeilinger (GHZ) states8 of up to 14 photons and linear cluster states9 of up to 12 photons with a fidelity lower bounded by 76(6)% and 56(4)%, respectively. Thanks to a source-to-detection efficiency of 43.18(7)% per photon, we measure these large states about once every minute, which is orders of magnitude faster than in any previous experiment3,10–13. In the future, this rate could be increased even further, the scheme could be extended to two atoms in a cavity14,15 or several sources could be quantum mechanically coupled16, to generate higher-dimensional cluster states17. Overcoming the limitations encountered by probabilistic schemes for photonic entanglement generation, our results may offer a way towards scalable measurement-based quantum computation18,19 and communication20,21.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Semenenko, Vyacheslav, Xuedong Hu, Eden Figueroa, and Vasili Perebeinos. "Entanglement generation in a quantum network with finite quantum memory lifetime." AVS Quantum Science 4, no. 1 (March 2022): 012002. http://dx.doi.org/10.1116/5.0082239.

Повний текст джерела
Анотація:
We simulate entanglement sharing between two end-nodes of a linear chain quantum network using SeQUeNCe, an open-source simulation package for quantum networks. Our focus is on the rate of entanglement generation between the end-nodes with many repeaters with a finite quantum memory lifetime. Numerical and analytical simulations show limits of connection performance for a given number of repeaters involved, memory lifetimes, the distance between the end-nodes, and an entanglement management protocol. Our findings demonstrate that the performance of quantum connection depends highly on the entanglement management protocol, which schedules entanglement generation and swapping, resulting in the final end-to-end entanglement.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Chen, Yuanyuan, Dong Jiang, Xuemei Gu, Ling Xie, and Lijun Chen. "Interaction-free generation of orbital angular momentum entanglement." International Journal of Modern Physics B 30, no. 05 (February 20, 2016): 1650006. http://dx.doi.org/10.1142/s0217979216500065.

Повний текст джерела
Анотація:
Due to the infinite range of possibly achievable degrees of freedom, orbital angular momentum (OAM) can tremendously increase the capacity of communication system. Here, we propose a scheme to generate OAM entanglement by using interaction-free measurement (IFM). As the superposition state of the quantum absorption object is not changed after IFM, our scheme can be extended to multiparty easily. The numerical analysis results show that the fidelity of generated OAM entanglement can be arbitrarily close to unity. Besides, the implementation issues are also discussed to evaluate the feasibility in experiment. This OAM entanglement with multiple degrees of freedom will play a key role in distributed entanglement computing and efficient quantum communication.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yang, Xiuyi, Hongjie Yin, Feng Zhang, and Jing Nie. "Macroscopic entanglement generation in optomechanical system embedded in non-Markovian environment." Laser Physics Letters 20, no. 1 (December 19, 2022): 015205. http://dx.doi.org/10.1088/1612-202x/aca97a.

Повний текст джерела
Анотація:
Abstract In this paper, we analyze the macroscopic entanglement generation between two movable mirrors in an optomechanical system beyond the Markov approximation. We derive a non-Markovian master equation for the optomechanical system and analyze the entanglement generation based on the numerical simulation. It is found that the maximum entanglement can be achieved by utilizing both the optomechanical coupling and the non-Markovian properties of the bath. In particular, we show the contribution from the system-bath coupling has a positive impact only if the bath is non-Markovian. Besides, the symmetric properties of the optomechanical system as well as the initial state are crucial to the entanglement generation. The results presented in the paper illustrate that the impact of the non-Markovian bath is an important factor in the entanglement generation in the optomechanical system.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wang, Hailong, Ning Ru, and Pingwei Lin. "Generation of Three-Mode Entanglement Based on Parametric Amplifiers Using Quantum Entanglement Swapping." Photonics 9, no. 10 (September 23, 2022): 687. http://dx.doi.org/10.3390/photonics9100687.

Повний текст джерела
Анотація:
Quantum entanglement swapping is one of the most promising quantum techniques to create or manipulate large-scale multi-mode entanglement between two distant quantum entangled systems. In this work, a scheme for the generation of three-mode entanglement based on parametric amplifiers using quantum entanglement swapping has been proposed. The newly generated three-mode entanglement is always present in the whole power gain region from parametric amplifiers and its dependence on transmission loss and feedforward gain is also investigated. In addition, the effects of power gain, transmission loss, and feedforward gain on the two-mode entanglement of the three pairs in the newly generated three-mode entanglement have also been analysed in detail. The results presented here may find some practical applications in quantum secure communication.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Karpat, Göktuğ. "Invariant entanglement and generation of quantum correlations under global dephasing." Canadian Journal of Physics 96, no. 7 (July 2018): 705–10. http://dx.doi.org/10.1139/cjp-2017-0684.

Повний текст джерела
Анотація:
We investigate the dynamics of quantum entanglement and more general quantum correlations quantified via negativity and local quantum uncertainty, respectively, for two-qubit systems undergoing Markovian collective dephasing. Focusing on a two-parameter family of initial two-qubit density matrices, we study the relation of the emergence of the curious phenomenon of time-invariant entanglement and the dynamical behavior of local quantum uncertainty. Developing an illustrative geometric approach, we demonstrate the existence of distinct regions of quantum entanglement for the considered initial states and identify the region that allows for completely frozen entanglement throughout the dynamics, accompanied by generation of local quantum uncertainty. Furthermore, we present a systematic analysis of different dynamical behaviors of local quantum uncertainty, such as its sudden change or smooth amplification, in relation with the dynamics of entanglement.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ebadi, Zahra, and Behrouz Mirza. "Entanglement generation due to the background electric field and curvature of space–time." International Journal of Modern Physics A 30, no. 07 (March 5, 2015): 1550031. http://dx.doi.org/10.1142/s0217751x15500311.

Повний текст джерела
Анотація:
In Schwinger effect, quantum vacuum instability under the influence of an electric field leads to decay of vacuum into pairs of charged particles. We consider the entanglement of pair produced particles. We will show that the measure of entanglement depends on the geometry of space–time. Using the Schwinger pair production in curved space–time, dS2 and AdS2, we propose and demonstrate that the electric field can generate entanglement. In dS2 space–time, we study entanglement for scalar particles with zero spin in the absence and presence of a constant electric field. We show that the entanglement entropy depends on the choice of the α-vacua. But, for some values of the related parameters (mass, charge, scalar curvature, electric field), the entanglement entropy is independent of α. Also, we consider the generation of entanglement in the presence of a constant electric field for anti-de Sitter space–time. We will show that the positive (negative) curvature of space–time upgrades (degrades) the generated entanglement.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Isar, Aurelian. "Entanglement Generation in Two-Mode Gaussian Systems in a Thermal Environment." Open Systems & Information Dynamics 23, no. 01 (March 2016): 1650007. http://dx.doi.org/10.1142/s1230161216500074.

Повний текст джерела
Анотація:
We describe the evolution of the quantum entanglement in a system composed of two interacting bosonic modes immersed in a thermal reservoir, in the framework of the theory of open systems based on completely positive quantum dynamical semigroups. The evolution of entanglement is described in terms of the covariance matrix for Gaussian initial states. We calculate the logarithmic negativity and show that for separable initial squeezed thermal states entanglement generation may take place, for definite values of squeezing parameter, average photon numbers, temperature of the thermal bath, dissipation constant and the strength of interaction between the two modes. After its generation one can observe temporary suppressions and revivals of the entanglement. For entangled initial squeezed thermal states, entanglement suppression takes place, for all temperatures of the reservoir, and temporary revivals and suppressions of entanglement can be observed too. In the limit of infinite time the system evolves asymptotically to an equilibrium state which may be entangled or separable.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

DONG, PING, GANG ZHANG, MING YANG, and ZHUO-LIANG CAO. "ENTANGLEMENT GENERATION AND CONCENTRATION VIA ADIABATIC EVOLUTION WITH TRAPPED IONS." Modern Physics Letters B 22, no. 01 (January 10, 2008): 1–7. http://dx.doi.org/10.1142/s0217984908014560.

Повний текст джерела
Анотація:
We propose two schemes via adiabatic evolution of dark eigenstates in an ion trap system. One is an entanglement generation of multi-ion cluster states, the other is entanglement concentration via entanglement swapping. Our schemes are robust against moderate fluctuations of experimental parameters since we utilize the adiabatic passage in the main procedure. The current idea can be generalized to other systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Zhang, Jihua, Jinyong Ma, Dragomir N. Neshev, and Andrey A. Sukhorukov. "Photon pair generation from lithium niobate metasurface with tunable spatial entanglement." Chinese Optics Letters 21, no. 1 (2023): 010005. http://dx.doi.org/10.3788/col202321.010005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ishida, Kunio, and Hiroaki Matsueda. "Dynamics of photoinduced entanglement generation between remote electron-phonon systems." Journal of Physics: Conference Series 2207, no. 1 (March 1, 2022): 012041. http://dx.doi.org/10.1088/1742-6596/2207/1/012041.

Повний текст джерела
Анотація:
Abstract We numerically study the dynamics of quantum entanglement generation between remote electron-phonon systems by photoirradiation employing a model of multiple spins and boson modes. The Schmidt decomposition on the time-dependent wavefunction enables us to discuss the mechanism of the entanglement generation as dynamical behaviors of the singular vectors. The calculated results show that an effective entanglement source will be provided by an appropriate measurement on the phonon state.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Pachos, J., and E. Solano. "Generation and degree of entanglement in a relativistic formulation." Quantum Information and Computation 3, no. 2 (March 2003): 115–20. http://dx.doi.org/10.26421/qic3.2-3.

Повний текст джерела
Анотація:
The generation of entangled states and their degree of entanglement are studied in a relativistic formulation for the case of two interacting spin-1/2 charged particles. In the realm of quantum electrodynamics, we revisit the interaction that produces entanglement between the spin components of covariant Dirac spinors describing the two particles. In this way, we derive the relativistic version of the spin-spin interaction, widely used in the nonrelativistic regime. Following this consistent approach, the relativistic invariance of the generated entanglement is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Muschik, Christine A., Hanna Krauter, Kasper Jensen, Jonas M. Petersen, J. Ignacio Cirac, and Eugene S. Polzik. "Robust entanglement generation by reservoir engineering." Journal of Physics B: Atomic, Molecular and Optical Physics 45, no. 12 (June 8, 2012): 124021. http://dx.doi.org/10.1088/0953-4075/45/12/124021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Bruschi, David Edward, Jorma Louko, and Daniele Faccio. "Entanglement generation in relativistic cavity motion." Journal of Physics: Conference Series 442 (June 10, 2013): 012024. http://dx.doi.org/10.1088/1742-6596/442/1/012024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Pirker, Alexander, Vedran Dunjko, Wolfgang Dür, and Hans J. Briegel. "Entanglement generation secure against general attacks." New Journal of Physics 19, no. 11 (November 10, 2017): 113012. http://dx.doi.org/10.1088/1367-2630/aa8086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Takesue, H., H. Fukuda, T. Tsuchizawa, T. Watanable, K. Yamada, Y. Tokura, and S. Itabashi. "Entanglement generation using silicon wire waveguide." Optics and Spectroscopy 108, no. 2 (February 2010): 160–64. http://dx.doi.org/10.1134/s0030400x10020025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Takesue, Hiroki, Yasuhiro Tokura, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, and Sei-ichi Itabashi. "Entanglement generation using silicon wire waveguide." Applied Physics Letters 91, no. 20 (November 12, 2007): 201108. http://dx.doi.org/10.1063/1.2814040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Friis, Nicolai, and Ivette Fuentes. "Entanglement generation in relativistic quantum fields." Journal of Modern Optics 60, no. 1 (January 2013): 22–27. http://dx.doi.org/10.1080/09500340.2012.712725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Jeong, Hyunseok, Alessandro Zavatta, Minsu Kang, Seung-Woo Lee, Luca S. Costanzo, Samuele Grandi, Timothy C. Ralph, and Marco Bellini. "Generation of hybrid entanglement of light." Nature Photonics 8, no. 7 (June 22, 2014): 564–69. http://dx.doi.org/10.1038/nphoton.2014.136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Guo, Qizhi, Chaoying Zhao, and Weihan Tan. "Multipartite entanglement generation via ultrashort pulse." Journal of the Optical Society of America B 28, no. 9 (August 25, 2011): 2240. http://dx.doi.org/10.1364/josab.28.002240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ebadi, Zahra, and Behrouz Mirza. "Entanglement generation by electric field background." Annals of Physics 351 (December 2014): 363–81. http://dx.doi.org/10.1016/j.aop.2014.09.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Takesue, Hiroki, Ken-ichi Harada, Yasuhiro Tokura, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, and Sei-ichi Itabashi. "Entanglement Generation Using Silicon Wire Waveguide." NTT Technical Review 8, no. 2 (February 2010): 33–38. http://dx.doi.org/10.53829/ntr201002sf6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Guo, Jingkun, and Simon Gröblacher. "Coherent feedback in optomechanical systems in the sideband-unresolved regime." Quantum 6 (November 3, 2022): 848. http://dx.doi.org/10.22331/q-2022-11-03-848.

Повний текст джерела
Анотація:
Preparing macroscopic mechanical resonators close to their motional quantum groundstate and generating entanglement with light offers great opportunities in studying fundamental physics and in developing a new generation of quantum applications. Here we propose an experimentally interesting scheme, which is particularly well suited for systems in the sideband-unresolved regime, based on coherent feedback with linear, passive optical components to achieve groundstate cooling and photon-phonon entanglement generation with optomechanical devices. We find that, by introducing an additional passive element – either a narrow linewidth cavity or a mirror with a delay line – an optomechanical system in the deeply sideband-unresolved regime will exhibit dynamics similar to one that is sideband-resolved. With this new approach, the experimental realization of groundstate cooling and optomechanical entanglement is well within reach of current integrated state-of-the-art high-Q mechanical resonators.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Djordjevic, Ivan B., and Vijay Nafria. "Entanglement-Based CV-QKD with Information Reconciliation over Entanglement-Assisted Link." Entropy 26, no. 4 (March 29, 2024): 305. http://dx.doi.org/10.3390/e26040305.

Повний текст джерела
Анотація:
An entanglement-based continuous variable (CV) QKD scheme is proposed, performing information reconciliation over an entanglement-assisted link. The same entanglement generation source is used in both raw key transmission and information reconciliation. The entanglement generation source employs only low-cost devices operated in the C-band. The proposed CV-QKD scheme with information reconciliation over an entanglement-assisted link significantly outperforms the corresponding CV-QKD scheme with information reconciliation over an authenticated public channel. It also outperforms the CV-QKD scheme in which a classical free-space optical communication link is used to perform information reconciliation. An experimental demonstration over the free-space optical testbed established at the University of Arizona campus indicates that the proposed CV-QKD can operate in strong turbulence regimes. To improve the secret key rate performance further, adaptive optics is used.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Shi, Ying, Li Zheng, Yu-Jie Liu, and Chong Li. "Entanglement acquirement from continuous variable system." International Journal of Quantum Information 14, no. 07 (October 2016): 1650038. http://dx.doi.org/10.1142/s0219749916500386.

Повний текст джерела
Анотація:
We investigate a remote establishment of entanglement sharing resource through entanglement transferred from continuous variables to discrete variables. The analysis of generation of entanglement for two initially unentangled atoms with different fields are performed and simultaneous observations of the max entanglement acquirement is given. Based on our result, we suppose that the max and stable entanglement acquirement can be obtained with appropriate field parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wang, Tianyi, Xiaoguang Chen, and Jianxiong Liang. "Four-Qubit Cluster States Generation through Multi-Coin Quantum Walk." Applied Sciences 12, no. 17 (August 31, 2022): 8750. http://dx.doi.org/10.3390/app12178750.

Повний текст джерела
Анотація:
Quantum computing requires large numbers of resources of entangled qubits, which cannot be satisfied using traditional methods of entanglement generation, such as optical systems. Therefore, we need more efficient ways of entanglement generation. It has been proved that multi-coin quantum walks can be used to replace direct Bell state measurements during the process of entanglement generation in order to avoid the difficulty of Bell state measurement. In this paper, we take one step further and generate 4-qubit cluster states using multi-coin quantum walks, which simplifies the generation of 4-qubit cluster states by using only Bell states and local measurements. We also propose a method for preparing 4-qubit cluster states with quantum circuits to facilitate their use in quantum computing.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Jiaozi, Barbara Dietz, Dario Rosa, and Giuliano Benenti. "Entanglement Dynamics and Classical Complexity." Entropy 25, no. 1 (January 3, 2023): 97. http://dx.doi.org/10.3390/e25010097.

Повний текст джерела
Анотація:
We study the dynamical generation of entanglement for a two-body interacting system, starting from a separable coherent state. We show analytically that in the quasiclassical regime the entanglement growth rate can be simply computed by means of the underlying classical dynamics. Furthermore, this rate is given by the Kolmogorov–Sinai entropy, which characterizes the dynamical complexity of classical motion. Our results, illustrated by numerical simulations on a model of coupled rotators, establish in the quasiclassical regime a link between the generation of entanglement, a purely quantum phenomenon, and classical complexity.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhang, Jian-Song, and Jing-Bo Xu. "Optimal entanglement generation in cavity QED with dissipation." Canadian Journal of Physics 87, no. 9 (September 2009): 1031–36. http://dx.doi.org/10.1139/p09-063.

Повний текст джерела
Анотація:
We investigate a two-level atom coupled to a cavity with a strong classical driving field in a dissipative environment and find an analytical expression for the time evolution density matrix for the system. The analytical density operator is then used to study the entanglement between the atom and cavity by considering the competing process between the atom–field interactions and the field–environment interactions. It is shown that there is an optimal interaction time for generating atom–cavity entanglement.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Omran, A., H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, et al. "Generation and manipulation of Schrödinger cat states in Rydberg atom arrays." Science 365, no. 6453 (August 8, 2019): 570–74. http://dx.doi.org/10.1126/science.aax9743.

Повний текст джерела
Анотація:
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chandra, N., and R. Ghosh. "Generation of entanglement between spin of an electron and polarization of a photon." Quantum Information and Computation 9, no. 1&2 (January 2009): 36–61. http://dx.doi.org/10.26421/qic9.1-2-3.

Повний текст джерела
Анотація:
This paper shows an electron and a photon, emitted in two consecutive steps from an atom following the absorption of a single photon, may be entangled in the presence of the spin-orbit interaction only. This entanglement strongly depends upon the polarization of the absorbed and of the radiated photons, kinematics of two emitted particles, and dynamics of photoionization; however, the photoemission dynamics plays no role in this entanglement. This hybrid entanglement can be used in teleporting a quantum state encoded in a flying/stationary material particle onto a light pulse, or vice versa. Such an electron-photon entanglement, in addition, will make it possible to learn about the polarization of a single photon or spin-polarization of a free electron without making any measurements on the corresponding particle itself.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Cuestas, Eloisa, and Ana P. Majtey. "Two distinguishable fermions entanglement generation and fermionization." Physica E: Low-dimensional Systems and Nanostructures 133 (September 2021): 114817. http://dx.doi.org/10.1016/j.physe.2021.114817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Takesue, Hiroki, Ken-Ichi Harada, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, Yasuhiro Tokura, and Sei-Ichi Itabashi. "Entanglement Generation Using Silicon Photonic Wire Waveguide." Journal of Nanoscience and Nanotechnology 10, no. 3 (March 1, 2010): 1814–18. http://dx.doi.org/10.1166/jnn.2010.2048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lazarou, C., B. M. Garraway, J. Piilo, and S. Maniscalco. "Generation of entanglement density within a reservoir." Journal of Physics B: Atomic, Molecular and Optical Physics 44, no. 6 (March 4, 2011): 065505. http://dx.doi.org/10.1088/0953-4075/44/6/065505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

McRae, Terry G., and Warwick P. Bowen. "Nonlinear optical generation of time-delayed entanglement." Journal of Physics B: Atomic, Molecular and Optical Physics 44, no. 9 (April 21, 2011): 095503. http://dx.doi.org/10.1088/0953-4075/44/9/095503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Dobek, K., M. Karpiński, R. Demkowicz-Dobrzański, K. Banaszek, and P. Horodecki. "Experimental generation of complex noisy photonic entanglement." Laser Physics 23, no. 2 (January 11, 2013): 025204. http://dx.doi.org/10.1088/1054-660x/23/2/025204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kowalewska-Kudłaszyk, Anna, Wiesław Leoński, Thi Dung Nguyen, and Van Cao Long. "Kicked nonlinear quantum scissors and entanglement generation." Physica Scripta T160 (April 1, 2014): 014023. http://dx.doi.org/10.1088/0031-8949/2014/t160/014023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Hamel, Deny R., Lynden K. Shalm, Hannes Hübel, Aaron J. Miller, Francesco Marsili, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kevin J. Resch, and Thomas Jennewein. "Direct generation of three-photon polarization entanglement." Nature Photonics 8, no. 10 (September 14, 2014): 801–7. http://dx.doi.org/10.1038/nphoton.2014.218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Tadesse, Mulugeta, Tesfay Gebremariam Tesfahannes, Tewodros Yirgashewa Darge, Muhdin Abdo Wodado, and Habtamu Dagnaw Mekonnen. "Distant bipartite entanglement generation in a hybrid opto-magnomechanical system." AIP Advances 14, no. 5 (May 1, 2024). http://dx.doi.org/10.1063/5.0209005.

Повний текст джерела
Анотація:
In this work, we present a hybrid cavity opto-magnomechanical system to generate distant bipartite entanglement between different quantum carriers. Accordingly, the system consists of two cavity photons, a phonon of yttrium iron garnet (YIG), a magnon, and a phonon of membrane. Specifically, the two cavities are coupled through an optical fiber, and one of the optical cavities consists of a membrane coupled with the cavity photon through radiation pressure force. While the other cavity contains a YIG, the magnon mode connects to the cavity photon via magnetic dipole interaction and, simultaneously, couples to the mechanical resonator of the YIG through magnetostrictive interaction. We show that entanglement generation can be realized under indirectly coupled bipartitions for parameters and detunings within appropriate regimes. Furthermore, for various bipartitions, we also obtain appropriate cavity and magnon detuning values for a considerable remote entanglement. Moreover, the generation of distant bipartite entanglements and entanglement transfer between subsystems is predominantly influenced by the coupling strength. Remarkably, the distant bipartite entanglement is strongly contrary to the environmental temperature. Thus, optimizing the system’s parameters allows for the maximum possible entanglement between various quantum carriers. We believe our results could provide more stable bipartite entanglements and serve as a potential quantum interface to realize particularly long-range entanglement transfers.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yang, Zebo, Ali Ghubaish, Raj Jain, Hassan Shapourian, and Alireza Shabani. "Asynchronous entanglement routing for the quantum internet." AVS Quantum Science 6, no. 1 (January 18, 2024). http://dx.doi.org/10.1116/5.0172819.

Повний текст джерела
Анотація:
With the emergence of the Quantum Internet, the need for advanced quantum networking techniques has significantly risen. Various models of quantum repeaters have been presented, each delineating a unique strategy to ensure quantum communication over long distances. We focus on repeaters that employ entanglement generation and swapping. This revolves around establishing remote end-to-end entanglement through repeaters, a concept we denote as the “quantum-native” repeaters (also called “first-generation” repeaters in some literature). The challenges in routing with quantum-native repeaters arise from probabilistic entanglement generation and restricted coherence time. Current approaches use synchronized time slots to search for entanglement-swapping paths, resulting in inefficiencies. Here, we propose a new set of asynchronous routing protocols for quantum networks by incorporating the idea of maintaining a dynamic topology in a distributed manner, which has been extensively studied in classical routing for lossy networks, such as using a destination-oriented directed acyclic graph or a spanning tree. The protocols update the entanglement-link topology asynchronously, identify optimal entanglement-swapping paths, and preserve unused direct-link entanglements. Our results indicate that asynchronous protocols achieve a larger upper bound with an appropriate setting and significantly higher entanglement rate than existing synchronous approaches, and the rate increases with coherence time, suggesting that it will have a much more profound impact on quantum networks as technology advances.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

de Oliveira Junior, A., Jeongrak Son, Jakub Czartowski, and Nelly H. Y. Ng. "Entanglement generation from athermality." Physical Review Research 6, no. 3 (September 3, 2024). http://dx.doi.org/10.1103/physrevresearch.6.033236.

Повний текст джерела
Анотація:
We investigate the thermodynamic constraints on the pivotal task of entanglement generation using out-of-equilibrium states through a model-independent framework with minimal assumptions. We establish a necessary and sufficient condition for a thermal process to generate bipartite qubit entanglement, starting from an initially separable state. Consequently, we identify the set of system states that cannot be entangled, when no external work is invested. In the regime of infinite temperature, we analytically construct this set; while for finite temperature, we provide a simple criterion to verify whether any given initial state is or is not entangleable. Furthermore, we provide an explicit construction of the future thermal cone of entanglement—the set of entangled states that a given separable state can thermodynamically evolve to. We offer a detailed discussion on the properties of this cone, focusing on the interplay between entanglement and its volumetric properties. We conclude with several key remarks on the generation of entanglement beyond two-qubit systems, and discuss its dynamics in the presence of dissipation. Published by the American Physical Society 2024
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rossignoli, R., and C. T. Schmiegelow. "Entanglement generation resonances inXYchains." Physical Review A 75, no. 1 (January 18, 2007). http://dx.doi.org/10.1103/physreva.75.012320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії