Добірка наукової літератури з теми "Enriched polynomial space"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Enriched polynomial space".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Enriched polynomial space"
Du, Xunbai, Sina Dang, Yuzheng Yang, and Yingbin Chai. "The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis." Mathematics 10, no. 23 (December 4, 2022): 4595. http://dx.doi.org/10.3390/math10234595.
Повний текст джерелаChai, Yingbin, Kangye Huang, Shangpan Wang, Zhichao Xiang, and Guanjun Zhang. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation." Mathematics 11, no. 7 (March 30, 2023): 1664. http://dx.doi.org/10.3390/math11071664.
Повний текст джерелаLiu, Yan Xin, Han Xiang Wang, Qian Qian Fu, Xiang Xiang Yang, and Guo Dong Ding. "The Construction of the SGW-Based Bar-Beam Elements." Applied Mechanics and Materials 423-426 (September 2013): 1202–6. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1202.
Повний текст джерелаChoi, Hyung-Gyu, Young Il Byun, Chul Ki Song, Martin B. G. Jun, Chaemin Lee, and San Kim. "A Solution Procedure to Improve 3D Solid Finite Element Analysis with an Enrichment Scheme." Applied Sciences 13, no. 12 (June 14, 2023): 7114. http://dx.doi.org/10.3390/app13127114.
Повний текст джерелаXu, Xiaorui, and Yu-Xin Ren. "Resolving turbulent boundary layer on coarse grid using function enrichment based on variational reconstructions." Physics of Fluids 34, no. 12 (December 2022): 125106. http://dx.doi.org/10.1063/5.0124478.
Повний текст джерелаChandler-wilde, Simon, Stephen Langdon, and Oliver Phillips. "Towards high frequency boundary element methods for multiple scattering." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, no. 2 (February 1, 2023): 5319–25. http://dx.doi.org/10.3397/in_2022_0775.
Повний текст джерелаTorii, André Jacomel, Roberto Dalledone Machado, and Marcos Arndt. "GFEM for modal analysis of 2D wave equation." Engineering Computations 32, no. 6 (August 3, 2015): 1779–801. http://dx.doi.org/10.1108/ec-07-2014-0144.
Повний текст джерелаHu, Jun, та Shangyou Zhang. "Finite element approximations of symmetric tensors on simplicial grids in ℝn: The lower order case". Mathematical Models and Methods in Applied Sciences 26, № 09 (26 липня 2016): 1649–69. http://dx.doi.org/10.1142/s0218202516500408.
Повний текст джерелаWang, Yifeng. "Symmetry and symmetric transformations in mathematical imaging." Theoretical and Natural Science 31, no. 1 (April 2, 2024): 320–23. http://dx.doi.org/10.54254/2753-8818/31/20241037.
Повний текст джерелаZhang, Zhiwen, Xin Hu, Thomas Y. Hou, Guang Lin, and Mike Yan. "An Adaptive ANOVA-Based Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficient." Communications in Computational Physics 16, no. 2 (August 2014): 571–98. http://dx.doi.org/10.4208/cicp.270913.020414a.
Повний текст джерелаДисертації з теми "Enriched polynomial space"
Nudo, Frederico. "Approximations polynomiales et méthode des éléments finis enrichis, avec applications." Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3067.
Повний текст джерелаA very common problem in computational science is the determination of an approximation, in a fixed interval, of a function whose evaluations are known only on a finite set of points. A common approach to solving this problem relies on polynomial interpolation, which consists of determining a polynomial that coincides with the function at the given points. A case of great practical interest is the case where these points follow an equispaced distribution within the considered interval. In these hypotheses, a problem related to polynomial interpolation is the Runge phenomenon, which consists in increasing the magnitude of the interpolation error close to the ends of the interval. In 2009, J. Boyd and F. Xu demonstrated that the Runge phenomenon could be eliminated by interpolating the function only on a proper subset formed by nodes closest to the Chebyshev-Lobatto nodes, the so called mock-Chebyshev nodes.However, this strategy involves not using almost all available data. In order to improve the accuracy of the method proposed by Boyd and Xu, while making full use of the available data, S. De Marchi, F. Dell'Accio, and M. Mazza introduced a new technique known as the constrained mock-Chebyshev least squares approximation. In this method, the role of the nodal polynomial, essential for ensuring interpolation at mock-Chebyshev nodes, is crucial. Its extension to the bivariate case, however, requires alternative approaches. The recently developed procedure by F. Dell'Accio, F. Di Tommaso, and F. Nudo, employing the Lagrange multipliers method, also enables the definition of the constrained mock-Chebyshev least squares approximation on a uniform grid of points. This innovative technique, equivalent to the previously introduced univariate method in analytical terms, also proves to be more accurate in numerical terms. The first part of the thesis is dedicated to the study of this new technique and its application to numerical quadrature and differentiation problems.In the second part of this thesis, we focus on the development of a unified and general framework for the enrichment of the standard triangular linear finite element in two dimensions and the standard simplicial linear finite element in higher dimensions. The finite element method is a widely adopted approach for numerically solving partial differential equations arising in engineering and mathematical modeling [55]. Its popularity is partly attributed to its versatility in handling various geometric shapes. However, the approximations produced by this method often prove ineffective in solving problems with singularities. To overcome this issue, various approaches have been proposed, with one of the most famous relying on the enrichment of the finite element approximation space by adding suitable enrichment functions. One of the simplest finite elements is the standard linear triangular element, widely used in applications. In this thesis, we introduce a polynomial enrichment of the standard triangular linear finite element and use this new finite element to introduce an improvement of the triangular Shepard operator. Subsequently, we introduce a new class of finite elements by enriching the standard triangular linear finite element with enrichment functions that are not necessarily polynomials, which satisfy the vanishing condition at the vertices of the triangle.Later on, we generalize the results presented in the two-dimensional case to the case of the standard simplicial linear finite element, also using enrichment functions that do not satisfy the vanishing condition at the vertices of the simplex.Finally, we apply these new enrichment strategies to extend the enrichment of the simplicial vector linear finite element developed by Bernardi and Raugel
Nora, Pedro Miguel Teixeira Olhero Pessoa. "Kleisli dualities and Vietoris coalgebras." Doctoral thesis, 2019. http://hdl.handle.net/10773/29882.
Повний текст джерелаNesta tese pretendemos estender de forma sistemática dualidades de StoneHalmos para categorias que incluem todos os espaços de Hausdorff compactos. Para atingir este objectivo combinamos teoria de dualidades e teoria de categorias enriquecidas em quantais. A nossa ideia principal é que ao passar do espaço discreto com dois elementos para um cogerador da categoria de espaços de Hausdorff compactos, todas as restantes estruturas envolvidas devem ser substituídas por versões enriquecidas correspondentes. Desta forma, consideramos o intervalo unitário [0, 1] e desenvolvemos teoria de dualidades para espaços ordenados compactos e categorias enriquecidas em [0, 1] finitamente cocompletas (apropriadamente definidas). Na segunda parte da tese estudamos limites em categorias de coalgebras cujo functor subjacente é um functor de Vietoris polinomial — intuitivamente, uma versão topológica de um functor polinomial de Kripke.
Programa Doutoral em Matemática
Частини книг з теми "Enriched polynomial space"
Boules, Adel N. "Banach Spaces." In Fundamentals of Mathematical Analysis, 245–89. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198868781.003.0006.
Повний текст джерелаBrezzi, F., L. P. Franca, T. J. R. Hughest, and A. Russo. "Stabilization Techniques and Subgrid Scales Capturing." In The State of the Art in Numerical Analysis, 391–406. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198500148.003.0015.
Повний текст джерелаТези доповідей конференцій з теми "Enriched polynomial space"
Ghanem, Roger, and Debraj Ghosh. "An Enrichment Scheme for Polynomial Chaos Expansion Applied to Random Eigenvalue Problem." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85450.
Повний текст джерелаLe Bozec-Chiffoleau, Sulian, Charles Prud'homme, and Gilles Simonin. "Polynomial Time Presolve Algorithms for Rotation-Based Models Solving the Robust Stable Matching Problem." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/317.
Повний текст джерелаЗвіти організацій з теми "Enriched polynomial space"
Horrocks, Ian, Ulrike Sattler, and Stephan Tobies. A Description Logic with Transitive and Converse Roles, Role Hierarchies and Qualifying Number Restrictions. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.94.
Повний текст джерела